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and Universitat Erlangen�Nurnberg¨ ¨

We consider two critical spatial branching processes on � d: critical
branching Brownian motion, and the critical Dawson�Watanabe process.
A basic feature of these processes is that their ergodic behavior is highly
dimension dependent. It is known that in low dimensions, d � 2, the only
invariant measure is � , the unit point mass on the empty state. In high0

� � .4dimensions, d � 3, there is a family � , � � 0, � of extremal invariant�

measures; the measures � are translation invariant and indexed by�

spatial intensity. We prove here, for d � 3, that all invariant measures
are convex combinations of these measures.

1. Introduction and main results. Critical branching Brownian mo-
tion and the critical Dawson�Watanabe process are two closely related

d � �models of random motion and branching on � . In our previous paper 2 , we
proved that in low dimensions, d � 2, the only invariant measure for either
process is the unit point mass on the empty configuration, thus extending
previous work on this question. Here, we consider the high-dimensional case,

� � .4d � 3, where it is known that there is a one-parameter family � , � � 0, ��

of extremal invariant measures that are translation invariant and indexed by
spatial intensity. We show that all invariant measures are obtained as
convex combinations of this collection. We begin by defining our processes.

Critical branching Brownian motion � is a system of particles whicht
undergo random motion and branching on � d according to the following
rules.

1. Each particle lives an exponentially distributed lifetime with parameter
2b.

2. At the end of its lifetime, a particle disappears and is replaced by zero or
two particles, each possibility occurring with equal probability.

3. During its lifetime, a particle moves according to standard Brownian
motion.

4. All particle lifetimes, motions and branching are independent of one
another.

The parameter b is a positive, finite constant.
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It is convenient to view � as a measure on � d, and to adopt the followingt
d Ž .notation. Let MM be the set of Borel measures � on � such that � K � � for

d Ž d .all compact K � � i.e., the set of Radon measures on � . We endow MM

² : ² :with the topology of vague convergence: � � � if and only if � , f � �, fn v n
�Ž d . �Ž d .for all f � C � . Here C � is the collection of continuous nonnegativec c

d ² : Ž . Ž .dfunctions on � with compact support, and �, f � H f x � dx . Let �� x
denote the unit point mass at x, and let MM be the collection of all � � MM of0

� 4the form � � Ý � , where x is a finite or countably infinite sequence ofi x ii

points in � d.
For x � � d, let � x denote the process starting from a single particle at xt

at time zero, that is, � � � . A construction of these ‘‘single ancestor’’0 x
x � �processes � can be found in 9 . Systems of infinitely many branchingt

Brownian motions are constructed by superposition. We refer the reader to
� � Ž � � � � � �.5 for an excellent account of the general theory see also 6 , 7 and 13 . As

� �in 2 , the following informal description will suffice for our purposes. Given
� x i4� � Ý � � MM and a family of independent single ancestor processes � ,i x 0 ti

we define � �, the process with initial configuration � , byt

1.1 � � � � x i .Ž . Ýt t
i

� x i4This also works if � is random: we simply require that � and the family �t
Ž . Ž .be independent. Letting LL denote law, we assume that LL � � PP MM , the0 0

space of probability measures on MM .0

REMARK. MM is the largest class of initial states that is sensible to0
Ž . Ž Ž . .consider, since if � K � � for some compact K, then P � U � � � 1 for0 t

� Ž Ž . .all t � 0 and open sets U. Of course, P � U � � � 1 for all t � 0 and opent
�sets U also holds for certain � � MM .0 0

� �The critical Dawson�Dawson�Watanabe process � of 4 is the ‘‘diffusionˆt
limit’’ of critical branching Brownian motion obtained by speeding up the
branching rate, decreasing the mass of particles, and packing more particles
into less space. If we let n� denote branching Brownian motion with lifetimet

Ž .Žn .parameter 2bn, and suppose that 1	n � converges to a measure � asˆ0 0
Ž .n .n � �, then 1	n � converges to a measure-valued diffusion � , the criticalˆt t

Dawson�Watanabe process. We will not give the details of this construction,
� � � � � � � �but instead refer the interested reader to 5 , 12 , 17 and 19 . Although it

is necessary to restrict � to certain subsets MM of MM in order that � be aˆ ˆ0 p t
Ž � �.well-defined right continuous process see 12 , this restriction plays no role

Ž .in our analysis. All we will need is the fact that the spaces PP MM , likep
Ž . Ž � � .PP MM , are Polish. See Chapter 3 of 5 for more detail on MM . Except for0 p

Ž .this point, we rely exclusively on the Laplace functional of � , given in 1.5 .ˆt
Much is known regarding the ergodic theory of � and � . We will summa-ˆt t

rize certain relevant results in Theorem 0 below before stating our results.
Ž � � � � � � � � � � � �See 6 , 7 , 10 and 11 for branching Brownian motion, and 4 , 8 and
� � .11 for the Dawson�Watanabe process. First, some additional notation. In
order to treat � and � simultaneously, we will use � to denote bothˆt t t
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processes. We let II be the set of invariant probability measures, that is,
Ž . � Ž .� Ž .all � � PP MM respectively, all � � PP MM , such that LL � � � implies0 p 0

Ž . � Ž . Ž . � ŽLL � � � for all t � 0 respectively, LL � � � implies LL � � � . Ofˆ ˆt 0 t
.course, II for � is not the same set as II for � . II is convex, and we will letˆt t

Ž .II be the set of extreme points of II. Let TT denote those � � PP MM which aree
translation invariant. That is, if � has law �, and x � � is defined by setting
Ž .Ž . Ž .x � � U � � x � U , then � � TT if and only if x � � has law � for all

d Ž . d Ž .x � � . For � � PP MM , the Borel measure 	 on � defined by 	 B �
Ž . Ž .H� B d� � is called the mean measure of �. The mean measure 	 for

� � TT is a multiple of Lebesgue measure m, 	 � � m; we refer to � as the
spatial intensity of �. We will use � to denote weak convergence.

THEOREM 0. Assume d � 3. Both � and � have one-parameter familiesˆt t
� 4of invariant measures � , 0 � � � � . The measures � are translation invari-� �

Ž .ant, shift ergodic and indexed by spatial intensity. If LL � is translation0
invariant and shift ergodic, with spatial intensity � , then

LL � � � as t � �.Ž .t �

Furthermore, if � � II has a 
-finite mean measure, then there is a unique
� .probability measure F on 0, � such that

1.2 � � � F d� .Ž . Ž .H �
� .0, �

One can inquire as to whether all extremal invariant measures are given
� 4 Ž .by � , 0 � � � � , and whether 1.2 holds without the assumption that the�

mean measure of � is 
-finite. Note that it is easy to construct a ‘‘natural’’
class of � � II with non-
-finite mean measures by employing F with infinite

Ž .mean in 1.2 . Then � � II, and

� �
� ��E � K � E � K F d� � � m K F d� � �,Ž . Ž . Ž . Ž . Ž .H H

0 0

Ž .provided m K � 0. Our problem, then, is to determine whether or not there
Ž .exist elements of II which cannot be represented via 1.2 , even allowing F

with infinite mean. We answer this with the following theorem.

� 4THEOREM 1. If d � 3, then for both � and � , II � � , 0 � � � � . Ifˆt t e �

� . Ž .� � II, then there is a unique probability measure F on 0, � such that 1.2
holds.

A key step in our proof of Theorem 1 is to rule out the possibility of an
invariant measure which is not also translation invariant. Given that the
dynamics of our processes are translation invariant, it does not seem unrea-
sonable for an invariant measure also to be translation invariant. But this
does not follow from any ‘‘soft’’ argument, and simply isn’t true in general.
There are examples in the literature of infinite particle systems with transla-
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tion-invariant dynamics which nonetheless possess nontranslation-invariant
� �invariant measures. These include the shower process example in 20 , the
� �exclusion process with asymmetric jump matrix of Example 2.8 of 15 , and

Ž � �.the Ising model in three or more dimensions see 1 . Nevertheless, we prove
Žthe following result. The same statement should hold for a wide class of

. � �critical spatial branching systems. The d � 2 version is contained in 2 .

PROPOSITION 1. For d � 3, II � TT.

With Proposition 1 in hand, our strategy is this. Assume � � II. Then since
� � TT, we can employ the ergodic theorem to decompose � into a mixture of

Ž .measures � with ‘‘spatial density’’ � see Proposition 5 in Section 5 . A�

� � Ž . Ž .convergence result in 11 tells us that if LL � � � , then LL � � � as0 � t �

Ž . Ž .t � �. Thus, if LL � � �, we find that LL � must converge to a mixture of0 t
the � . But this means � is a mixture of the � , since � � II implies� �

Ž . Ž .LL � � LL � � �.t 0
Both critical branching Brownian motion � and the criticalt

Dawson�Watanabe process � are intimately connected with the followingˆt
Ž . dpartial differential equation. For a function u x, t , x � � , t � 0, consider

the semilinear heat equation
� u 1

21.3 � �u 
 bu ,Ž .
� t 2

and the two initial conditions

1.4a u x , 0 � 1 
 e
f Ž x . , x � � d ,Ž . Ž .
1.4b u x , 0 � f x , x � � d ,Ž . Ž . Ž .

where f is a bounded, nonnegative measurable function on � d with compact
support. It is well known that there is always a unique bounded solution of
Ž . Ž . Ž .1.3 satisfying either 1.4a or 1.4b . The Laplace functionals of � and � canˆt t

Ž � �. Ž .be given in terms of these solutions see 5 . Namely, if u x, t is the solution
Ž . Ž .of 1.3 which satisfies 1.4a in the branching Brownian motion case and

Ž .1.4b in the Dawson�Watanabe case, then

² : ² :1.5a E exp 
 � , f � E exp � , log 1 
 u 
, t ,Ž . Ž .ŽŽ . Ž .t 0

² : ² :1.5b E exp 
 � , f � E exp 
 � , u 
, t .Ž . Ž .ˆ ˆŽ . Ž .t 0

In order to treat � and � simultaneously, we defineˆt t


log 1 
 u x , t , if � � � ,Ž .Ž . t tv x , t �Ž . ½ u x , t , if � � � .Ž . ˆt t

Ž .With this notation, we can rewrite 1.5 as

² : ² :1.6 E exp 
 � , f � E exp 
 � , v 
, t .Ž . Ž .Ž . Ž .t 0
� Ž .We will sometimes write E to denote expectation when LL � � �.0

The remainder of our paper is organized as follows. In Section 2, we obtain
Ž . Ž .several estimates on the solutions of u x, t of 1.3 using partial differential



M. BRAMSON, J. T. COX AND A. GREVEN60

equations methods. In Section 3, we present the precise convergence results
we need to implement the argument sketched in the paragraph below Propo-
sition 1. The proof of Proposition 1, which relies heavily on the p.d.e. esti-
mates of Section 2, is given in Section 4. Finally, we complete the proof of
Theorem 1 in Section 5.

REMARK. Although we have considered only the binary case of critical
branching Brownian motion, Proposition 1 and Theorem 1 hold just as well
whenever the branching mechanism is critical and has a finite second mo-
ment. The explicit form of the Gaussian kernel is used heavily in the proofs of
these results. It is therefore not immediate how to extend the setting to that
where the motion of particles is given by a particular stable law.

� �2. PDE estimates. As in our previous paper 2 , we make use of the
method of sub- and super-solutions, and of the maximum principle. Proposi-

Ž .tion 2 gives upper and lower bounds for u x, t in terms of the heat kernel
which are uniform in x and t. The proposition is the d � 3 version of

� � Ž .Proposition 1 in 2 . Proposition 3, which compares u x, t at ‘‘nearby’’ points
� �x and x , has no counterpart in 2 .1 2

Ž . Ž .Let p x, dy � p x, y dy denote the transition kernel of standard Brow-t t
Ž . Ž .
d 	2 � Ž .2 4nian motion, p x, y � 2	 t exp 
 x 
 y 	2 t . We will sometimest

Ž . Ž . Ž . t Ž .write p x for p x, 0 . For t � 1, put G t � H p 0 ds.t t 1 s

Ž . Ž . Ž .PROPOSITION 2. Assume u x, t satisfies 1.3 , in d � 3, for u x, 0 �
�Ž d . Ž .dC � with H u x, 0 dx � 0. Then there are finite positive constants a, A,c �

such that

2.1 ap x � u x , t � Ap xŽ . Ž . Ž . Ž .t	2 2 t

for all x � � d and t � 4.

Ž .REMARK. The estimate 2.1 differs slightly from the corresponding esti-
� � Ž .mate in Proposition 1 of 2 for the d � 2 case, where the function � x, t is
Ž . Ž . Ž .used. Up to constants, � x, t is in all dimensions of the form p x 	G t .t

PROOF. The upper bound is simple and holds in all dimensions. To see
Ž . Ž .this, set u x, t � A�p x . Clearly,t

� u 1
2 2
 �u � bu � bu � 0.

� t 2

Ž . Ž .Choose A� so that u x, 0 � u x, 1 for all x. This can be done since
Ž Ž .. Žsupp u 
, 0 is bounded. A standard maximum principle see Chapter 3 of

d� �. Ž . Ž . Ž .18 implies u x, t � u x, t � 1 for all x � � and t � 1. Since u x, t � 1
d 	2 Ž .� 2 u x, 2 t for t � 1, we have for large enough A,

2.2 u x , t � Ap x , x � � d , t � 2.Ž . Ž . Ž .2 t
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Ž .Next, take a� � 0, 1	b , and for t � 1, set

a�p xŽ .t
u x , t � .Ž .

G tŽ .
Direct calculation shows

� u 1 u x , tŽ .
2 d
 �u � bu � a�bp x 
 p 0 � 0, x � � , t � 1.Ž . Ž .t t� t 2 G tŽ .

If we can choose a� small enough so that

2.3 u x , 4 � u x , 2 , x � � d ,Ž . Ž . Ž .
Ž . Ž .it will follow from the maximum principle that u x, t � u x, t 
 2 for all

d Ž .x � � and t � 4. Since G t converges to a finite limit, in d � 3, as t � �,
this implies that there is a positive a such that

2.4 u x , t � ap x , x � � d , t � 4.Ž . Ž . Ž .t	2

Ž . Ž . Ž .The verification of 2.3 is straightforward. Put f x � u x, 0 , and choose
Ž . Ž . dc � 0, 1 such that cf x � 1 for all x � � . If we let


 x , t � ce
b t p x , y f y dy,Ž . Ž . Ž .H t
d�

Ž . Ž . Ž . dthen 
 x, 0 � u x, 0 and 
 x, t � 1 for all x � � and t � 0. Thus,

�
 1
2
 �� � b
 � b
 
 
 1 a � 0.Ž .

� t 2
Ž . Ž .By the maximum principle, u x, t � 
 x, t , and consequently

u x , t � ce
b t f y dy inf p x , y , x � � d , t � 0.Ž . Ž . Ž .H tž /ž /d Ž .y�supp f�

Ž .Since supp f is bounded, it is easy to see that we can choose � � 0 such that

inf p x , y � � p x , 0 , x � � d .Ž . Ž .4 2
Ž .y�supp f

Ž .By combining the last two inequalities, we obtain 2.3 . �

Ž . � d � � 4For r � 0, let B r � x � � : x � r . The following result is a key
ingredient in the proof of II � TT, which is given in Section 4.

Ž . Ž . Ž . �Ž d .PROPOSITION 3. Assume u x, t satisfies 1.3 for u x, 0 � C � withc
Ž .dH u x, 0 dx � 0, any d � 1. Fix � � 0 and M � 0 such that �M � 1	4. For�

Ž . � �all sufficiently large t and for all x , x � B � t such that x 
 x � M,1 2 1 2

'2.5 u x , t � exp 8 � M u x , t .Ž . Ž . Ž .Ž .2 1

Ž .PROOF. Our strategy for deriving 2.5 is as follows. For an appropriately
Ž .small � � 0 we will estimate u x, t by ‘‘turning off’’ the branching term in

Ž . �Ž . � Ž .1.3 over the time period 1 
 � t, t . This does not affect the value of u x, t
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very much, but allows us to make use of the smoothing properties of the
Ž . Ž .Brownian transition kernel when comparing u x , t and u x , t . We will1 2

make repeated use of sub- and super-solutions in the context of the maximum
Ž . Ž .principle in the comparisons that follow. Let � x, t and w x, t satisfy

�� 1
2.6 � ��Ž .

� t 2
and

� w 1
� �w � k t w ,Ž .

� t 2
Ž . Ž .with k continuous and bounded above, where w x, 0 � � x, 0 . We will also

employ the standard representation

t
2.7 w x , t � � x , t exp k s ds .Ž . Ž . Ž . Ž .H½ 5

0

Ž . Ž . Ž .dStep 1. Let � x, 0 � u x, 0 and K � sup u x, 0 . We claim thatx � �

1
d2.8 � x , t � u x , t � � x , t , x � � , t � 0.Ž . Ž . Ž . Ž .

1 � bKt
The right-hand inequality follows immediately from the maximum princi-

Ž .ple. For the left-hand inequality, let U x, t be the solution of
�U

2 d� 
bU , U x , 0 � K for all x � � .Ž .
� t

Ž . Ž . Ž .Then U x, t � K	 1 � bKt , and again by the maximum principle, u x, t �
Ž . d Ž .U x, t for x � � and t � 0. Plugging this bound into 1.3 , we have

� u 1 bK
d2.9 � �u 
 u , x � � , t � 0.Ž .

� t 2 1 � bKt
Ž .Let w x, t satisfy

� w 1 bK
2.10 � �w 
 w , w 
, 0 � u 
, 0 .Ž . Ž . Ž .

� t 2 1 � bKt
Ž .By 2.7 ,

bKt
w x , t � � x , t exp 
 dsŽ . Ž . H½ 51 � bKs0

1
� � x , t .Ž .

1 � bKt
Ž . Ž .Another application of the maximum principle implies u x, t � w x, t for

d Ž .all x � � and t � 0, and we have established 2.8 .

' Ž . Ž .Step 2. Put � � �M � 1	2. Fix t � 0, and define u x, s by u x, s �ˆ ˆ
Ž . Ž .u x, s for s � 1 
 � t, and

� u 1ˆ
� �u , s � 1 
 � t .Ž .ˆ

� s 2
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In this step, we establish

2.11 e
2 � u x , t � u x , t � u x , t , x � � d , t � 0.Ž . Ž . Ž . Ž .ˆ ˆ
Ž .The right-hand inequality in 2.11 is an immediate application of the

Ž .maximum principle. For the left-hand inequality, we have, by 2.9 ,

� u 1 2 t
2.12 � �u 
 u , s � .Ž .

� s 2 t 2
Ž . Ž . Ž .Letting u x, s � u x, s for s � 1 
 � t, and˜

� u 1 2˜
� �u 
 , s � 1 
 � t ,Ž .˜

� s 2 t
Ž .it follows from the maximum principle and 2.7 , that

2� t 
2 �u x , t � u x , t � u x , t exp 
 ds � e u x , t .Ž . Ž . Ž . Ž .˜ ˆ ˆH½ 5t0

Ž . Ž .Step 3. We will now demonstrate 2.5 . Assume x , x � B � t and1 2
� � Ž Ž .. Ž .x 
 x � M. Also, take t large enough so that supp u 
, 0 � B � t . By1 2
Ž .2.11 ,

u x , t � u x , t � u y , 1 
 � t p y , x dy � I � I ,Ž . Ž . Ž . Ž .Ž .ˆ H2 2 � t 2 1 2
d�

Ž .where I denotes the integral over B 4� t , and I denotes the integral over1 2
cŽ .B 4� t . We will show that we may replace x with x in I with little error,2 1 1

and that I is negligible.2
Ž .To calculate I , we first note that for y � B 4� t , the triangle inequality1

implies
2 2� � � � � � � � � � � �y 
 x 
 y 
 x � y 
 x � y 
 x 
 y 
 x 
 y 
 x � 10� tM .1 2 1 2 1 2

This implies

p y , x 5� MŽ .� t 2 � exp , y � B 4� t .Ž .ž /p y , x �Ž .� t 1

With this estimate, we obtain

p y , xŽ .� t 2
I � u y , 1 
 � t p y , x dyŽ . Ž .Ž .H1 � t 1 p y , xŽ .Ž .B 4� t � t 1

5� M
� exp u y , 1 
 � t p y , x dyŽ . Ž .Ž .H � t 1ž /� Ž .B 4� t

5� M
� exp u x , t .Ž .ˆ 1ž /�

Ž .Using 2.11 again, it follows that

� 42.13 I � exp 2� � 5� M	� u x , t .Ž . Ž .1 1
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Ž . cŽ . � � 2 2 2Turning now to I , for x � B � t and y � B 4� t , y 
 x � 9� t . Thus,2
Ž .using 2.8 ,

u y , 1 
 � t � � y , 1 
 � tŽ . Ž .Ž . Ž .

� u x , 0 p x , y dxŽ . Ž .H Ž1
� .t
Ž .B � t

1 9� 2 t
� Km B � t exp 
Ž .Ž . d	2 ž /22	 1 
 � tŽ .Ž .
� exp 
4� 2 tŽ .

for large enough t. This implies

2.14 I � exp 
4� 2 t p y , x dy � exp 
4� 2 t .Ž . Ž . Ž . Ž .H2 � t 2
d�

Ž . Ž .To see that I is negligible compared to u x , t , we use 2.8 again to obtain2 1

� x , tŽ .1
u x , t �Ž .1 1 � bKt

1
� u y , 0 p y , x dyŽ . Ž .H t 11 � bKt Ž .B � t

1 
d	2 2� 2	 t exp 
2� t u y , 0 dyŽ . Ž . Ž .H1 � bKt Ž .B � t

� exp 
3� 2 tŽ .
Ž .for sufficiently large t. This estimate and 2.14 imply

2.15 I � exp 
� 2 t u x , t .Ž . Ž . Ž .2 1

Ž . Ž .Putting together the estimates 2.13 and 2.15 ,
u x , t � I � IŽ .2 1 2

� 4 2� exp 2� � 5� M	� u x , t � exp 
� t u x , tŽ . Ž . Ž .1 1

� 4� exp 2� � 6� M	� u x , tŽ .1

'for large enough t. Since � � � M , this implies
'u x , t � exp 8 � M u x , t ,� 4Ž . Ž .2 1

and we are done. �

3. Convergence criteria. We need more information concerning the
Ž .convergence of LL � as t � � than is given in Theorem 0. The results wet

need are stated in Proposition 4 below. We say that � is stable if for everyt
Ž .ball B of finite positive radius, � B is stochastically bounded as t � �. Thatt

is, � is stable if for any given B and � � 0, there exists M � � such thatt
Ž Ž . .lim sup P � B � M � � . Otherwise, � is unstable. We say that � �t �� t t

Ž . � �PP MM has spatial density � � 0, � , if
² : ² :� , p f � � m , f as t � �t p
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�Ž d . � Ž . Ž .for every f � C � when � has law �. Or, equivalently, H p x, 0 � dx �c t p
�� , although we only use the first formulation. Here � denotes convergencep

Ž .Ž . Ž . Ž .din probability, and p f x � H p x, y f y dy. Thus, we determine thet � t
spatial density of � not by averaging over large boxes in � d, but by averaging

Ž .with respect to p x, 
 for large t. This method of averaging has been used int
the study of several interacting particle systems, including the voter model

Ž � �. �and certain ‘‘linear’’ systems see 15 . Finally, recall the collection � ,�

40 � � � � of invariant measures from Theorem 0.

Ž . � .PROPOSITION 4. Assume d � 3. a If � has spatial density � � 0, � ,0
then

LL � � � as t � �.Ž .t �

Ž . ² Ž .:b If � is stable, then � , p 
 is stochastically bounded as t � �.t 0 t

Ž . � �Part a corresponds to one direction of Theorem 1 of 2 , although the
Ž .argument for the case d � 3 is simpler. For � � � , part a is a special caset t

� �of Theorem 2.2 of 11 , which concerns a general class of critical branching
particle systems whose underlying spatial motion mechanisms are transient.

� �The proof in 11 uses Laplace functionals and works equally well for � . Aˆt
� �similar convergence result was obtained in 3 for branching Markov chains,

Ž . Ž .where the proof is somewhat easier. Part a will be employed in 5.5 . It is a
Ž .useful variant of Theorem 0, since ergodicity of LL � is not assumed here.0

Ž .Part b of Proposition 4 is similar to the assertion in Step 1 in the proof of
� � Ž .Theorem 1 of 2 . Before starting the proof of b , we derive a pair of

inequalities that will be useful below.
�Ž d . Ž . Ž . Ž .Let f � C � , and let u x, t satisfy 1.3 , and 1.4a for � � � andc t t

Ž . Ž . Ž .1.4b for � � � . Recall the definition of v x, t given just before 1.6 . Byˆt t
Ž . d 	2 dProposition 2, for some finite constant C, u x, t � C	t for all x � � and

Ž .t � 4. This fact and the elementary inequality s � 
log 1 
 s � 2 s for small
positive s imply that for large t,

3.1 u x , t � v x , t � 2u x , t , x � � d .Ž . Ž . Ž . Ž .
Ž .Furthermore, since lim log 1 
 s 	s � 
1,s� 0

v x , tŽ .
3.2 lim sup 
 1 � 0.Ž .

u x , tt�� Ž .dx��

Ž . Ž . �² Ž .: 4PROOF OF PROPOSITION 4 b . For M � 0, put � M � � , p 
 � M . Byt 0 t
Ž . Ž . �Ž d . ² :2.1 and 3.1 , for f � C � with m, f � 0, there exists a � 0 such thatc
Ž . Ž .v x, t � ap x for large t. For such t,t	2

² : ² :E exp 
 � , f � E exp 
 � , v 
, tŽ .Ž . Ž .t 0

� E exp 
a � , p 
² :Ž .ž /0 t	2

� 1 
 P � M � exp 
aM P � M ,Ž . Ž . Ž .Ž . Ž .t	2 t	2
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that is,
² :1 
 E exp 
 � , fŽ .2 t

P � M � .Ž .Ž .t 1 
 exp 
aMŽ .
Ž ² :.Fix � � 0. Since � is stable, we can choose f so that E exp 
 � , f � 1 
 �t t

Ž .for all large t. If we now choose M large enough so that exp 
aM � 1	2,
then

P � M � 2�Ž .Ž .t

² Ž .:for all large t. This shows � , p 
 is stochastically bounded as t � �. �0 t

4. Proof of Proposition 1. Fix � � II. For a function f on � d and
d Ž . Ž .z � � , let f be the translate f x � f x � z . To prove � � II, we will showz z

Ž . �Ž d . dthat if LL � � �, then for all f � C � and z � � ,0 c

² : ² :4.1 E exp 
 � , f 
 E exp 
 � , f � 0Ž . Ž . Ž .t z t

Ž ² :. Ž ² :.at t � �. This suffices since both E exp 
 � , f and E exp 
 � , f dot z t
Ž . Ž . Ž . Ž .not depend on t. To prove 4.1 , we invoke 1.6 and compare H v x, t � dx0

Ž . Ž . Ž .with H v x � z, t � dx . In Step 1, we use Proposition 4 b to show that we0
Ž .may neglect the contribution of ‘‘large’’ x which depend on t in these

integrals. In Step 2, we apply Proposition 3 to handle all remaining x.

Step 1. Fix � � 0 and let A be the eventt

A � v x , t � dx � � .Ž . Ž .Ht 0½ 5c 3	4Ž .B t

We show that

4.2 P A � 0 as t � �.Ž . Ž .t

cŽ 3	4.For x � B t ,
1d 	2 1	2p x � 2 exp 
 t p x ,Ž . Ž .� 4t 2 t4

and thus

1d 	2 1	2p x � dx � 2 exp 
 t p x � dx .Ž . Ž . Ž . Ž .� 4H Ht 0 2 t 04
c 3	4 dŽ .B t �

Ž .Because � is invariant, � must be stable, and thus by Proposition 4 b , thet
right-hand side above must tend to 0 as t � �. Consequently,

p x � dx � 0 as t � �.Ž . Ž .H t 0 p
c 3	4Ž .B t

Ž .By Proposition 2 and 3.1 , this implies

v x , t � dx � 0 as t � �,Ž . Ž .H 0 p
c 3	4Ž .B t

Ž .which proves 4.2 .
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Ž . Ž .Step 2. We now prove 4.1 . By 1.6 ,

² : ² :E exp 
 � , f � E exp 
 � , v 
, tŽ .Ž . Ž .t z 0 z

² : ² :c� E1 exp 
 � , v 
, t � E1 exp 
 � , v 
, tŽ . Ž .Ž . Ž .A 0 z A 0 zt t4.3Ž .
� P A � E1 c exp 
 v x � z , t � dx .Ž . Ž . Ž .Ht A 0½ 5t 3	4Ž .B t

Set
v x � z , tŽ .

� � inf .t
3	4 v x , tŽ .Ž .x�B t

Ž . Ž .It follows from 3.2 and Proposition 3 that � � 1 as t � �. Since v x � z, tt
Ž . Ž 3	4. Ž . Ž . c

c 3	4� � v x, t for x � B t , and since � � H v x, t � dx on A ,t B Ž t . 0 t

E1 c exp 
 v x � z , t � dxŽ . Ž .HA 0½ 5t 3	4Ž .B t

� E1 c exp 
� v x , t � dxŽ . Ž .HA t 0½t 3	4Ž .B t

�� � 
 v x , t � dxŽ . Ž .Ht 0 5c 3	4Ž .B t

4.4Ž .

² :c� exp �� E1 exp 
� � , v 
, tŽ . Ž .Ž .t A t 0t

² :� exp �� E exp 
� � , v 
, t .Ž . Ž .Ž .t t 0

The elementary inequality

� 
� s 
s �e 
 e � 1 
 � , s � 0, 0 � � � 1,
implies

² : ² :4.5 E exp 
� � , v 
, t � E exp 
 � , v 
, t � 1 
 � .Ž . Ž . Ž .Ž . Ž .t 0 0 t

Ž .By 1.6 ,

² :² :4.6 E exp 
 � , v 
, t � E exp 
 � , f .Ž . Ž . Ž .Ž .0 t

Ž . Ž .Taken together, 4.3 � 4.6 imply

² : ² :4.7 E exp 
 � , f � P A � exp �� E exp 
 � , f � 1 
 � .Ž . Ž . Ž .Ž . Ž .t z t t t t

Ž . Ž .Since P A � 0 by 4.2 , � � 1 as t � � and � � 0 is fixed but arbitrary,t t
Ž .4.7 implies

² : ² :lim sup E exp 
 � , f � lim inf E exp 
 � , f .Ž . Ž .t z t
t��t��

The inequality in the opposite direction follows analogously by translating by
Ž .
z. This proves 4.1 . �

5. Proof of Theorem 1. We are almost ready to prove Theorem 1. First,
we need a general decomposition result for translation invariant measures.
The following version will suffice.
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PROPOSITION 5. Let � � TT, any d. There is a Borel probability measure F
� � � �on 0, � and probability measures � � TT, � � 0, � , such that each � has� �

spatial density � , and

5.1 � � � F d� .Ž . Ž .H �
� �0, �

PROOF. We give the main steps of the argument, which in its entirety is
� � d Ž . Ž . Ž . Žrather tedious. Put � � 
N, N and h x � 1 x 	m � . Note thatN N � NNd .h is just the average of N translations of h . Let � have law �. By aN 1
Ž � � � �.standard ergodic theorem see Chapter 6 of 14 or Section 4 of 16 , if

² :E � , h � �, then1

² : 1� , h � D a.s. and in L as N � �,N

where D is a nonnegative shift-invariant random variable, with ED �
² : ² :E � , h . A truncation argument can be used to show that even if E � , h �1 1

�,
² :� , h � D a.s. as N � �,N

where D is nonnegative and shift invariant, but may be infinite with positive
Ž .probability. Set F equal to the distribution function of D. Recall that PP MM

Ž .and PP MM are Polish spaces. By standard results on regular conditionalp
Ž � �.probabilities see pages 13�17 of 21 , we can define probability measures

� �� 
 � � 
� D � � , � � 0, � ,Ž . Ž .�

Ž . � �such that 5.1 holds. Let � have law � . Except for � in an F-null set, ��

will be translation invariant, with

² � :5.2 � , h � � a.s. as N � �.Ž . N

Of course, � can be redefined on the F-null set so that translation invari-�

Ž . � Ž .�ance and 5.2 still hold without affecting 5.1 .
It remains to show that � always has spatial density � . By approximating�

Ž . Ž . Ž .p x uniformly above and below with sums of the form Ýc t h x , it is nott N N
Ž .difficult to show from 5.2 that

� � , p 
 � � a.s. as t � �.² :Ž .t

� ² � :From this and the translation invariance of � , one can check that � , p ft
² : �Ž d .� � m, f a.s. as t � � for all f � C � . That is, � has spatial density � .c �

�

PROOF OF THEOREM 1. Fix � � II, and let � have law �. By Proposition 1,0
Ž .� � TT, and by Proposition 5, � may be represented as in 5.1 . Since � � II, �

Ž . ² Ž .:is stable, and so by Proposition 4 b , � , p 
 is stochastically bounded as0 t
Ž� 4. �Ž d .t � �. It follows that F � � 0. To see this, choose f � C � such thatc

² : Ž . Ž . Ž . d Ž . Ž .m, f � 0 and f y � 1 y . For large t, p x, y � 2 p x, 0 for y � B 1BŽ1. t st
and all x. So for large t,

² : d² :� , p f � 2 � , p 
 .Ž .0 t 0 2 t
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Since the right-hand side is stochastically bounded as t � �, the left-hand
Ž .side must be too. Consequently, F � � 0, or equivalently,

5.3 � � � F d� .Ž . Ž .H �
� .0, �

�Ž d . Ž .For given f � C � and t � 0, 5.3 impliesc

� ² : �� ² :5.4 E exp 
 � , f � E exp 
 � , f F d� .Ž . Ž .Ž . Ž .Ht t
� .0, �

Ž .By Proposition 4 a ,
�� ² : �� ² :5.5 E exp 
 � , f � E exp 
 � , f as t � �.Ž . Ž .Ž .t

Ž . Ž .Using the bounded convergence theorem, 5.4 and 5.5 , we obtain

� ² : �� ² :5.6 E exp 
 � , f � E exp 
 � , f F d� as t � �.Ž . Ž .Ž .Ž . Ht
� .0, �

Since � � II, the left-hand side above does not depend on t, and thus

� ² : �� ² : � dE exp 
 � , f � E exp 
 � , f F d� , f � C � ,Ž . Ž .Ž . Ž .H c
� .0, �

Ž .which is equivalent to 1.2 .
� 4It remains to check that II � � , 0 � � � � ; the uniqueness of F thene �

Ž . � 4follows. Clearly, 1.2 implies II � � , 0 � � � � . On the other hand, each �e � �

Ž . Žis shift ergodic recall Theorem 0 . This fact and a standard argument see
� �.Proposition I.4.13 of 15 imply each � is extremal, so we are done. ��
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