
The Annals of Probability
1997, Vol. 25, No. 4, 1789–1809

ON SPDE’S AND SUPERDIFFUSIONS1

By N. V. Krylov

University of Minnesota

Several stochastic partial differential equations are derived for multi-
dimensional superdiffusions.

0. Introduction. The purpose of this article is to present an approach to
studying superdiffusions, particularly the super-Brownian process. This ap-
proach is based on the theory of stochastic partial differential equations. For
quite a while, superdiffusions and their various properties have been investi-
gated by using the abstract theory of Markov processes, nonstandard analysis,
semigroup theory and some other tools. The literature and the results concern-
ing these processes are very impressive. The reader can become acquainted
with the area by starting with [3, 4, 5].

Superdiffusions present a special kind of Markov processes, namely
measure-valued Markov processes. The theory of Markov processes, specifi-
cally the theory of diffusion processes, profited in many ways from connections
to stochastic analysis and the theory of partial differential equations. Stochas-
tic analysis provides an “explicit” and instructive way of constructing a wide
class of diffusions starting with the simplest diffusion process, which is
Brownian motion. The theory of partial differential equations gives a tool to
investigate transition densities and occupation times. The relations known
at the moment of superdiffusions to analysis appear to be much poorer (see
however [3, 4, 5]) and this makes the notion of superdiffusion somewhat
unusual.

For instance, take the problem of the existence of superdiffusions. There are
two common ways known in the literature to prove existence. One of them is
to take the limiting law of branching particles, which is analogous to proving
the existence of diffusion processes not through solving stochastic equations
but through the passage to the weak limit in a sequence of Markov chains.
Another way is to construct superdiffusions as Markov processes by defining
their transition functions in the space of measures and then using the general
theory of Markov processes to get a process corresponding to this transition
function. This way is similar to the one used in the theory of diffusion pro-
cesses with bad, but not too bad, coefficients when there are “good” results
concerning the fundamental solution for corresponding parabolic equations.
The natural question arises: are there any stochastic Itô type equations for
superdiffusions, at least for “regular” ones? We will see that the answer to
this question is positive and the stochastic equations are stochastic partial

Received September 1996.
1Research supported in part by NSF Grant DMS-96-25483.
AMS 1991 subject classifications. 60H15, 35R60.
Key words and phrases. Stochastic partial differential equations, superdiffusions.

1789



1790 N. V. KRYLOV

differential equations. Actually, this result has been known for quite a while
in one-dimensional cases (see, [7, 11]), and our contribution relates to the
multidimensional case.

Answering our question, we also answer the question concerning the pos-
sibility of including superdiffusions in the framework of more or less classical
stochastic analysis, without resorting to the abstract theory of Markov pro-
cesses or relying on nonstandard analysis. We hope that this will attract more
investigators, even those not familiar with either of these two theories in the
exciting study of superdiffusions. On the other hand, our results show what
kind of rather peculiar stochastic partial differential equations appear in con-
nection with superdiffusions.

To give a better idea about the contents of the article we introduce the
following notation. By � we denote the space of all finite measures on
�Rd���Rd��. One endows � with the usual measurable structure requiring
functions �ψ�µ� to be measurable for any ψ ∈ C∞

0 �Rd�, where

�ψ�µ� =
∫

R
d
ψ�x�µ�dx��

Let ���� �P� be a complete probability space with an increasing filtration
of complete σ-algebras �t ⊂ � , t ≥ 0. Recall that an � -valued �t-adapted
process µt is called a super-Brownian process if for any ψ ∈ C∞

0 �Rd� the process
�ψ�µt� is continuous and the process

mt�ψ� �= �ψ�µt� − �ψ�µ0� −
∫ t

0
�
ψ�µs�ds(0.1)

is a continuous local martingale starting from zero with d
m�ψ��t =
�ψ2� µt�dt. To derive a stochastic equation for µt we need to find a “canonical”
representation for the local martingales mt�ψ�.

A similar situation occurs in the finite-dimensional case when one needs to
represent as a stochastic integral a local martingale mt�ψ� such that

d
m�ψ��t =
∑
ij

a
ij
t �xt�ψxi�xt�ψxj�xt�dt�

where at = �aij
t ��xt� is a process with values in the set of symmetric non-

negative matrices and xt is a random process. One knows that if one defines
σt�xt� = √

at, then there is a (multidimensional) Wiener process wt such that
dmt�ψ� =

∑
ij σ

ij
t ψxi�xt�dwj

t . Actually, one only needs to have σ such that

∑
ij

a
ij
t ψxi�xt�ψxj�xt� =

∑
j

∣∣∣∣
∑
i

σ
ij
t �xt�ψxi�xt�

∣∣∣∣
2

�(0.2)

In our situation we also have to represent the quadratic form �ψ2� µ� as a
sum of squares of expressions linear in ψ. This is done in Section 1 by using
the notion of frame function. This notion allows one to have a representation
analogous to (0.2) without providing any continuity properties of σt�x� with
respect to x.
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A different representation is given in Section 2. This representation is
based on a particular frame function which is continuous (see Remark 2.5).
This can be useful in constructing solutions of the corresponding SPDEs or
their generalizations. The author intends to come back to this idea in the
future.

Notice that for the sake of simplicity of presentation we are only dealing
with super-Brownian processes. The only exception is Remark 1.12 which pro-
vides a SPDE for the multidimensional Fleming–Viot process. In Sections 1
and 2, we consider super-Brownian processes which are related to the sim-
plest branching; we conclude with Section 3 where we consider other super-
Brownian processes related to more complicated branching.

One can easily generalize our constructions for more general superdiffu-
sions or superprocesses. This will be seen from the fact that we only need to un-
derstand the structure of continuous martingales like mt�ψ� with d
m�ψ��t =
�ψ2� µt�dt or of some discontinuous martingales of the same nature.

There are very many open questions which arise from what is presented
here and which we do not know how to answer. One of them concerns pathwise
uniqueness of solutions. Also, it is far from being clear if one can use our
equations to prove fine properties of superprocesses as in [3] and [4] (see,
however, Corollaries 1.9 and 1.10 and Remark 3.5). By the way, this is one
reason why in Section 3 we present a result which is somewhat weaker than
those from Sections 1 and 2. In Section 3 we show only that any solution of an
appropriate equation is a superdiffusion, whereas in Sections 1 and 2 we show
that any super-Brownian process satisfies an SPDE. Probably this discrepancy
can be removed on the basis of representation theorems for discontinuous
martingales.

1. General SPDE for the super-Brownian process. Take a count-
able set of functions ψk, k = 1�2� � � � � of class C∞

0 �Rd� such that, for any
ψ ∈ C∞

0 �Rd�, there is a sequence ψ�n� ∈ 
ψk� k = 1�2 � � �� with

max
�x�≤n

�ψ�n�x� − ψ�x�� → 0� sup
n�x

�ψ�n�x�� <∞�

If µ ∈ � , define ψk�µ� = ψk�µ�x� as the result of Gram–Schmidt ortogo-
nalization method applied to ψk, k = 1�2� � � � in the space L2�Rd� µ�. More
precisely, for k ≥ 1, let πk = πk�µ� be the operator of orthogonal projection on
the space orthogonal to Span
ψ1� � � � � ψk�, define π0 as the unit operator and
define, for k ≥ 1,

ψk�µ� =
(∫

R
d
�πk−1ψk�2 µ�dx�

)−1/2

πk−1ψk

if
∫

R
d �πk−1ψk�2 µ�dx� �= 0; otherwise ψk�µ� �= 0.

The existence of such functions ψk�µ� shows that the following definition
makes sense.
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Definition 1.1. Let a system 
ϕi�µ�� i ≥ 1� of Borel functions ϕi�µ� =
ϕi�µ�x� on R

d be given for any µ ∈ � . We call it a frame function if the
following holds:

(i) for any i we have ϕi�µ� ∈ L2�Rd� µ� and for any ψ ∈ C∞
0 �Rd� the func-

tion �ψϕi�µ�� µ� is measurable with respect to µ;
(ii) for any ψ ∈ L2�Rd� µ� we have

��ψ��2
L2�Rd� µ� =

∞∑
i=1

�ψ�ϕi�µ��2L2�Rd� µ��

Remark 1.2. Property (ii) in Definition 1.1 does not imply that 
ϕi�µ��
i ≥ 1� is an orthonormal basis in L2�Rd� µ�. One can understand why this
happens if one considers a more or less arbitrary two-dimensional plane, say
A, in a three-dimensional space and takes the orthogonal projection to A of
an orthonormal basis in the space ending up with three vectors a1� a2� a3 ∈ A
such that �b�2 = �a1� b�2 + �a2� b�2 + �a3� b�2 for any b ∈ A.

Also notice that, by polarization, property (ii) implies that for any ψ� θ ∈
L2�Rd� µ� we have

�ψ� θ�L2�Rd� µ� =
∞∑
i=1

�ψ�ϕi�µ��L2�Rd� µ��θ�ϕi�µ��L2�Rd� µ��

Remark 1.3. For a measure µ, writing µ ∈ L2�Rd� [L2�Rd� stands for the
usual L2 space with respect to Lebesgue measure with norm �� · ��L2

] means
that the generalized function µ acts as an element of L2�Rd�, or in other words,
µ is absolutely continuous with respect to Lebesgue measure and its density
belongs to L2�Rd�. If 
ϕi� is any orthonormal basis in L2�Rd� and µ ∈ L2�Rd�,
then for ρ �= µ�dx�/dx and any ψ ∈ L2�Rd� µ� we have

��ψ��2
L2�Rd� µ� =

∫
R

�ψ√ρ�2 dx =
∞∑
i=1

∣∣∣∣
∫

R

ψ
√
ρϕi dx

∣∣∣∣
2

=
∞∑
i=1

∣∣∣∣
∫

R

ψϕi�µ�µ�dx�
∣∣∣∣
2

�

where ϕi�µ� = ϕiρ
−1/2Iρ�=0. This suggests that if we define

ϕi�µ� =



ϕiρ

−1/2Iρ �=0� for µ ∈ L2�Rd�� ρ = µ�dx�
dx

�

ψi�µ�� for µ �∈ L2�Rd��
then 
ϕi�µ�� is a frame function.

This is true indeed. Property (ii) has been checked above. As far as mea-
surability is concerned, observe that L2�Rd�∩� is a measurable subset of �
since

L2�Rd� ∩� =
∞⋃
n=1

∞⋂
i=1


µ ∈� � ��ψi�µ�� ≤ n��ψi��L2
��

Also take a nonnegative function ζ1 ∈ C∞
0 �Rd� with unit integral and define

ζε�x� = ε−dζ1�x/ε� and for µ ∈� let µε = µ∗ζε. One knows that if µ ∈ L2�Rd�,
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then ��√ρ−√µε��L2
→ 0 as ε→ 0. Therefore, for µ ∈ L2�Rd� and ψ ∈ C∞

0 �Rd�,
we have ∫

R
d
ψϕi�µ�µ�dx� = lim

ε↓0

∫
R
d
ψϕi

√
µε dx�

Finally, the function µε�x� is measurable with respect to µ (by definition)
and infinitely differentiable with respect to x. This proves that property (i) in
Definition 1.1 holds as well.

It is interesting that for this frame as well as for 
ψi�µ�� generally, one
cannot get �ψϕi�µ�� µ� for µ �∈ L2�Rd� as a limit of �ψϕi�µn�� µn� where
µn ∈ L2�Rd� and µn → µ weakly. However, it turns out (see Remark 2.5)
that there are frame functions for which the l2-valued functions �ψϕi�µ�� µ�
are continuous in µ for any ψ ∈ C∞

0 �Rd�. This may be used in constructing
superdiffusions by solving SPDE’s. By the way, in the following theorem we
do not assume any continuity of �ψϕi�µ�� µ�.

Theorem 1.4. Let µt be a super-Brownian process on ���� �P� and let

��̃� �̃ � P̃� be a probability space carrying independent one-dimensional Wiener
processes w̃k

t , k ≥ 1. Also assume that we are given a frame function 
ϕi�µ�� i ≥
1�. Then on ���� �P� × ��̃� �̃ � P̃� there exist independent Wiener processes
w1

t �w
2
t � � � � such that

dµt = 
µt dt+
∞∑
i=1

ϕi�µt� ·�µt dw
i
t�(1.3)

Remark 1.5. As always, we understand (1.3) in the generalized sense; in
particular, µt is a generalized function. More precisely, by (1.3) we mean that,
for any ψ ∈ C∞

0 �Rd� and t ≥ 0,

�ψ�µt� = �ψ�µ0� +
∫ t

0
�
ψ�µs�ds+

∞∑
i=1

∫ t

0
�ψϕi�µs�� µs�dwi

s a.s.�

and additionally we assert that the last series converges in probability uni-
formly on every finite interval of time.

Because of the properties of mt�ψ� introduced in (0.1), Theorem 1.4 is a
consequence of the following result, which also implies similarly to Theorem
1.4 results for many other superdiffusions.

Theorem 1.6. Assume that we are given an � -valued process µt such that,
for any ψ ∈ C∞

0 �Rd�, the process �ψ�µt� is predictable and locally integrable in

t. Also assume that for any ψ ∈ C∞
0 �Rd� we are given a continuous martingale

mt�ψ� with m0�ψ� = 0 such that for any ψ1� ψ2 ∈ C∞
0 �Rd� and t ≥ 0,


m�ψ1��m�ψ2��t =
∫ t

0
�ψ1ψ2� µs�ds�(1.4)
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Let ��̃� �̃ � P̃� be a probability space carrying independent one-dimensional
Wiener processes w̃k

t , k ≥ 1. Finally, assume that we are given a frame function

ϕi�µ�� i ≥ 1�. Then on ���� �P� × ��̃� �̃ � P̃� there exist independent Wiener
processes w1

t �w
2
t � � � � such that for any ψ ∈ C∞

0 �Rd�,

mt�ψ� =
∞∑
i=1

∫ t

0
�ψϕi�µs�� µs�dwi

s a.s.�(1.5)

where the last series converges in probability uniformly on every finite interval
of time.

Proof. The stated character of convergence in (1.5) follows at once from
the well-known result on equivalence of convergence of local martingales and
their quadratic variations and the fact that

∞∑
i=1

∫ t

0
�ψϕi�µs�� µs�2 ds =

∫ t

0

∞∑
i=1

�ψϕi�µs�� µs�2 ds =
∫ t

0
�ψ2� µs�ds <∞ a.s.

To prove (1.5) without loss of generality, we may assume that on ��̃� �̃ � P̃�
we are given two independent infinite sets 
w̃i

t� and 
ŵi
t�, each consisting of

independent Wiener processes. Indeed, in any case we can just split the set of
processes 
w̃i

t� into two infinite parts. First we prove (1.5) for our particular
frame 
ψi�µ��. For k ≥ 1, define

mk
t =mt�ψk�� n2

kt =
∫

R
d
�πk−1�µt�ψk�2 µt�dx�� Ikt = Inkt �=0

and define wk
t recursively by (

∑
i<1 �= 0),

wk
t =

∫ t

0
n−1
ks I

k
s

[
dmk

s −
∑
i<k

�ψkψi�µs�� µs�dwi
s

]
+

∫ t

0
�1− Iks �dw̃k

s �(1.6)

We need to show that the definitions make sense. Assume that for an integer
k ≥ 1 we have already defined wi, i < k, and for any i� j < k ≤ l and
ψ ∈ C∞

0 �Rd� we have

d
m�ψ��wi�t = �ψψi�µt�� µt�dt�

d
wi�wj�t = δij dt� 
wi� w̃l�t = 0�
(1.7)

As an example of such k, one can take k = 1. Under this assumption the
quadratic variation of the local martingale

mk
t −

∑
i<k

∫ t

0
�ψkψi�µs�� µs�dwi

s(1.8)
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equals


mk�mk�t − 2
∑
i<k

∫ t

0
�ψkψi�µs�� µs�d
mk�wi�s +

∑
i<k

∫ t

0
�ψkψi�µs�� µs�2 ds

=
∫ t

0
�ψ2

k� µs�ds−
∑
i<k

∫ t

0
�ψkψi�µs�� µs�2 ds

=
∫ t

0
��πk−1ψk�2� µs�ds =

∫ t

0
n2
ks ds�

This implies that the stochastic integral in (1.6) with respect to the process
(1.8) makes sense for the given k. Taking into account the last equality in
(1.7) and the fact that m�ψ� and w̃k are independent by Levy’s theorem, one
concludes that wk is a (one-dimensional) Wiener process. Also, for i < k < l,

d
wi�wk�t = n−1
kt I

k
t �d
wi�mk�t − �ψkψi�µt�� µt�dt� = 0� 
wk� w̃l�t = 0�

and for any ψ ∈ C∞
0 �Rd� [remember that the martingales m�ψ� and w̃ are

independent],

d
m�ψ��wk�t = n−1
kt I

k
t

[
d
m�ψ��mk�t −

∑
i<k

�ψkψi�µt�� µt��ψψi�µt�� µt�dt
]

= n−1
kt I

k
t ��ψψk�µt� − �ψ�1− πk−1�µt��ψk�µt��dt

= Ikt �ψψk�µt�� µt�dt = �ψψk�µt�� µt�dt�
This allows us to get (1.7) by induction on k and at the same time proves

that wk are independent Wiener processes.
Next take an integer r ≥ 1 and ψ ∈ Span
ψ1� � � � � ψr�. Observe that for

any ω� t we have Span
ψ1� � � � � ψr� = Span
ψ1�µt�� � � � � ψr�µt�� in the sense
of L2�Rd� µt� so that

�ψ2� µt� =
∑
i≤r
�ψψi�µt�� µt�2�

Hence and from (1.7) we get


m�ψ��t =
∫ t

0
�ψ2� µs�ds =

∑
i≤r

∫ t

0
�ψψi�µs�� µs�2 ds�


m�ψ��wi�t =
∫ t

0
�ψψi�µs�� µs�ds�

In turn this implies (for instance, by definition in the framework of [9]) that

mt�ψ� =
∑
i≤r

∫ t

0
�ψψi�µs�� µs�dwi

s�

Since obviously �ψψi�µ�� µ� = 0 for i > r, we have obtained (1.5) for ψ ∈
Span
ψ1� � � � � ψr� and our particular frame 
ψi�µ�� i ≥ 1�. In particular (1.5)
holds for ψ = ψr and any r. In the case of general ψ one gets the result for
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the same frame 
ψi�µ�� i ≥ 1� after approximating ψ by ψr’s and observing
that


m�ψ� −m�ψr��t = 
m�ψ��t − 2
m�ψ��m�ψr��t + 
m�ψr��t
=

∫ t

0
��ψ− ψr�2� µs�ds a.s.

We now consider the case of general frame function 
ϕi�µ�� i ≥ 1�. Define
the following predictable functions

α
ij
t =

∫
R
d
ψi�µt� x�ϕj�µt� x�µt�dx��

and observe that by definition, the vectors αi
t �= 
αij

t � j ≥ 1� as elements of l2
are orthogonal and have unit length. However, it may happen that they do not
form an orthonormal basis. Then by using again the Gram–Schmidt method,
one can find vectors βi

t �= 
βij
t � j ≥ 1�, i < Nt with some Nt ≤ ∞, such that

the system 
αi
t� i ≥ 1� β

j
t � j < Nt� forms an orthonormal basis in l2 for any

ω� t and all vectors are appropriately measurable with respect to ω� t. It is
well known that ∑

i≥1

α
ij
t α

ik
t +

∑
i<Nt

β
ij
t β

ik
t = δjk ∀ j� k�(1.9)

Next define

w̄
j
t =

∞∑
i=1

∫ t

0
αij
s dwi

s +
∞∑
i=1

∫ t

0
Ii<Ns

βij
s dŵi

s�

The processes w and ŵ are independent. Therefore from (1.9) it is easy
to see that w̄

j
t are independent Wiener processes. Furthermore, well-known

theorems on the passage to the limit in stochastic integrals and theorems on
stochastic integration with respect to stochastic integrals (see, for instance
[9]) show that if γj

t are predictable and St �=
∑

j≥1 �γj
t �2 is locally integrable,

then (a.s.)
∞∑
j=1

∫ t

0
γj
s dw̄

j
s =

∞∑
i=1

∫ t

0

∞∑
j=1

γj
s α

ij
s dwi

s +
∞∑
i=1

∫ t

0
Ii<Ns

∞∑
j=1

γj
s β

ij
s dw̃i

s�(1.10)

For ψ ∈ C∞
0 �Rd� and γ

j
t �= �ψϕj�µt�� µt� we have St = �ψ2� µt� which is

locally integrable by our assumptions. Also for these γ
j
t , by our definitions

and properties of Hilbert spaces we have
∞∑
j=1

γj
s α

ij
s =

∞∑
j=1

�ψϕj�µs�� µs��ψi�µs�ϕj�µs�� µs� = �ψψi�µs�� µs��

γj
s =

∞∑
i=1

�ψψi�µs�� µs�αij
s �

∞∑
j=1

αij
s β

kj
s = 0�

∞∑
j=1

γj
s β

kj
s =

∞∑
i=1

�ψψi�µs�� µs�
∞∑
j=1

αij
s β

kj
s = 0�
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Hence, (1.10) means that

∞∑
i=1

∫ t

0
�ψψi�µs�� µs�dwi

s =
∞∑
i=1

∫ t

0
�ψϕi�µs�� µs�dw̄i

s�

and this gives us (1.5) with w̄i in place of wi. The theorem is proved.

Remark 1.7. It follows from (1.5) that mt�ψ� is linear in ψ. Actually this
linearity can be easily obtained from (1.4) alone.

Remark 1.8. One can define a martingale measure m��0� t� × +� so that


m��0� ·� × +��t =
∫ t

0
µs�+�ds� mt�ψ� =

∫
R
d
ψ�x�m��0� t� × dx�

for all ψ ∈ C∞
0 �Rd�. For instance, one can use Theorem 1.6 and let

m��0� t� × +� =
∞∑
i=1

∫ t

0

∫
+
ϕi�µs�µs�dx�dwi

s�(1.11)

In [6] we showed how to reduce the stochastic integrals with respect to martin-
gale measures to the usual stochastic integrals. This was further used in [6] to
treat stochastic equations containing integrals against martingale measures
in the same way as equations containing just the usual stochastic integrals.

To be more precise, we used the formula

∫ t

0

∫
R
d
φ�s� x�m�ds× dx� =

∞∑
i=1

∫ t

0
φi�s�dmi

s�(1.12)

where

mi
t =

∫ t

0

∫
R
d
ηi�s� x�m�ds× dx�� φi�s� =

∫
R
d
ηi�s� x�φ�s� x�µs�dx��

and for any ω� s the system of functions 
ηi�s� ·�� form an orthonormal basis
in L2�Rd� µs�. For φ being the indicator of �0� t� × +, from (1.12) we recover
(1.11) but only for the case when the frame 
ϕi� coincides with 
ηi� and in
particular forms an orthonormal basis. The possibility of treating any frame
is important as we will see in the proof of Theorem 2.3.

To discuss our results further, take δ > 0 and define

Rδ�x� = c�x�δ−d
∫ ∞

0
t�δ−d�/2 exp�−t�x�2 − 1/�4t�� dt

t
�

so that for an appropriate choice of the constant c = c�δ�, which we fix in this
way, the function Rδ is the kernel of the operator Rδ �= �1− 
�−δ/2. Then for
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any finite measure µ,

I�µ� �=
∣∣∣∣
∣∣∣∣
{ ∞∑
i=1

∣∣∣∣
∫

R
d
Rδ�· − y�ψi�µ�y�µ�dy�

∣∣∣∣
2}1/2∣∣∣∣

∣∣∣∣
L2

=
∣∣∣∣
∣∣∣∣
{∫

R
d
R2

δ�· − y�µ�dy�
}1/2∣∣∣∣

∣∣∣∣
L2

= µ1/2�Rd���Rδ��L2
�

The norm ��Rδ��L2
is finite if δ > d/2. Also for the super-Brownian process,

µt�Rd� is known to be a continuous process, so that
∫ T

0
I2�µt�dt <∞ ∀ T <∞�

Combining this with Theorem 3.2 from [10] and Theorem 1.4, we get the
following corollary.

Corollary 1.9. If µ0 belongs to the space of Bessel potentials H1−δ
2 �Rd�

and δ > d/2, then for almost all �t�ω� we have µt ∈H1−δ
2 �Rd�.

The number 1 − δ can be taken greater than or equal to 0 only if d = 1.
Also in this case H1−δ

2 �R� ⊂ L2�R�.

Corollary 1.10 (cf. [7, 11]). If d = 1 and µ0 ∈ L2�R�, then for almost all
�t�ω� the measure µt has a square integrable density ρt which satisfies an
equation of the form

dρt = 
ρt dt+
∞∑
i=1

√
ρtϕi dw

i
t�(1.13)

where 
ϕi� i ≥ 1� is any orthonormal basis in L2�R�.

The first part of this corollary has been proved above. To prove (1.13), take
ϕi�µ� from Remark 1.3, apply Theorem 1.4 and observe that for any ψ ∈ C∞

0 �R�
we have ∫

R

ψϕi�µt�µt�dx� =
∫

R

ψ
√
ρtϕi dx�

Remark 1.11. Further continuity properties of ρt can be found in [7] for
equations with nonrandom coefficients and operators more general than 
.
For equations with random coefficients, we refer the reader to [10].

Remark 1.12. If instead of the super-Brownian process one takes the
Fleming–Viot process in Theorem 1.4, then instead of (1.3) one can prove that

dµt = 
µt dt+
∞∑
i=1

π�µt�ϕi�µt� ·�µt dw
i
t�
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where π�µ� is the orthogonal projection in L2�Rd� µ� on the subspace of func-
tions orthogonal to constants. In other words π�µ�h = h − �h�µ�µ−1�Rd�. By
the way, for the Fleming–Viot process µt, one has µt�Rd� ≡ 1.

2. More SPDE’s for super-Brownian process. As we have mentioned
in the Introduction, the whole idea of the construction relies on representing
�ψφ�µ� as a sum of products of linear expressions, one containing only ψ, the
other φ.

One can look at �ψφ�µ� as a bilinear form generated by a linear operator
and take the square root of this operator. Then if in some sense �ψφ�µ� =

Bψ�φ�, one has �ψφ�µ� = 
√Bψ�

√
Bφ� and assuming that 
·� is defined by

some sort of summation or integration, we get the desired representation of
�ψφ�µ� as a sum of products of linear expressions, one containing only ψ, the
other φ. If µ has a density ρ, then of course

�ψφ�µ� =
∫

R
d
�ψ√ρ��φ√ρ�dx

and the operator
√
B is just the multiplication by

√
ρ. In the general situation

we proceed in a more complicated way.
In the general case, it is convenient to change spaces and instead of �ψφ�µ�

consider

���1− 
�−δ/2ψ��1− 
�−δ/2φ�µ� =
∫

R
d
ψ�x�K�µ�φ�x�dx�(2.1)

where K�µ� is the operator defined by

K�µ�φ�x� =
∫

R
d
K�µ�x�y�φ�y�dy�

K�µ�x�y� =
∫

R
d
Rδ�x− z�Rδ�z− y�µ�dz��

The operator K�µ� is symmetric positive and one can find its square root,
say a symmetric positive operator Q�µ�, such that Q2�µ� =K�µ�. Then∫

R
d
ψ�x�K�µ�φ�x�dx =

∫
R
d
�Q�µ�ψ�Q�µ�φdx

and from (2.1) one can expect that

�ψφ�µ� =
∫

R
d
�Q�µ��1− 
�δ/2ψ�Q�µ��1− 
�δ/2φdx

=
∞∑
i=1

∫
R
d
ψ�1− 
�δ/2Q�µ�φi dx

∫
R
d
φ�1− 
�δ/2Q�µ�φi dx�

where 
φi� is any orthonormal basis in L2�Rd�.
There are several ways to find Q�µ�. One of them is based on the formula

Q�µ� = c
∫ ∞

0

e−tK�µ� − 1√
t

dt

t
� c−1 =

∫ ∞
0

e−t − 1√
t

dt

t
�(2.2)
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where by e−tK�µ� we mean the operator which takes any function ψ ∈ C∞
0 �Rd�

into the value at time t of the solution of the problem

d

dt
ψ�t� = −K�µ�ψ�t�� ψ�0� = ψ�(2.3)

Lemma 2.1. Let δ > d/2 and µ be a finite measure on �Rd���Rd�� with
µ�Rd� > 0. Then:

(i) The operator K�µ� is a bounded and even Hilbert–Schmidt operator
from L2�Rd� into itself.

(ii) For any ψ ∈ L2�Rd�, problem (2.3) as an ordinary differential equation
for L2�Rd�-valued functions has a unique solution differentiable in the strong
sense. Moreover, ��ψ�t���L2

≤ ��ψ��L2
, so that the semigroup e−tK is a semigroup

of contractions in L2�Rd�.
(iii) The operator Q�µ� is well defined by (2.2) as a bounded symmetric

operator from L2�Rd� into itself. Moreover, Q2�µ� =K�µ�.
(iv) The operator J�µ� �= Q�µ��1 − 
�δ/2 acting from C∞

0 �Rd� into L2�Rd�
can be extended as a unitary operator acting from L2�Rd� µ� into L2�Rd�. Keep
the notation J�µ� for the extended operator. Then the operator J∗�µ�J�µ� is a
unit operator on L2�Rd� µ�.

Proof. (i) We have

K2�µ�x�y� ≤
∫

R
d
R2

δ�x− z�µ�dz�
∫

R
d
R2

δ�z− y�µ�dz��

Hence the Hilbert–Schmidt norm of K�µ� equals
{∫

R
d

∫
R
d
K2�µ�x�y�dxdy

}1/2

≤ µ�Rd�
∫

R
d
R2

δ�x�dx�(2.4)

which is finite as stated.
(ii) Since the operator K�µ� is bounded, the first statement in (ii) is well

known. To prove the second one, it suffices to notice that

d��ψ�t���2L2
= 2�ψ�t�� dψ�t�� = −2�ψ�t��K�µ�ψ�t��dt ≤ 0�

(iii) By virtue of statement (ii), statement (iii) is well known from the theory
of fractional powers of operators (see, for instance, [8]).

(iv) To prove the first assertion in (iv) it suffices to observe that, by (iii) and
(2.1), we have for ψ ∈ C∞

0 �Rd�,
��Q�µ��1− 
�δ/2ψ��2L2

= �Q�µ��1− 
�δ/2ψ�Q�µ��1− 
�δ/2ψ�L2

= ��1− 
�δ/2ψ�K�µ���1− 
�δ/2ψ��L2
= �ψ2� µ��

The second assertion in (iv) is, actually, true in the general framework of
Hilbert spaces, since any time we have a unitary operator I, the operator I∗I
is a unit operator. The lemma is proved. ✷
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Theorem 2.2. Let the assumptions of Theorem 1.4 be satisfied and let

ϕi� i ≥ 1� be an orthonormal basis in L2�Rd�. Then there exist independent
Wiener processes wi

t� i ≥ 1, such that

dµt = 
µt dt+
∞∑
i=1

�1− 
�δ/2Q�µt�ϕi dw
i
t�(2.5)

This theorem follows from the next one in the same way in which Theorem
1.4 follows from Theorem 1.6.

Theorem 2.3. Let the assumptions of Theorem 1.6 be satisfied and let

ϕi� i ≥ 1� be an orthonormal basis in L2�Rd�. Then there exist independent
Wiener processes wi

t� i ≥ 1, such that for any ψ ∈ C∞
0 �Rd�,

mt�ψ� =
∞∑
i=1

∫ t

0

∫
R
d

�1− 
�δ/2ψ�Q�µt�ϕi dxdw

i
t a.s.

Proof. Take J∗�µ� from Lemma 2.1 if µ �= 0 and let J∗�0� �= 0. Notice
that for any ψ ∈ L2�Rd� µ� we have

��ψ��2
L2�Rd� µ� = ��J�µ�ψ��2L2

=
∞∑
i=1

��J�µ�ψ�ϕi�L2
�2 =

∞∑
i=1

∣∣�ψ�J∗�µ�ϕi�L2�Rd� µ�
∣∣2�

Also J∗�µ�ϕi are appropriately measurable. By Theorem 1.6 for certain Wiener
processes,

mt�ψ� =
∞∑
i=1

∫ t

0

∫
R
d
ψJ∗�µt�ϕi µt�dx�dwi

t a.s.

To prove (2.5) it only remains to observe that for any φ ∈ L2�Rd�,∫
R
d
ψJ∗�µt�φµt�dx� =

∫
R
d
φJ�µt�ψdx

=
∫

R
d
φQ�µt��1− 
�δ/2ψdx

=
∫

R
d
�Q�µt�φ��1− 
�δ/2ψdx�

The theorem is proved. ✷

Remark 2.4. As we have seen in the above proof, 
J∗�µ�ϕi� i ≥ 1� is a
frame if 
ϕi� is any orthonormal basis in L2�Rd�. However, generally speaking,

J∗�µ�ϕi� i ≥ 1� is not an orthonormal basis in L2�Rd� µ� for µ �= 0. For
instance, if µ is a unit measure concentrated at the origin, then one can see
that J�µ�ψ�x� = αRδ�x�ψ�0�, where α−1 �= ��Rδ��L2

. Therefore

J∗�µ�φ�x� = α
∫

R
d
φRδ dx� µ-a.s.�

and 
J∗�µ�ϕi� i ≥ 1� is just a set of constants (µ-a.s.) 
γi� such that
∑

i γ
2
i = 1.
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Remark 2.5. If δ > d, the frame 
J∗�µ�ϕi� i ≥ 1� has an additional prop-
erty of continuity. It turns out that for any ψ ∈ C∞

0 �Rd� and ϕ ∈ L2�Rd� the
function �ψJ∗�µ�ϕ�µ� is continuous with respect to µ (we write µn → µ if
�f�µn� → �f�µ� for any bounded and continuous f).

Owing to the equality

�ψJ∗�µ�ϕ�µ� = �J�µ�ψ�ϕ�L2
= �Q�µ��1− 
�δ/2ψ�ϕ�L2

�

it suffices to prove the continuity of �Q�µ�ψ�ϕ�L2
for any ψ�ϕ ∈ L2�Rd�.

Taking into account (2.2) and Taylor’s series for exp
−tK�µ��, we see that
it suffices to prove that Km�µ�f is a continuous L2�Rd�-valued function for
any f ∈ L2�Rd� and integer m ≥ 1. Formulas like Km�µ�f − Km�µn�f =
K�µn��Km−1�µ�f − Km−1�µn�f� + �K�µ� − K�µn��Km−1�µ�f and estimate
(2.4) show that we may take m = 1. In this case, we notice that K�µ�f =
Rδ ∗ ��Rδ ∗ f�µ�� where Rδ is a bounded and continuous function (δ > d)
and Rδ ∗ f ∈ Hδ

2�Rd� which implies (even for δ > d/2) that Rδ ∗ f also
is a bounded and continuous function. Therefore, K�µn�f�x� → K�µ�f�x�
at any x if µn → µ. If in addition all measures µn have supports in the
same ball, then it is easy to see that there exist constants N�λ indepen-
dent of n�x such that �K�µn�f�x�� = �Rδ ∗ ��Rδ ∗ f�µn��x�� ≤ Ne−λ�x�. Hence
��K�µ�f−K�µn�f��L2

→ 0.
The case of general µn can be reduced to the particular one on the basis of

(2.4) and the observation (the Helly–Bray theorem) that for any ε > 0 there
exist measures µε

n, νεn, µε νε such that µn = µε
n + νεn, µ = µε + νε, µε

n → µε

and all µε
n are supported in the same ball with total variations of νεn, νε less

than ε.
Finally let us note that if 
ϕi� i ≥ 1� is an orthonormal basis in L2�Rd�

and ψ ∈ C∞
0 �Rd�, then the l2-valued function r�µ� �= 
�ψJ∗�µ�ϕi� µ�� i ≥ 1� is

continuous in µ. Indeed, by definition, ��r�µ���2l2
= �ψ2� µ�, which is continuous

and also r�µ� is weakly continuous by what has been proved above.

3. Other superdiffusions. In order to state our result we need the fol-
lowing lemma, which, roughly speaking, provides a procedure of constructing
random vectors on the same probability space for any given distribution in
such a way that if the distributions converge weakly, the random vectors con-
verge almost surely.

Lemma 3.1. On � there is a ��Rd�-valued function =�µ� and for any µ ∈
� on =�µ�, there is a Borel R

d-valued function ξ�µ�y� such that we have the
following.

(i) For any Borel positive ψ and µ ∈� ,∫
=�µ�

ψ�ξ�µ�y��dy =
∫

R
d
ψ�x�µ�dx��(3.1)

(ii) For any ψ ∈ C∞
0 �Rd� the function

I=�µ�ψ�ξ�µ� ·��
is an L2�Rd�-valued continuous function on � .
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Proof. One can prove the lemma in many different ways. The way we
choose relies on some properties of solutions of the simplest Monge–Ampère
equation, which were discovered by A. D. Aleksandrov (see, for instance, [1, 2]).

First we fix a smooth one-to-one mapping η� B1 = 
�x� < 1� → R
d with

smooth inverse. For any µ ∈ � , define a measure ν = µη on Borel subsets +
of B1 by the formula

ν�+� �= µη�+� �= µ�η�+���
Furthermore, we can find a real-valued continuous convex function v =

v�µ�x� = v�x� on B̄1 with v = 0 on ∂B1, which is a unique convex generalized
solution of the following Monge–Ampère equation:

det�vxx� = µη�(3.2)

To explain the precise meaning of (3.2), we recall that for any x0 ∈ B1 one
can define the so-called normal mapping ∇v�x0� as the set of all p ∈ R

d such
that z = p·x+f is a supporting plane to the graph of v at the point �x0� v�x0��.
Then by definition, (3.2) means that for any Borel + ⊂ B1 we have (�A� stands
for the Euclidean volume of the set A)

�∇v�+�� = µη�+��
It is easy to see that for any r ∈ �0�1� the set ∇v�B̄r� is closed, so that their

union =�µ� �= ∇v�B1� is Borel. Furthermore, it turns out that for almost every
(Lebesgue) y ∈ =�µ�, there is only one point x ∈ B1 such that y ∈ ∇v�x�. We
set ξ�y� = ξ�µ�y� �= η�x�. Thus we regard ξ�µ�y� as a function uniquely
defined only almost everywhere in =�µ�. It is known that for any positive
Borel ψ,

∫
=�µ�

ψ�ξ�µ�y��dy =
∫
B1

ψ�η�x��µη�dx�

so that (3.1) holds.
Let us use some more facts from [1] and [2]. The function ξ�µ�y� possesses

certain continuity properties following from the fact that if µn converge to
µ weakly [

∫
R
d φµn�dx� →

∫
R
d φµ�dx� for any bounded continuous φ], then

v�µ�n�� converges to v�µ� uniformly. This easily implies that, if for a y ∈ =�µ�,
the point ξ�µ�y� is uniquely defined, then y ∈ =�µn� for all large n and if in
addition ξ�µn�y� are well defined for all large n, then ξ�µn�y� → ξ�µ�y�, so
that ξ�µn�y� → ξ�µ�y� at least almost everywhere (Lebesgue) in =�µ�. In
particular,

I=�µ� ≤ lim inf
n→∞ I=�µn� a.e.�

and generally for =�µ� r� �= 
y� y ∈ =�µ�� �η−1ξ�µ�y�� < r� and r ∈ �0�1�, we
have

I=�µ� r� ≤ lim inf
n→∞ I=�µn�r� a.e.
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On the other hand, one knows that supx �v�µ�x�� ≤ N�d�µ�Rd�, which im-
plies that for any r ∈ �0�1�, the sets =�µn� r� are uniformly bounded with
respect to n. Moreover, from (3.1) we get �=�µ� \=�µ� r�� = µ�x� �η−1�x�� ≥ r�.
Therefore the weak convergence of µn to µ implies that for any ε > 0, there
is an r ∈ �0�1� such that

lim sup
n→∞

�=�µn� \=�µn� r�� ≤ ε� �=�µ� \=�µ� r�� ≤ ε�

In addition, (3.1) implies that �=�µn�� → �=�µ��. Therefore, by Fatou’s
lemma

lim sup
n→∞

∫
R
d
�I=�µ� − I=�µn��dx = 2 lim sup

n→∞

∫
R
d
�I=�µ� − I=�µn��+ dx

≤ 4ε+ 2 lim sup
n→∞

∫
R
d
�I=�µ� r� − I=�µn�r��+ dx ≤ 4ε

+ 2
∫

R
d

lim sup
n→∞

�I=�µ� r� − I=�µn�r��+ dx = 4ε�

Now we see that

I=�µn�ψ�ξ�µn� ·�� → I=�µ�ψ�ξ�µ� ·��(3.3)

in measure. From (3.1) it follows that integrals of the left-hand sides in (3.3)
converge to the integral of its right-hand side. By Scheffé’s theorem, the con-
vergence in (3.3) is in L1 if ψ ≥ 0 (above we actually reproduce the proof of
this theorem). The last restriction can be easily removed. Finally, from (3.1) it
follows that the L2-norms of left-hand sides in (3.3) converge to the L2-norm
of its right-hand side. This implies that the convergence in (3.3) is in L2�Rd�,
which completes the proof of the lemma. ✷

Now let ���� �P� be a probability space with a filtration 
�t�. Assume that
on ���� �P� we are given a Poisson random measure p�+� = ∫

+ p�dx�du�dt�,
+ ⊂ R

d ×R+ ×R+ with intensity dxπ�du�dt, where π�du� is a measure such
that

c1 �=
∫ ∞

1
uπ�du� <∞� c2 �=

∫ 1

0
u2π�du� <∞�

∫ b

a
�=

∫
�a� b�

�

Also assume that p is 
�t�-adapted. For λ ≥ 0 define

γ�λ� �=
∫ ∞

0
�1− e−λu − λu�π�du�

and define a martingale measure q�dx�du�dt� = p�dx�du�dt�−dxπ�du�dt.

Theorem 3.2. Assume that we have a measure-valued process µt which is
�t-predictable, satisfies

∫ T

0
µt�Rd�dt <∞ ∀ T <∞ a.s.(3.4)
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and satisfies the equation: for any ψ ∈ C∞
0 �Rd�,

�ψ�µt� = �ψ�µ0� +
∫ t

0
�
ψ− c1ψ�µs�ds

+
∫ t

0

∫ ∞
0

∫
=�µs�

uψ�ξ�µs� x��

× �Iu≤1q�dx�du�ds� + Iu>1p�dx�du�ds���

(3.5)

Then µt is a superdiffusion corresponding to 
� γ in the sense that for any

T ≥ 0 and any solution of class C
1�2
b ��0�T� × R

d� of the parabolic equation

∂v

∂t
+ 
v+ γ�v� = 0� t ∈ �0�T�(3.6)

we have

Ee−�v�T�� µT� = Ee−�v�0�� µ0��(3.7)

Proof. First we claim that if ψ = ψ�t� = ψ�t� x� and ψ ∈ C∞
0 �Rd+1� then

�ψ�t�� µt� = �ψ�0�� µ0� +
∫ t

0

(
∂ψ

∂s
+ 
ψ− c1ψ�µs

)
ds

+
∫ t

0

∫ ∞
0

∫
=�µs�

uψ�s� ξ�µs� x��

× �Iu≤1q�dx�du�ds� + Iu>1p�dx�du�ds���

(3.8)

Indeed, if ψ�t� x� = ψ�x�η�τ� exp�iτt�, where ψ ∈ C∞
0 �Rd� and τ� η�τ� are some

numbers, then one obtains (3.8) from (3.5) by Itô’s formula. Next one notices
that

〈∫ ·
0

∫ 1

0

∫
=�µs�

uψ�s� ξ�µs� x��q�dx�du�ds�
〉
t

=
∫ t

0

∫ 1

0

∫
=�µs�

u2ψ2�s� ξ�µs� x��dxπ�du�ds

= c2

∫ t

0

∫
R
d
ψ2�s� x�µs�dx�ds�

(3.9)

Now the general case of (3.8) follows from the above particular case after
integrating with respect to τ, applying the Fourier transform and relying on
(3.4) while passing to the limit. Furthermore, by using (3.4) and (3.9) and
obvious approximations, one can easily see that (3.8) holds true for ψ = v and
t ∈ �0�T�.
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This gives us the stochastic differential of �v�t�� µt� and by Itô’s formula
allows us to conclude that for any stopping time τ ≤ T,

exp�−�v�τ�� µτ��

= exp�−�v�0�� µ0�� −
∫ τ

0
exp�−�v�t�� µt��

(
∂v

∂t
+ 
v− c1v�µt

)
dt

+
∫ τ

0
exp�−�v�t�� µt��

×
∫ 1

0

∫
=�µt�

[
exp�−uv�t� ξ�µt� x���−1+uv�t� ξ�µt� x��

]
dxπ�du�dt

+
∫ τ

0
exp�−�v�t�� µt��

×
∫ ∞

1

∫
=�µt�

�exp�−uv�t� ξ�µt� x��� − 1�p�dx�du�dt� +mt�

(3.10)

where mt is a certain local martingale.
Next

E
∫ τ

0
exp�−�v�t�� µt��

∫ ∞
1

∫
=�µt�

�exp�−uv�t� ξ�µt� x��� − 1�p�dx�du�dt�

= E
∫ τ

0
exp�−�v�t�� µt��

∫ ∞
1

∫
=�µt�

�exp�−uv�t� ξ�µt� x��� − 1�dxπ�du�dt�

�c1v�µt� =
∫ ∞

1

∫
=�µt�

uv�t� ξ�µt� x��dxπ�du��

Therefore, if τ ≤ T and mτ∧t is a martingale, then by (3.10),

E exp�−�v�τ�� µτ�� = E exp�−�v�0�� µ0��

−E
∫ τ

0
exp�−�v�t�� µt��

(
∂v

∂t
+ 
v�µt

)
dt

+E
∫ τ

0
exp�−�v�t�� µt��

×
∫ ∞

0

∫
=�µt�

[
exp�−uv�t� ξ�µt� x���−1+uv�t� ξ�µt� x��

]

× dxπ�du�dt�

(3.11)

Here∫ ∞
0
�exp�−uv�t� ξ�µt� x��� − 1+ uv�t� ξ�µt� x���π�du� = −γ�v�t� ξ�µt� x����

and by (3.1), ∫
=�µt�

γ�v�t� ξ�µt� x���dx =
∫

R
d
γ�v�t� y��µt�dy��
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From (3.6) and (3.11) we finally see that (3.7) is true with τ instead of T.
The arbitrariness of τ, actually, shows that (3.7) holds as well. The theorem
is proved. ✷

Remark 3.3. For Borel + ⊂ R
d × R+ × R+ define

p�µ·� +� =
∫

R
d×R+×R+

I=�µt��x�I+�ξ�µt� x�� u� t�p�dx�du�dt��

and similarly define q�µ·� +�. Then by the formula for change of variables, the
last integral in (3.5) takes the form

∫ t

0

∫ ∞
0

∫
R
d
uψ�y� �Iu≤1q�µ·� dy�du�ds� + Iu>1p�µ·� dy�du�ds��

and one can rewrite (3.5) in the following symbolic form:

dµt = �
µt − c1µt�dt+
∫ 1

0
uq�µ·� ·� du�dt� +

∫ ∞
1

up�µ·� ·� du�dt��

Remark 3.4. Yet another form of (3.5) can be obtained by using the idea
from [6] mentioned in Remark 1.8. Let 
ϕi� be an orthonormal basis in L2�Rd�.
Define

mi
t =

∫ t

0

∫ 1

0

∫
R
d
ϕi�x�uq�dx�du�ds��

so that mi
t are square-integrable martingales (defined without using µt). Then

E

∣∣∣∣
∫ τ

0

∫ 1

0

∫
=�µs�

uψ�ξ�µs� x��q�dx�du�ds� −
∑
i≤n

∫ τ

0
�I=�µs�ψ�ξ�µs� ·��� ϕi�dmi

s

∣∣∣∣
2

= c2E
∫ τ

0

∫
R
d

∣∣∣∣I=�µs�ψ�ξ�µs� x�� −
∑
i≤n
�I=�µs�ψ�ξ�µs� ·��� ϕi�ϕi�x�

∣∣∣∣
2

dxds

→ 0

as n→∞ if the stopping time τ is such that

E
∫ τ

0

∫
=�µs�

ψ2�ξ�µs� x��dxds = E
∫ τ

0

∫
R
d
ψ2�x�µs�dx�ds

≤ supψ2E
∫ τ

0
µs�Rd�ds <∞�

Also

�I=�µs�ψ�ξ�µs� ·��� ϕi� =
∫

R
d
I=�µs��x�ψ�ξ�µs� x��ϕi�x�dx

=
∫

R
d
I=�µs��x�ψ�ξ�µs� x��ϕ̂i�µs� ξ�µs� x��dx

=
∫

R
d
ψ�x�ϕ̂i�µs� x�µs�dx��
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where for any µ ∈� , ϕ̂i�µ� ξ�µ� ·�� is the projection in L2�Rd� of ϕi on the sub-
space spanned by all functions I=�µ��x�ψ�ξ�µ�x�� [so to speak, the conditional
expectation of ϕi, given ξ�µ�x�].

Therefore, in (3.5),

∫ t

0

∫ 1

0

∫
=�µs�

uψ�ξ�µs� x��q�dx�du�ds� =
∑
i

∫ t

0

∫
R
d
ψ�x�ϕ̂i�µs� x�µs�dx�dmi

s�

where the series converges in probability uniformly on every finite interval of
time. Now (3.5) takes the form

dµt = �
µt − c1µt�dt+
∑
i

ϕ̂i�µt�µt dm
i
t +

∫ ∞
1

up�µ·� ·� du�dt��

As is easy to see, 
ϕ̂i�µ�� is again a frame function.

Remark 3.5. As in [7] or, in the case of equations with coefficients de-
pending on ω� t� x, as in [10] (cf., Corollary 1.9) one can prove that under the
conditions of Theorem 3.2, if c1 = 0 and d = 1, then for any t, µt is absolutely
continuous with respect to Lebesgue measure (a.s.).

Remark 3.6. One can consider the case in which the function γ�λ� contains
the term aλ2 by combining the methods from this and the previous sections.
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