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A MARTINGALE APPROACH TO HOMOGENIZATION
OF UNBOUNDED RANDOM FLOWS

BY ALBERT FANNJIANG1 AND TOMASZ KOMOROWSKI

University of California, Davis, and Michigan State University

We study the asymptotic behavior of Brownian motion in steady,
unbounded incompressible random flows. We prove an invariance princi-
ple for almost all realizations of random flows. The key compactness result
is obtained by Moser’s iterative scheme in PDE theory.

� Ž .41. Introduction. Let x t be a solution of the following Ito stochas-ˆt � 0
tic differential equation

'dx t � b x t dt � 2 dw t ,Ž . Ž . Ž .Ž .
1Ž .

x 0 � 0,Ž .

� Ž .4 Ž .where w t is the standard d-dimensional Brownian motion and b x ,t � 0
d Ž .x � R is an random d-dimensional drift independent of w t . Furthermore,

Ž . dwe assume that the random field b x , x � R is zero mean, homogeneous
and divergence-free:

2 � � b x � 0.Ž . Ž .
Ž . Ž . Ž .Due to 2 , there exists a skew symmetric stream matrix H x , H x �i, j

Ž .�H x , � i, j, such thatj, i

3 � � H x � b x .Ž . Ž . Ž .
Ž .The stream matrix is not determined uniquely by 2 but up to a gauge. The

Ž .stream matrix H x is not homogeneous in general due to the randomness of
the velocity field. However, if the dimension is bigger than two and the
velocity correlation decays sufficiently fast, then there exists a square inte-

Ž . �grable, homogeneous stream matrix such that 2 holds cf. Fannjiang and
Ž .�Papanicolaou 1996 . In two dimensions the stream matrix in general is not

homogeneous, regardless of decay in velocity correlation, and has logarithmi-
� Ž .�cally divergent variances cf. Fannjiang 1997 . In this paper, we assume

Ž .that H x is a homogeneous square integrable process.
Ž .To study the long-time, large-scale asymptotics of the solutions of 1 , we

take the diffusive scaling and consider the family of processes

4 x t � � x t�� 2 , � � 0.Ž . Ž . Ž .�
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The probability distributions of these processes are identical with those of the
solutions of the following Ito stochastic differential equations:ˆ

1 x tŽ .� '5 dx t � b dt � 2 dw t ,Ž . Ž . Ž .� ž /� �

6 x 0 � 0.Ž . Ž .�

Ž . Ž . �When both the drift b x and H x are bounded, it has been shown see
Ž . Ž .�Papanicolaou and Varadhan 1982 and Osada 1982 that for almost all

� Ž .4realizations of the drift the distributions of the processes x t , � � 0� t � 0
converge weakly in the space of probability measures on the path space
Ž� . d .C 0, �� ; R to the law of a Brownian motion with generally enhanced

variances called the effective diffusivity. This limiting process eliminates the
� Ž .4inhomogeneity of x t , � � 0 and is thus called homogenization.� t � 0

If one is only concerned with the boundary value problems associated with
� Ž .the generator LL of 5 :

1 x x
�7 LL u � b � �u t , x � �u t , x � � � I � H �u ,Ž . Ž . Ž .� � � �ž / ž /ž /� � �

� Ž .�then it has long been shown Papanicolaou and Varadhan 1982 that the
weak convergence to the corresponding boundary value problems associated
with the Laplacian with the effective diffusivity as coefficients holds for
bounded stream matrices.

However, many important examples of random drifts, such as Gaussian
fields, do not fall into the category of bounded coefficients. For generalization

Ž .to unbounded coefficients, Oelschlager 1988 proves that probabilistic ho-¨
Ž .mogenization holds for coefficients with finite second moments in b x and

Ž .H x in addition to the usual linear growth condition on the first derivatives
of the drift. However, the convergence is defined in the sense of a Vasserstein
metric on the space of d-dimensional random proceses with continuous
trajectories, which is weaker than the metric associated with the weak

� Ž . �convergence of probability measures see Oelschlager 1988 , page 1090 .¨
Ž .Avellaneda and Majda 1991 generalize the PDE aspect of homogenization to

Ž .unbounded coefficients with finite pth moment, p � d, in H x and finite qth
Ž .moment, q � d�2, in b x . The PDE aspect of homogenization is roughly

equivalent to the convergence of finite dimensional distributions of the pro-
Ž . Ž .cesses and should require less regularity on b x or H x than would the

almost sure convergence in law studied in the present paper. Indeed, it turns
out that only the square integrability for the stream matrix is necessary for

� Ž .�the convergence of the semigroups Fannjiang and Papanicolaou 1996 .
Ž .Fannjiang and Papanicolaou 1996 also prove the probabilistic convergence

in measure but not almost surely. To this end they obtain the crucial
resolvent estimates by the variational principles.

ŽThe obstacle to proving usual almost sure with respect to the ensemble of
.random drifts convergence is law has been, as observed by Oelschlager¨
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Ž .1988 on page 1085, the lack of Nash�Aronson estimates in the case of
unbounded coefficients. In this paper, we take up the martingale approach

Ž .initiated by Osada 1982 which consists essentially of the decomposition of
Ž . Ž . Ž .the trajectory x t into a martingale part y t and a ‘‘corrector’’ part z t .� � �

Ž .We show, by Moser’s iterative scheme, the vanishing of the corrector z t in�

the limit � � 0 and obtain the weak convergence of distribution of the
� Ž .4processes x t , � � 0 to the limiting Wiener measure. The strengthen-� t � 0

ing of the sense of convergence is due to the corrector estimates stated in
Lemma 3. The almost sure convergence then follows from a standard martin-

� Ž . Ž .�gale invariance principle see Brown 1971 and Helland 1982 .
Our key assumption, in addition to the standard ones, is that the stream

� � pmatrix is homogeneous and has finite pth moment E H � � where p � d.
In addition to stronger convergence results, our method is also considerably

Ž .simpler than that of either Oelschlager 1988 or Fannjiang and Papanicolaou¨
Ž .1996 .

2. Notation and formulation of results. Let us start with some cus-
tomary notation from linear algebra and vector calculus. For a pair of vectors
a, b � Rd, we shall denote by a 	 b the tensor given by the matrix
� � Ž . Ž . � �a b , where a � a , . . . , a , b � b , . . . , b . Let A � a , B �i j i, j�1, . . . , d 1 d 1 d i j
� � Ž .b be two d � d matrices. We shall make use of the notation a, b andi j
Ž .A, B for the standard scalar product of vectors and matrices, respectively;

Ž . d Ž . Tthat is, a, b � Ý a b , and A, B � tr AB . For a vector field f �i�1 i i
Ž . d Ž .f , . . . , f , � � f � Ý � f ; for a function f , �f � � f, . . . , � f .1 d k�1 k k 1 d

Ž .Let us denote by 	, VV , P a probability space. The expectation computed
Ž .with respect to probability measure P will be denoted by E. Let b x; 
 be a

d-dimensional random vector field defined on Rd. We shall assume that it
satisfies the following conditions.

Ž . Ž . 1B1 For any 
 � 	, b x; 
 has C -smooth path realizations and it grows
Ž . � Ž . � Ž .Ž � �.linearly. That is, there is C 
 so that b x; 
 
 C 
 1 � x .

Ž .B2 The field b is strictly homogeneous, zero mean and square integrable.
That is all its finite-dimensional distributions do not depend on transla-

d Ž . � Ž . � 2tions in R , Eb 0 � 0 and E b 0 � ��.
Ž . Ž . d Ž .B3 The field b satisfies � � b x � Ý � b x � 0.k�1 x kk

Ž .REMARK. Condition B1 suffices to claim the global existence of solutions
of relevant stochastic differential equations.

� Ž .�As is well known see, e.g., Rozanov 1969 , under these conditions there
exists a family of transformations defined on the probability space � : 	 � 	,x
x � Rd, such that we have the following.

Ž . dT1 � � Id and � � � � for all x, y � R .0 	 x�y x y
d ˜ ˜Ž . � Ž .� � �T2 P � A � P A , for x � R , A � BB, where BB is the �-algebra gener-x

Ž . dated by b x; 
 , x � R .
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˜ ˜Ž . Ž . Ž . d dT3 The mapping 
, x � � 
 is BB 	 BB to BB measurable. Here BBx R R
denotes the �-algebra of Borel subsets of Rd.

Ž . Ž . Ž Ž ..T4 b x; 
 � b 0; � 
 .x

In addition to these properties we will assume that the field b is ergodic,
which is reflected in the following property of the flow of transformations.

˜Ž . � 4 dT5 The group � is ergodic. That is, if for a certain A � BB,x x � R
� Ž . � ŽP � A � A � 0 � here means the set operation of symmetric differ-x

. d � �ence for all x � R then P A � 0 or 1.
p ˜Ž .Given 1 
 p � �, let us denote by L 	 the space of all BB-measurable
� � prandom variables X: 	 � R such that H X dP � �� with norm defined as	

� � Ž � � p .1� pX � H X dP . In cases when p � ��, the space consists ofp 	

random variables with finite essential supremum with the norm

� � � �X � ess sup X .�

2Ž .Consider the group of unitary linear operators defined on the space L 	
x Ž . Ž Ž ..by the formula U f 
 � f � 
 . The group has d anti-self-adjoint genera-x
2Ž . te ktors D : DD � L 	 , k � 1, . . . , d, corresponding to the subgroups U ,k k

Ž . Ž .t � R, k � 1, . . . , d where e � 1, 0, . . . , 0 , . . . , e � 0, . . . , 0, 1 . There exists1 d
a spectral measure UU defined on �-algebra BB d with values in the space ofR

2Ž .orthogonal projections on L 	 such that

D � i UU d� , k � 1, . . . , d ,Ž .Hk k

U x � eiŽ� , x.UU d� , x � Rd ,Ž .H
Žwhere the integrals are understood as spectral integrals see Dunford and

Ž .� Ž .Schwartz 1988 . According to Rozanov 1969 we can write the field b in the
form of a stochastic integral

x˜ iŽ� , x.ˆ8 b x � U b � e b d� ,Ž . Ž . Ž .H
˜ ˆŽ Ž . Ž ..where b � b 0 , . . . , b 0 and b is a d-dimensional random vector-valued1 d

ˆ ˜ ˜Ž . Ž Ž . Ž . .dmeasure such that for any set A � BB , b A � UU A b , . . . , UU A b . TheR 1 d
ˆ ˆ ˆŽ . Ž . � Ž . Ž .�structural measure S of b A defined as S A � E b A 	 b A is a nonneg-

ative symmetric matrix-valued measure which is the spectral measure of the
� Ž .�field b see Adler 1981 . We can write then also

R x � eiŽ� , x.S d� ,Ž . Ž .H
Ž . � Ž . Ž .4where R x � E b x 	 b 0 is the correlation matrix of the field b. The

measure E given on BB byR

E A � d tr S d�Ž . Ž .H H
� �A � �
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� Ž .�is called see Chorin 1994 the power-energy spectrum of the field b. We
Ž . � Ž .�define also a stream matrix H x; 
 � H x; 
 as a random anti-i j i, j�1, . . . , d

symmetric matrix-valued field defined on Rd such that b � � � H. More
precisely,

H1 H x; 
 � �H x; 
 for i , j � 1, . . . , d ,Ž . Ž . Ž .i j ji

d

H2 � H x; 
 � b x; 
 , i � 1, . . . , d.Ž . Ž . Ž .Ý i i j i
j�1

We shall also assume that H is homogeneous, zero mean and has pth
absolute moment for some p � d, that is,

˜H3 a H x; 
 � H � 
 ,Ž . Ž . Ž . Ž .Ž .x

˜ Ž . Ž .where H 
 � H 0; 
 ,

˜EH � 0
and

˜ p� �H3 b E H � �� for some p � d.Ž . Ž .

Finally we suppose that

H4 H x; 
 is C 2-smooth P a.s.Ž . Ž .

� Ž .4Consider now x t , the solution of the following Ito stochastic differ-ˆt � 0
ential equation:

'dx t � b x t dt � 2 dw t ,Ž . Ž . Ž .Ž .
x 0 � 0.Ž .

Ž .Here w t is the standard Brownian motion defined on another probability
Ž . dspace �, MM, Q and v � R is a constant vector. Let us denote by M the

expectation calculated with respect to the probability measure Q. The expres-
� Ž .4sion x t is considered a stochastic process on the product probabilityt � 0
Ž . Ž .space 	 � �, VV 	 MM, P 	 Q . The scaled trajectories are defined by x t ��

Ž 2 .� x t�� for � � 0, the scaling parameter. We shall consider the following
Ž� . d . 
two families of measures on the Polish space XX � C 0, �� ; R . First, Q is�


Ž . Žthe family of probability distributions of the trajectories x t; � � x t;� �

.
, � , where � � � and with 
 � 	 fixed. The second family, which we
� Ž .4denote by Q , is the family of probability laws of the processes x t� � t � 0

considered over the space � 	 	. We will suppress the subscript for the
� 
Ž .4 � Ž .4processes x t and x t .1 t � 0 1 t � 0

DEFINITION 1. We say that a family of continuous trajectory stochastic
processes satisfies the invariance principle if their probability laws converge
weakly over the space XX to a Wiener measure.
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The main results of our paper are stated in the following theorem.

Ž . Ž .THEOREM 1. Suppose that a vector field b satisfies assumptions B1 � B3
Ž . Ž .and its stream matrix H meets assumptions H1 � H4 . Then the following

hold:

Ž .i For P almost every 
 � 	, the limits

x 
 t x 
 tŽ . Ž .i j
lim M � d , i , j � 1, . . . , di jtt���

exist and are deterministic constants.
Ž . � 
Ž .4ii For P almost every 
 � 	, the family of processes x t , � � 0� t � 0

satisfies the invariance principle with the limiting Wiener measure having the
� �covariance matrix equal to D � d .i j

Ž . � Ž .4iii The family of processes x t , � � 0 considered over the product� t � 0
Ž .probability space 	 � �, VV 	 MM, P 	 Q satisfies the invariance principle

Ž .with the limiting Wiener measure as in ii .

REMARK. Next we explain how to construct H that are suitable for Theo-
Ž .rem 1 without using the second or higher moment of velocity.

First, we can point to homogeneous Gaussian stream matrices which have
Ž .finite moments of all orders. Condition b1 also follows from some elemen-

� Ž .�tary properties of Gaussian random fields see, e.g., Adler 1981 .
To give non-Gaussian examples, we begin with any random stationary,

zero mean, skew-symmetric matrix H with finite pth moments satisfying the
condition

� � �E H x � h � H xŽ . Ž .i j i j

� � 2 dc h

 for sufficiency small h, � i , j1��� � � �log h

12Ž .

for � � � � 0. This is the case, for example, when the covariances of all
entries are C 2 d�1-smooth and have zero derivatives up to the 2 dth order.

�Then the random field H is uniformly continuous sample-wise see Theorem
Ž .�3.2.5 and Corollary in Adler 1981 . Without loss of generality, we may

Ž .assume that H 0 � 0. Using the sample-wise uniform continuity of H, byi j
covering the line between the origin and x with sufficiently small balls, it is
easy to show that H satisfies the linear bound

� � � � � �13 H x 
 c 1 � x for x � 1, � i , j.Ž . Ž . Ž .i j

Ž .Our goal is to modify the sample stream matrix so that it satisfies H4 and
Ž .its derivatives satisfy condition B1 . To improve the regularity of the stream

matrix, we apply twice the Steklov averaging procedure consisting of inte-
grating the sample matrix at any point x over a unit ball centered at x. The
sample matrix gains one differentiability with one local averaging procedure.
Hence the twice locally averaged stream matrix is twice differentiable
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Ž .sample-wise. To check B1 , simple calculus shows that the modulus of the
derivatives, that is, the velocity field, at point x is bounded by a constant,
independent of the sample and the location, times the maximum of the
moduli of the stream matrix H in the disk centered at x with radius two.

Ž . Ž .Thus B1 follows from the linear bound 13 on H.
An alternative to the local averaging for ensuring that the velocity field

Ž .has property B1 is via the covariances of the stream matrix. Starting with a
C 2-smooth stream matrix H with finite pth moments, suppose that the
covariances of the entries of H are C 2 d�3-smooth. Then the covariances of the
velocity field, which are the second derivatives of those of the stream matrix,

2 d�1 Ž .are C -smooth. In view of the remark made after 12 , we know that the
velocity is C1 and uniformly continuous sample-wise and consequently has a

Ž .linear bound like 13 .

3. Proof of main results. We start with the following lemma stating
the existence of a random change of variables such that the motion in the
new set of coordinates is a martingale.

LEMMA 1. There exists a random change of variables y: 	 � Rd � Rd,
Ž .y � y , . . . , y , such that we have the following:1 d

Y1 � y � b x , � y � 0,Ž . Ž .Ž .x x

y 0 � 0,Ž .
� y x; 
 � � y 0; � 
 for P a.s. 
Ž . Ž .Ž .x x x

Y2Ž .

and
E� y 0 � I.Ž .x

Ž .Y3 For any R � 0,
� �lim sup y x � x � 0, P a.s.,Ž .�

� �0 � �x 
R

Ž . Ž .where y x � � y x�� .�

Ž .PROOF. Let R � 0 be fixed. The existence of such coordinates y x satisfy-
Ž . Ž . Ž .ing Y1 , Y2 and Y3� :

� � 2lim y x � x � 0Ž . L ŽB .� 4 R
� �0

and
� � 2lim sup � y � ��, P a.s.L ŽB .x � 4 R

� �0

is standard and its proof is postponed until Section 5.
Ž . Ž .We will show now the transition from Y3� to Y3 , which is the major

�obstacle to be overcome. By the classical Sobolev embedding theorem see
Ž .� Ž .Gilbarg and Trudinger 1983 , Y3� implies that

� � 2 q14 lim sup y � ��,Ž . L ŽB .� 4 R
� �0
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Ž . Ž . Ž . Ž . Ž .where q � p� p � 2 . Denote z x � y x � x and z x � � z x�� . It is easy�

to see that the kth component of z , z Žk ., satisfies the equation� �

Žk .� � I � H x�� , � z x � �� � H x�� ,Ž . Ž . Ž .Ž .x x � x k

Ž .where H � H , . . . , H and k � 1, . . . , d. Note thatk k1 k d

p ˜ p� � � � � �15 lim H x�� dx � B HŽ . Ž .H p4 R
� �0 B4R

Ž . Ž . Ž .by the ergodicity of H x; 
 . Now the gap between Y3� and Y3 can be
bridged by the following lemma.

LEMMA 2. For arbitrary r � 0 there exist constants C � 0 depending only
on d and r and � � 0, 1 � � � 0, depending only on d such that for all � � 0,

� �
� p 2 q� � � � � �16 z 
 C 1 � H z .Ž . L ŽB . L ŽB . L ŽB .� � �r 2 r 2 r

Ž . Ž . Ž .Here H x � H x�� and q � p� p � 2 .�

Ž .From the second statement of Y3� and the classical compact embedding
� Ž .� 2, 1Ž . rŽ .theorem see Gilbarg and Trudinger 1983 from W B to L B ,4 R 4 R

Ž . � �4 rŽ .r � 2 d� d � 2 , it follows that the family z is compact in L B . Its4 R
rŽ . 2Ž . �limiting points in L B coincide with those in L B , namely, 0 the first4 R 4 R

Ž .�statement in Y3� . Note that

2 p 2 d
17 �Ž .

p � 2 d � 2

Ž .since p � d. Thus we have that the right-hand side of 16 tends to zero in
Ž .the limit � �0 and from this Y3 follows. �

Ž .PROOF OF THEOREM 1. Proof of part 1. Since the field b x is divergence-free
� Ž Ž ..4the process � y x t is strictly stationary and ergodic if considered onx t � 0

˜Ž . �the product probability space 	 � �, VV 	 MM, P 	 Q see Papanicolaou and
Ž . Ž . Ž .Varadhan 1982 , Oelschlager 1988 , Osada 1982 and Port and Stone¨

Ž .�1976 . This implies that

1 t
� y x s , � y x s dsŽ . Ž .Ž . Ž .Ž .H x i x jt 0

Ž Ž . Ž .. 1tends to e � y 0 , � y 0 both in L and in the almost sure sense withx i x j
respect to the measure P 	 Q, when t� ��. An application of Ito’s formulaˆ
then leads to

y x 
 t y x 
 t 2Ž . Ž .Ž . Ž . ti j 
 
18 M � M � y x s � y x s ds.Ž . Ž . Ž .Ž . Ž .Ž .H x i x jt t 0

Ž . 
Ž . Ž .
According to Papanicolaou and Varadhan 1982 , � t � � 
 is ax Ž t ; 
 , � .
Ž . Ž .Markov process on an abstract state space 	, � . Osada 1982 guarantees˜

t Ž . tthat P � � � , for all t � 0 iff P A � 0 or 1, where P , t � 0, is theA A
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2Ž .L 	, � , P semigroup of Markov operators associated with the process; that˜
is, the measure P is ergodic. Thus, by the ergodic theorem of Birkhoff and
Khinchine,

1 t sP f 
 ds � E fŽ .Ht 0

Ž .P a.s. and in consequence the right-hand side of 18 converges to
Ž Ž . Ž ..2E � y 0 � y 0 P almost surely, when t� � �. Note that for almost allx i x j


 � 	,
� 
 � 2x tŽ .

19 lim sup M � ��.Ž .
tt���

Indeed, we can write that

� 
 � 2 � 
 � 2 � 
 � 2x t x t x tŽ . Ž . Ž .
3 3M � M � � M �
 
� � � �� �� �' 'Ž . Ž .x t � t x t � t½ 5 ½ 5t t t

20Ž . 2
� �x tŽ . 3'3
 M � � 1� t .
� � �� 'Ž .x t � t½ 5t

Ž .To estimate the first term on the right-hand side of the inequality in 20
let us observe that

� 
 � 2 � 
 
 � 2x t x t � y x tŽ . Ž . Ž .Ž .
3 3� � �
 
� � � �� �� �' 'Ž . Ž .x t � t x t � tt t

2 y x 
 t , x 
 t � y x 
 tŽ . Ž . Ž .Ž . Ž .Ž .
3� � 
� � �� 'Ž .x t � tt

21Ž .

� 
 � 2y x tŽ .Ž .
3� � .
� � �� 'Ž .x t � tt

However,

� 
 
 � 2x t � y x tŽ . Ž .Ž .
3� 
� � �� 'Ž .x t � tt
� 
 � 2x tŽ .2� � 3
 sup sup z x � .Ž . 
� � � �� 'Ž .x t � tt3 � �x 
1'0���1� t

22Ž .

Ž . Ž .Using 21 and 22 we can write that

� 
 � 2 � 
 � 2x t x tŽ . Ž .2� �3 3� 
 sup sup z x �Ž .
 
�� � � �� �� �' 'Ž . Ž .x t � t x t � tt t3 � �x 
1'0���1� t

� 
 
 
 �2 y x t , x t � y x tŽ . Ž . Ž .Ž . Ž .Ž .
3� � 
� � �� 'Ž .x t � tt

23Ž .

� 
 � 2y x tŽ .Ž .
3� � .
� � �� 'Ž .x t � tt
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Ž .Moving over the first term on the right-hand side of 23 to the left-hand side,
we obtain

�2
� �x tŽ . 2� � 31 � sup sup z x �Ž . 
� � � �� 'Ž .x t � tt 3 � �x 
1'0���1� t

� 
 
 
 �2 y x t , x t � y x tŽ . Ž . Ž .Ž . Ž .Ž .
3
 � 
� � �� 'Ž .x t � tt

24Ž .

� 
 � 2y x tŽ .Ž .
3� � .
� � �� 'Ž .x t � tt

The superscript � denotes as usual the positive part of an expression.
Ž . Ž .According to part Y3 of Lemma 1 for P a.s. 
, we can find t 
 such that0

Ž .for all t � t 
 we have0

2 1� �sup sup z x 
 .Ž .� 2
3 � �x 
1'0���1� t

Ž .After performing simple algebraic manipulations in 24 and then applying
Ž .M and averaging we obtain the following estimate, valid for all t � t 
 :0

� 
 � 2x tŽ .
3M � 
� � �� 'Ž .x t � t½ 5t

� 
 
 
 �y x t , x t � y x tŽ . Ž . Ž .Ž . Ž .Ž .
3
 4M � 
� � �� 'Ž .x t � t½ 5t

� 
 � 2y x tŽ .Ž .
3� 2M � .
� � �� 'Ž .x t � t½ 5t

Applying Schwarz’s inequality to estimate the term involving the scalar
product, we can write that

� 
 
 
 �y x t , x t � y x tŽ . Ž . Ž .Ž . Ž .Ž .
3M � 
� � �� 'Ž .x t � t½ 5t

1�21�22 2
 
 
� � � �y x t x t � y x tŽ . Ž . Ž .Ž . Ž .
3
 M M � .
� � �� 'Ž .x t � t½ 5½ 5t t

25Ž .

Ž . Ž .Using 22 again, we can write that the left-hand side of 25 is less than or
equal to

� 
 
 
 �y x t , x t � y x tŽ . Ž . Ž .Ž . Ž .Ž .
3M � 
� � �� 'Ž .x t � t½ 5t

1�2 1�22 2
 
� � � �y x t x tŽ . Ž .Ž .
� � 3
 sup sup z x M M � .Ž . 
� � � �� 'Ž .x t � t½ 5t t3 � �x 
1'0���1� t
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Ž .The above estimate allows us to rewrite 20 in the following form:
1�22 2
 
� � � �x t y x tŽ . Ž .Ž .3

�' � �M 
 1� t � 4 sup sup z x MŽ .
t t3 � �x 
1'0���1� t

�

1�22 2
 
� � � �x t y x tŽ . Ž .Ž .
M � 2M .½ 5t t

Allowing t to be large, we can make an estimate of the second term on the
Ž .right-hand side of the above inequality, using again part Y3 of Lemma 1, by

1�21�22 2
 
� � � �y x t x tŽ . Ž .Ž .
4� M M ,½ 5t t

where � � 0 can be chosen arbitrarily small. This clearly proves the state-
Ž .ment made in 19 .

Note also that

 
 
 
 
 
x t x t x t � y x t x t � y x tŽ . Ž . Ž . Ž . Ž . Ž .Ž . Ž .i j i i j j

M � M½ 5 ½ 5t t

 
 
y x t x t � y x tŽ . Ž . Ž .Ž . Ž .i j j� M ½ 5t

 
 
y x t x t � y x tŽ . Ž . Ž .Ž . Ž .j i i� M ½ 5t

y x 
 t y x 
 tŽ . Ž .Ž . Ž .i j� M .½ 5t

Similarly to the preceding analysis, the first term can be estimated by

 
x t x tŽ . Ž .3 i j2' � �max 1� t , sup sup z x M .Ž .� ½ 5t3 � �x 
1'0���1� t

The second and the third terms can be estimated correspondingly. Thus the
sum of the first three terms tends to 0 when t tends to infinity. The first part
of the theorem follows from the remark we made at the beginning of the
proof.

Proof of parts 2 and 3. Consider the following two families of stochastic
processes:

t

 
y t � � y x , � � 0Ž .� 2ž /ž /�

and
t


 
z t � � z x , � � 0.Ž .� 2ž /ž /�



HOMOGENIZATION OF UNBOUNDED RANDOM FLOWS 1883


Ž . 
Ž . 
Ž . �Obviously x t � y t � z t . By Ito’s formula see, e.g., Karatzas andˆ� � �

Ž .�Shreve 1991
2t��
 
 'y t � � � y x s , 2 dw s .Ž . Ž . Ž .Ž .Ž .H� x

0

� 
Ž .4Therefore y t are continuous local martingales, for fixed 
 and all� t � 0
� � 0. In fact, we can easily show that they are continuous martingales for P
a.s. 
. To see that, it suffices to show that there exists a set N such that
Ž .P N � 0 and for 
 � N,

T 2
� �26 M � y x t dt � �� for arbitrary T � 0.Ž . Ž .Ž .H x
0

The martingale property of the relevant stochastic integrals follows then from
the definition of the stochastic integral for the class of square integrable,

� Ž .nonanticipative processes see Karatzas and Shreve 1991 , page 139, Defini-
.�tion 2.9 .

Ž .To prove 26 let us observe that according to the statement made in the
� Ž Ž ..4proof of part 1, the process � y x t is strictly stationary over thex t � 0

Ž .product probability space 	 � �, VV 	 MM, P 	 Q and it has a second absolute
moment. That is,

� � 2 � � 2EM � y x t � E � y 0 � �� for all t .Ž . Ž .Ž .x x

Hence
T 2� �EM � y x t dt � ��,Ž .Ž .H x

0

Ž .for arbitrary T � 0 and 26 follows from the Fubini theorem combined with
some elementary measure theoretic considerations.

� 
Ž .4Notice that the quadratic variations of the martingales y t , � � 0� t � 0
are equal to

t�� 2

 2 
 
² :y � � � y x s , � y x s ds for 
 � N.Ž . Ž .Ž . Ž .Ž .t H� x x

0

Consider now, for a fixed 
, a family of processes

y 
 t � D�1�2 y 
 t ,Ž . Ž .�̃ �

where
T27 D � E � y 0 � y 0 � I.Ž . Ž . Ž .Ž .x x

Let v , v be arbitrary fixed vectors in Rd. Then for 
 � N and arbitrary1 2
Ž 
Ž . . Ž 
Ž . .� � 0, y t , v and y t , v are zero mean, square integrable martin-� 1 � 2

gales whose joint quadratic variation equals

² 
 
 :y � , v y � , vŽ . Ž .Ž . Ž .˜ ˜ t� 1 � 2

t�� 2 T2 �1 
 
� � D � y x s � y x s , v 	 v dsŽ . Ž . Ž .Ž . Ž .Ž .H x x 1 2
0

28Ž .
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� Ž Ž ..4Since the process � y s t is strictly stationary and ergodic if consideredx t � 0
˜Ž .on the product probability space 	 � �, VV 	 MM, P 	 Q , we obtain therefore,

by the ergodic theorem of Birkhoff and Khinchine, that the limit of the
Ž . Ž .expression on the right-hand side of 28 as � �0 is equal to t v , v , both1 2

P 	 Q a.s. and in the L1 sense. We have immediately from this that

² 
 
 :lim y � , v y � , v � t v, vŽ . Ž . Ž .Ž . Ž .˜ ˜ t� 1 � 2 2
� �0

1 ˜Ž .both a.s. and in the L sense over the probability space 	, VV , P . By
�Ž . �Theorem 5.4. of Helland 1982 , pages 92 and 93 , we obtain that the family

� 
Ž .4y t satisfies the invariance principle P a.s. with the standard Wiener�̃ t � 0
� 
Ž .4measure as its limit when � �0, which in turn implies that y t� t � 0

satisfies the invariance principle with the limiting Wiener measure having
correlation matrix D for P almost sure 
.

Helland’s theorem asserts the convergence of measures over the Skorokhod
Ž� . d . �space D 0, �� ; R equipped with Stone’s topology see Port and Stone

Ž .�1976 . However, a simple application of Lemma 5 given in the Appendix
allows us to extend this result to the case of weak convergence of measures

Ž� . d .over the space C 0, �� ; R as claimed in the assertion of Theorem 1.
� 
 Ž .Denote by � the exit times of x t from the ball B . Using conditionN , 
 � N

Ž .Y3 , we can easily establish that

� 
 �29 lim sup z t � 0.Ž . Ž .�
�� �0 0
t
�N

Ž . Ž . � 
Ž . ��Let � 
 be such that for � � � 
 we have sup z t � 1. We see0 0 0 
 t 
� �N , 


that for those � ,


 �� �Q sup x t � N � Q � 
 TŽ .� N , 

0
t
T

� 
� �� Q � 
 T , sup y t � N � 1Ž .N , 
 �
0
t
T


� �
 Q sup y t � N � 1 .Ž .�
0
t
T

� 
Ž .4Since for P almost every 
 y t converges weakly to a nondegenerate� t � 0
Brownian motion, we have that there exist constants � , C � 0 independent of
� , 
 such that


 �� N� �30 lim sup Q sup x t � N 
 CeŽ . Ž .�
� �0 0
t
T

� Ž . �see, e.g., Chung and Zhao 1995 , Proposition 1.16, page 20 . We claim that
for almost every 
,


� �31 lim Q sup z t � � � 0.Ž . Ž .�
� �0 0
t
T
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Ž .Indeed, suppose that N � 0 is arbitrary. Then by 29 for almost every 
,


� �lim sup Q sup z t � �Ž .�
� �0 0
t
T


 
� � � �
 lim sup Q sup z t � � � lim sup Q sup x t � NŽ . Ž .� �
�� �0 � �0 0
t
T0
t
�N , 



 Ce�� N .

Ž .The last inequality in the expression above is a consequence of 30 . Since N
can be chosen arbitrarily, this concludes the proof of our claim. The claim

� 
Ž .4combined with the fact that the family y t , � � 0 satisfies the invari-� t � 0
� 
Ž .4ance principle P a.s. implies that also the family of processes x t ,� t � 0

� � 0 satisfies the invariance principle P a.s. In particular, the weak com-
� 
Ž .4pactness of the probability distributions x t , � � 0 over the space� t � 0

Ž� . d .C 0, �� ; R implies that for arbitrary � , T � 0,


 
� �lim Q sup x t � x s � � � 0, P a.s.Ž . Ž .� �
� �0 0
s
t
T , t�s
� , ��0

� Ž . �see Billingsley 1968 , page 55, Theorem 8.2 . Averaging over all 
 � 	 with
respect to the measure P, we have that also

�� �lim P 	 Q sup x t � x s � � � 0,Ž . Ž .�
� �0 0
s
t
T , t�s
� , ��0

� Ž .4which implies that x t , � � 0 is weakly compact. Since the limit� t � 0
� 
Ž .4identification follows easily from the fact that the family x t , � � 0� t � 0

satisfies the invariance principle P a.s. with the same limiting measure
� Ž .4independent of 
, we can conclude the weak convergence of x t , � � 0� t � 0

Ž .to a Wiener measure with the covariance matrix D as in 27 . �

4. Proof of Lemma 2: Uniform bound on the correctors. In this
section we prove Lemma 2 in a slightly more general setting. We shall adopt

� Ž .�Moser’s iterative scheme cf. Moser 1961 .
First we introduce some additional notation. Let B and B o denote aR R

closed ball in Rd with center at 0 and radius R and the interior of the ball
respectively. When R � 1 we omit the subscript and write B for B .1

Suppose that a : Rd � R, i, j � 1, . . . , d is a family of Borel measurablei j
functions which satisfies the following conditions.

Ž . d Ž . dA1 There exists  � 0 such that for all x � R and � � � , . . . , � � R1 d
we have

d
2� �a x � � �  � .Ž .Ý i j i j

i , j�1
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Without any loss of generality we shall assume that  
 1.
Ž .A2 For a certain p � d and R � 0,

1�pd
p� �A � a dx � ��,Ý Hp , R i j

BRi , j�1

Ž . d dWe shall also consider a vector field f � f , . . . , f : R � R such that1 d

f f , . . . , f � W 1, p B o .Ž . Ž .1 d R

1, pŽ o .As is customary, W B stands for the space of those functionsR
pŽ o . pŽ o .f � L B whose weak derivatives � f , . . . , � f � L B with the normR 1 d R

1�pd
p p

p p� � � � � �f � f � � fÝ1, p , B L ŽB . L ŽB .kR R R½ 5
k�1

LEMMA 3. Assume that u is a classical solution of the equation

32 � � � A x �u x � � � f x ,Ž . Ž . Ž . Ž .
� � Ž . Ž .with A � a satisfying assumptions A1 and A2 and f satisfying condi-i j

Ž .tion f . Then there exist constants C, � � 0 and 0 � � 
 1 depending only on
d and R for which

� �
� p 2 q� � � � � �u 
 C A � f � 1 u ,Ž .L ŽB . L ŽB . L ŽB .p , RR �2 R R

where
p

q � ,
p � 2

� � p � d � � p
p 41� pand f � Ý f .L ŽB . L ŽB .k�1 kR R

PROOF. First we make the following reduction to positive subsolutions of
Ž . Ž . Ž . Ž .equation 32 . By a subsolution v x of 32 , we mean a function v x such

that

A x � v x , � � x � f x , � � x 
 0Ž . Ž . Ž . Ž . Ž .Ž . Ž .H Hx x x

for any nonnegative smooth function � with compact support.
Ž . Ž .Any solution u x of 32 can be written as the difference of two positive

Ž . Ž .subsolutions v x , w x :

u x � v x � w xŽ . Ž . Ž .
where

2'v x � u x � 1Ž . Ž .
and

2'w x � u x � 1 � u x .Ž . Ž . Ž .
Thus, to prove Lemma 3, suffice it to prove the statement for any positive
subsolution.



HOMOGENIZATION OF UNBOUNDED RANDOM FLOWS 1887

Ž .In the rest of the proof we assume that u is a positive subsolution of 32
and, without loss of generality, that R � 1.

When d � 3 we set

1 1
� � � ,n n�12 2

1� � � � � ,Ž .n n n�1233Ž .
n

d p � 2Ž .
� � , n � 0, 1, . . . .n d � 2 pŽ .

1�Ž . Ž . � � Ž .Let � � C R be such that 0 
 � 
 1, � t � 1, for t 
 , � t � 0, for0 2
1n�1� � � � Ž . Ž Ž � � .. Ž .t � 3�4 and �� 
 2. Define � y � � 2 y � . Observe that � y � 1n n2

2 � n�1 2Ž . Ž . � �in B and � y � 0 outside B . Multiplying equation 32 by u �� n � nn� 1 n

and integrating by parts gives

� � 2 � n�1 2 � � 2 � n�1 234 A� u , � u � dx � f, � u � dx.Ž . Ž . Ž .H Hž / ž /x x n x n
B B� n � n

Ž .After a straightforward calculation, 34 yields

� � �n � � �n � � �n�1 � � �nA� � u , � � u dx � � u � f, � � u dxŽ . Ž . Ž .Ž . Ž .H Hx n x n n n x n
B B� n � n

�n 2 � �1n� �� u � f, � � dxŽ .H n x n2� � 1 Bn � n

� � �n � � �n� A� � u , u � � dx.Ž .Ž .H x n x n
B� n

Ž .Using condition A1 and the Holder inequality, we have that¨

� � � �n � 2
2 � � uŽ . L ŽB .x n � n

� � � �1n n n2 2 q 2� � � � � � � � � � � �
 � � u A p , 1 u � � � � f� uŽ .Ž . L ŽB . L ŽB . L ŽB .x n x n n n� n � n � n

�n 2 � �1np p �Ž p�1.� � � � � �� f� u � �L ŽB . L ŽB .n x n� n � n2� � 1n

�n� n�1n 2 2 � q� � � � � �
 � � u A p , 1 2 uŽ . nŽ . L ŽB . L ŽB .x n � n � n

� �1n
p 2Ž� �1.q� � � ��� f u nL ŽB . L ŽB .n � n � n

� 2 � �1n nn�1
p 2 q Ž� �1�2.Ž p�2.� Ž p�1.� � � �� 2 f u .nL ŽB . L ŽB .� n � n2� � 1n
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By an elementary calculation we have that
� � � �n � 2� � uŽ . L ŽB .x n � n

1 �nn�1
2 � q� �
 A p , 1 2 uŽ . nL ŽB .� n
� �1n

p 2Ž� �1.q� � � ��� f u nL ŽB . L ŽB .n � n � n

35Ž .

1�2n�12 � � �1�2n n1�2
p 2 q Ž� �1�2.Ž p�2.� Ž p�1.� � � �� f u .nL ŽB . L ŽB .� n � n 2� � 1Ž .n

In the sequel we shall denote by C any generic positive constant depending
only on d and independent of n. It follows from the Sobolev inequality that

� � � �n � 2 d �Žd�2. � � � �n � 236 � u 
 C � � u ,Ž . Ž .L ŽB . L ŽB .n x n� n � n

and from the fact
� � � � � b37 u 
 C u , 1 
 a 
 b ,Ž . L ŽB . L ŽB .� n � n

that
� � 2Ž � �1.q � � 2 � q38 u 
 C u ,Ž . n nL ŽB . L ŽB .� n � n

� � 2Ž � �1�2.q Ž p�2.� Ž p�1. � � 2 � q39 u 
 C u .Ž . n nL ŽB . L ŽB .� n � n

Ž . Ž .Thus we have from 35 � 39 and the definitions of � and q thatn

1� � � �1n n nn�1
2 q� 2 � q p 2 � q� � � � � � � �u 
 C A p , 1 2 u � � f uŽ .n� 1 n nL ŽB . L ŽB . L ŽB . L ŽB .n� � n � n � nn�1 

1�2n�12 � � �1�2n n1�2
p 2 � q� � � �� f u .nL ŽB . L ŽB .� n � n 2� � 1Ž .n

40Ž .

Ž .Since 2� q � 2� d� d � 2 , the above inequality implies that ifn�1 n
� � 2 � qu � 1, thennL ŽB .� n

� � 2 q�u n� 1L ŽB .�n�1

1��n nC2 �n 1�2
p p 2 � q� � � � � �
 A p , 1 � f � f u .Ž . nL ŽB . L ŽB . L ŽB .� n � n � n½ 5

41Ž .

� � 2 � qIf, on the other hand, u 
 1, we havenL ŽB .� n

� � 2 � qu n� 1L ŽB .� n

1�� n2n�n 1�2 � np p� � � � � �
 C A p , 1 � f � f u ,Ž . 2 � qL ŽB . L ŽB . n� n � n L ŽB .½ 5 � n

42Ž .

where � � 1 � 1�� . These two estimates together imply thatn n
�

1�2 �
2 � q p p 2 q� � � � � � � �43 u 
 C A p , 1 � f � f � 1 uŽ . Ž .n� 1L ŽB . L ŽB . L ŽB . L ŽB .½ 5

for all n � 0, 1, . . . . Here 0 � � � Ł�� � 
 1, while � � Ý�� k�� and˜k�1 k k�1 k
� � 2 � q � � 2 � q� � 1 if u � 1, or � � � if u 
 1. Passing to the limitk k˜ ˜L ŽB . L ŽB .k k k� n � n

Ž .n � � in 43 we obtain the statement of the lemma for d � 3.
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Ž .For d � 2, instead of 33 , we set
n�

44 � � , n � 0, 1, 2, 3, . . .Ž . n ž /2 q

Ž .for any � � 2 q. The calculations up to 35 go without change. The Sobolev
inequality now takes the form

� � � �n � � � � � �n � 245 � u 
 C � � u ,Ž . Ž .L ŽB . L ŽB .n x n� n � n

Ž . Ž .for any 2 q � � � �. With 45 and with 2 d� d � 2 replaced by sufficiently
large � � 2 q, we can go through the rest of the calculations and complete the
proof. �

5. Proof of Lemma 1: existence of harmonic coordinates. Denote by
1Ž .H 	 the space of all square integrable random variables X: 	 � R such

that X � DD for k � 1, . . . , d. Define the scalar product on this space by thek
formula

d

1� �X , Y � E XY � E D XD Y ,ÝH k k
k�1

1Ž . 1for any X, Y � H 	 . It is easy to check that H equipped with this scalar
1Ž .product is a Hilbert space. For any X � H 	 the standard norm is defined

� � 1 � �1�2
1as X � X, X .H H

2 Ž .Denote by L 	 the space of all d-dimensional random vectorsd

X � X , . . . , X : 	 � RdŽ .1 d

� � 2 d � � 2 2 Ž .with the norm X � Ý X . By the symbol L 	 we denote the2 2k�1 k g
subspace of gradient fields, that is, the L2 closure of the vectors of the form
Ž . 1Ž .D v, . . . , D v , where v � H 	 .1 d

1, �Ž . 2 dDenote also by W 	 the subspace of L consisting of those v � � k�1 D k
for which

d
1, �� � � � � �v � v � D v � ��.ÝW � �k

k�1

The following lemma holds.

Ž .LEMMA 4. i The subspace SS consisting of random vectors of the form
Ž . 1, �Ž . 2 Ž . 2D v, . . . , D v , where v � W 	 , is dense in L 	 in the L norm.1 d g

Ž . Ž .ii Suppose that � � � , . . . , � is the random spectral measure of the1 d
Ž . 2 Ž . Ž Ž .. iŽx, � . Ž .vector F � F , . . . , F � L 	 . That is, F � 
 � H e � d� . Then for1 d g x

Ž . Ž .any m, n � 1, . . . , d we have  � d� �  � d� . That is, for any Borelm n n m
measurable and bounded function �,

46 � �  � d� � � �  � d� .Ž . Ž . Ž . Ž . Ž .H Hm n n m
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PROOF. In the first part of the proof we follow closely the argument
Ž . 2 Ž .presented in Dedik and Subin 1982 . From the definition of L 	 weg

1, �Ž . 1Ž . 1can see that it suffices only to prove that W 	 is dense in H 	 in H
1Ž .norm. To see that, we choose arbitrary v � H 	 . It is clear that v ��

d Ž . x �Ž d . 1, �Ž .� H� x�� U v dx, where � � 0 and � � C R , v belongs to W 	 and0 �
1 Ž .approximates v, as � �0 in H norm. Part ii follows from the fact that the

Ž . 2 Ž .vectors in SS satisfy 46 and they are dense in L 	 . �g

1Ž .Consider now a family of bilinear forms on H 	 given by
d

Žn. Žn.˜B u , v � E � D u � H D u D v � Euv,Ž . Ž .½ 5Ý k l k k l k l
k , l�1

where  � 0, n is a positive integer. Here

˜ Žn. ˜ ˜� �H � H if H 
 nk l k l k l

and

H̃k lŽn.˜ ˜� �H � n if H � n.k l k l˜� �Hk l

Consider also linear functionals
d

Žn.˜L v � E H D v .Ž . � 4Ýk k l l
l�1

Žk . 1Ž .By the classical Lax�Milgram lemma, one can find u � H 	 such thatn, 

47 L v � BŽn. uŽk . , v for all v � H 1 	 .Ž . Ž . Ž .Ž .k  n , 

Žk . Ž .After substituting u for v into 47 we have thatn, 

d d
Žk . ˜� � � �D u 
 H .Ý Ý2 2l n ,  k l

l�1 l , m�1

Letting first  tend to 0 and later choosing a suitable subsequence of n
Žk . Ž Žk . Žk .. 2 Ž .tending to ��, we obtain F � F , . . . , F � L 	 such that1 d g

d d
Žk . Žn. Žk . Žn. 1, �˜ ˜E � F � H F D v � E H D v for all v � W 	 .Ž .Ý Ý½ ž /p q p p q p q k q q

p , q�1 q�1

Ž .Following Papanicolaou and Varadhan 1982 , we set

d iŽ� , x.e � 1
Ž p.y x; 
 � x � i UU d� F .Ž . Ž .Ý Hk k q q2d � ��Rq�1

Observe that the weak partials of y satisfyk

d iŽ� , x.e  q r Žk .� y x; 
 � � � UU d� F .Ž . Ž .Ý Hx k r , k q2r d � ��Rq�1
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However, from Lemma 4, we know that

eiŽ� , x.  eiŽ� , x.2
q r qŽk . Žk .UU d� F � UU d� F .Ž . Ž .H Hq r2 2d d� � � �� �R R

Therefore

� y x; 
 � � � F Žk . � 
 ,Ž . Ž .Ž .x k r , k r xr

Ž .which proves assertion Y2 of Lemma 1.
�Ž . 1, �Ž .Let � � C R . For any v � W 	 we have0 d

d

0 � � x dxE D v � � y x; 
 � H x; 
 � y x; 
Ž . Ž . Ž . Ž .Ý H ½ 5q p q x k p q x kp pdRp , q�1

d

� E v � � x � � y x; 
 � H x; 
 � y x; 
 dx.Ž . Ž . Ž . Ž .Ý H x p q x k p q x k½ 5q p pdRp , q�1

Hence
d

� � x � � y x; 
 � H � y x; 
 dx � 0.Ž . Ž . Ž .Ý H x p q x k p qŽx ; 
 . x kq p pdRp , q�1

From the classical theory of elliptic PDE’s, y is the classical solution ofk

d

� � � y x; 
 � H � y � 0, k � 1, . . . , d.Ž .Ý x p q x k p q x kq p p
p , q�1

Ž .which ends the proof of Y1 . Using the notation from Section 3, we have, by
an application of the ergodic theorem, that

� � 2
2 � � 2 � �lim � y � F B � ��, P a.s.L ŽB . 2x � RR

� �0

Ž .Therefore, to end the proof of assertion Y3� we need only to prove that for
�Ž .any � � C B we have0 R

lim y x � x dx � x� x dx.Ž . Ž . Ž .H H�
d d� �0 R R

Ž .Following Kozlov 1985 , we can write
d

1
y x � x dx � dx � y tx x � x dtŽ . Ž . Ž . Ž .ÝH H H� x � pp

B B 0R Rp�1

d
1

� dt � y tx x � x dx.Ž . Ž .Ý H H x � pp
0 BRp�1

48Ž .

Set � � 0 arbitrary. From the ergodic theorem we obtain that for P a.s. 

Ž .there exists � 
 such that

d

49 sup lim � y sx x � x dx � x� x dx 
 � .Ž . Ž . Ž . Ž .Ý H Hx � pp� �0 B BŽ . R R�
� 
 p�1
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Ž .We can rewrite the right-hand side of 48 as equal to
d Ž .��� 


50 dt � y tx x � x dxŽ . Ž . Ž .Ý H H x � � t pp
0 BRp�1

d
1

� dt � y tx x � x dx.Ž . Ž .Ý H H x � � t ppŽ .��� 
 BRp�1

Ž .By virtue of 49 the second integral can be written as

x � x dx � r ,Ž .H p �
BR

� � Ž .where r � � for � � � 
 .�

As for the first integral notice that the integrand can be estimated by
1�21 2

2 2 2� � � � � � � � � ��y x � 
 B sup �y dx x � .L ŽB . L ŽB . H L ŽB .� � t p R � � t pR R Rdž /� BŽ . ��
1�� 


� � Ž .Thus, the first integral can be estimated by � B �� 
 . In conclusion, weR
get that

lim sup y x � x dx � x � x dx 
 �Ž . Ž . Ž .H H� p
B B� �0 R R

for arbitrary � � 0.

APPENDIX

A certain fact about weak convergence of measures. Let us denote
Ž� � d . Ž� � d .by C 0, T ; R and D 0, T ; R the space of all continuous functions and

the space of all functions having only discontinuities of the first kind corre-
spondingly, equipped with their respective topologies. The reader is referred

Ž .to Billingsley 1968 for the precise definition of these spaces. The following
lemma is the main objective of this section.

� 4LEMMA 5. Assume that T � 0 is arbitrary. Suppose that � is an n� 0
Ž� � d .sequence of Borelian probability measures given on the space D 0, T ; R

Ž� � d . � 4and supported in C 0, T ; R . Assume also that � converges weaklyn n� 0
Ž� � d . Ž� � d .over D 0, T ; R space to a measure �� supported in C 0, T ; R .
� 4 Ž� � d .Then � converges weakly to �� over C 0, T ; R .n n� 0

� 4 Ž� � d .PROOF. The sequence � is tight in D 0, T ; R . Hence accordingn n� 0
�Ž . �to Billingsley 1968 , Theorem 15.2, page 125 , for any � , � � 0 we can find

A, � � 0 such that for all n � 0 the following holds:

� �i � x : sup x t � A 
 � ;Ž . Ž .n
0
t
T

	ii � x : 
 � � � 
 � .Ž . Ž .n x
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Here
	 � �
 � � inf max 
 t , t ,Ž . Ž .x x i�1 i

t 0
i
ri

where the inf is taken over all possible partitions 0 � t � , . . . , t � T,t 1 ki� �k � 1, 2, . . . of 0, T such that t � t � � andi i�1

� �� �
 a, b � sup x t � x s ,Ž . Ž .Ž .x
a
s
t
b

for a � b.
�Ž . Ž . �According to Billingsley 1968 , 14.11 , page 111 , we have

1 	
 � 
 
 � 
 
 2� ,Ž . Ž . Ž .x x x2

Ž� � d .provided that x � C 0, T ; R . Here

� �49 
 � � sup x t � x s .Ž . Ž . Ž . Ž .x
0
s
t
T , t�s��

Ž . Ž . Ž .Equation 49 together with conditions i and ii imply, by virtue of Theorem
Ž . � 48.2, page 55 of Billingsley 1968 , that the sequence of measures � isn n� 0

Ž� � d .tight in C 0, T ; R .
Observe also that the finite-dimensional projections

� � d d � �� t : C 0, T ; R � R , t � 0, T ,Ž . Ž .
given by

� t x � x tŽ . Ž . Ž .
� �are continuous on the support of �� for all t � 0, T . Therefore, the finite-

dimensional distributions of the measures � converge weakly, over then
relevant finite-dimensional Euclidean spaces, to the corresponding finite-
dimensional distributions of ��. This concludes the proof of the lemma. �
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