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We consider the random fluctuations of the free energy in the p-spin
version of the Sherrington–Kirkpatrick (SK) model in the high-temperature
regime. Using the martingale approach of Comets and Neveu as used in
the standard SK model combined with truncation techniques inspired by
a recent paper by Talagrand on the p-spin version, we prove that the random
corrections to the free energy are on a scale N−(p−2)/2 only and, after proper
rescaling, converge to a standard Gaussian random variable. This is shown to
hold for all values of the inverse temperature, β, smaller than a critical βp . We
also show that βp →

√
2 ln 2 as p ↑ +∞. Additionally, we study the formal

p ↑ +∞ limit of these models, the random energy model. Here we compute
the precise limit theorem for the (properly rescaled) partition function at all
temperatures. For β <

√
2 ln 2, fluctuations are found at an exponentially

small scale, with two distinct limit laws above and below a second critical
value

√
ln 2/2: for β up to that value the rescaled fluctuations are Gaussian,

while below that there are non-Gaussian fluctuations driven by the Poisson
process of the extreme values of the random energies. For β larger than the
critical

√
2 ln 2, the fluctuations of the logarithm of the partition function are

on a scale of 1 and are expressed in terms of the Poisson process of extremes.
At the critical temperature, the partition function divided by its expectation
converges to 1/2.

1. Introduction. In recent years it has become increasingly clear that a prob-
lem of central importance for the understanding of disordered spin systems is
the control of random fluctuations of thermodynamic quantities (see [2], [7], [19]
and [27]). Unfortunately, precise control of such quantities is very hard to come
by. Concentration of measure techniques [26] have been realized to be efficient
tools to get upper bounds ([5] and [6]), but lower bounds or exact limit theorems
are scarce. One of these examples is the Sherrington–Kirkpatrick (SK) model in
the high-temperature phase, where a central limit theorem for the free energy was
proven first by Aizenman, Lebowitz and Ruelle [1], using cluster expansion tech-
niques, and later by Comets and Neveu [9], making use of martingale methods and
stochastic calculus. Their methods have been extended to a few related cases later
(see [3] and [28]). In the present paper we want to continue this effort by investi-
gating a large class of natural generalization of the SK model, the so-called p-spin
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SK models (see, e.g., [15] and [20]) and their p ↑ +∞ limit, the random energy
model (REM).

For our present purposes it is natural to consider the class of models we study
as Gaussian processes on the hypercube SN = {−1,1}N . We will always denote
the corner of SN by σ ; for historical reasons they are called spin configurations.
A Gaussian process X on SN is characterized completely by its mean and
covariance function. The processes we consider will always be assumed to have
mean 0 and covariances

EXσXσ ′ ≡ fN
(
RN(σ,σ

′)
)
,(1.1)

where RN(σ,σ
′) ≡ N−1(σ · σ ′) ≡ N−1 ∑N

i=1 σiσ
′
i is the so-called overlap [this

overlap is related to the Hamming distance dHam by dHam(σ, σ
′) = N(1 −

RN(σ,σ
′))/2]. In this paper we will investigate the case where

fN(x)= f
p
N (x) :=

[p/2]∑
k=0

αp−2k(N)xp−2k,(1.2)

where the coefficients satisfy αp(N) = 1 and αp−2k(N) = O(N−k). The reason
for this complicated choice of covariance function is due to the fact that in
the commonly used form of the p-spin interaction version of the Sherrington–
Kirkpatrick model, the corresponding process is represented as

Xσ =
(
N

p

)−1/2 ∑
i1<i2<···<ip

Ji1,i2,...,ipσi1σi2 · · ·σip ,(1.3)

with Ji1,...,ip a family of
(N
p

)
i.i.d. standard Gaussian random variables. Computing

the covariance of this process, one finds indeed an expression of the form (1.2).
While we are mainly interested in this particular case, we will discuss the general
case in Appendix A. Note that there is a certain ambiguity in the definition of the
model with regard to whether or not coinciding indices in the sum in (1.3) are or
are not excluded. For example, one may choose the simpler looking version

X̃σ ≡N−p/2
∑

1≤i1,...,ip≤N
Ji1,i2,...,ipσi1 · · ·σip .(1.4)

For this model the covariance is simply cov(X̃σ , X̃σ ′) = RN(σ,σ
′)p . While the

two models are identical on the level of the thermodynamic functions, we will see
that the scales of fluctuations are quite different.

We also study the formal limit of p-spin SK models as p ↑ +∞, the random
energy model (REM). In this model the random variables Xσ are independent
standard normal.

Given such a Gaussian process, our main object of interest is the so-called
partition function

Zβ,N ≡ Eσ e
β
√
NXσ ≡ 2−N

∑
σ∈SN

eβ
√
NXσ .(1.5)
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The quantities eβ
√
NXσ are called Boltzmann weights, the parameter β ∈ R+

is known as the inverse temperature and HN(σ) ≡
√
NXσ is (minus) the

Hamiltonian in statistical mechanics. The Zβ,N are random variables, and we are
primarily interested in their behavior as N →∞. In statistical mechanics, it is
customary to introduce the so-called free energy

Fβ,N ≡− 1

βN
lnZβ,N .(1.6)

It is easy to prove in all the models we consider here that, for all values of β , Fβ,N
is a self-averaging quantity, that is,

lim
N↑+∞|Fβ,N −EFβ,N | = 0 a.s.(1.7)

It is, however, not known in general whether the so-called quenched free energy
EFβ,N converges to a limit as N →∞. This has, however, been proven for
sufficiently small values of β . More precisely, we have the following result.

THEOREM 1.1. Define β̃2 = 1 and, for p > 2,

β̃2
p ≡ inf

0<m<1
(1+m−p)φ(m),(1.8)

where

φ(m)≡ [
(1−m) ln(1−m)+ (1+m) ln(1+m)

]
/2.

Then, for all β < β̃p,

lim
N↑+∞EFβ,N,p =−β/2.(1.9)

REMARK. For p = 2 this result was first proven in [1]. A very simple proof
was later given by Talagrand [26]. Comets [8] showed that the value β̃2 = 1 is
optimal in the sense that (1.9) fails for β > 1. The result for p ≥ 3 is due to
Talagrand [27]. It is clear that in all cases (1.9) will fail for β ≥ √

2 ln 2, which
by a more elaborate computation can be improved to β ≥√2 ln 2(1− 2−cpp) with
cp < 5, for p large [4]. On the other hand, a simple calculation shows that β̃p ∼√

2 ln 2(1 − 2−p/2 ln 2). One should note that to get (1.9) up to a value so close
to
√

2 ln 2 required a substantial modification of the original argument of [26],
namely, the use of a “truncated” second-moment method. Such a truncation will
also be the main difficulty in obtaining our results (for similar reasons, slightly
different truncations were also used by Toubol [28] (and probably first) in the
study of the CLT for the SK model with vector-valued spins).

In the case of the REM, it is well known that the critical inverse temperature
β̃REM =√2 ln 2 and that [11]

lim
N↑+∞EFβ,N,REM =

{−β/2, if β ≤√2 ln 2,

−√2 ln 2+ β−1 ln 2, if β ≥√2 ln 2.
(1.10)
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As observed already in [10] (a rigorous proof follows easily from the results
contained in [27] (Talagrand, private communication)), one has that

lim
p↑+∞ lim sup

N↑+∞
EFβ,N,p = lim

p↑+∞ lim inf
N↑+∞EFβ,N,p = lim

N↑+∞EFβ,N,REM.(1.11)

In this paper we will control the fluctuations of the free energy in (essentially) all
of the domain of parameters β , p, where the limit is known to exist, that is, the
high-temperature regions of the p-spin models and the entire temperature range in
the REM. Although the REM is rather singular and the techniques used for that
case are totally different from those we will use for the p-spin models, we felt it
would be instructive to include this singular limiting case in this paper. Moreover,
it turns out that in spite of the heavy investigation the REM has enjoyed over the
years (see [10–14], [21] and [23]), no precise fluctuation results for the free energy
are available in the literature (see the remark following Theorem 1.6). Finally,
we are convinced that the reader will be rather surprised by the rich structure the
fluctuation behavior this model exhibits.

Let us now state our results. We begin with the p-spin SK models.

THEOREM 1.2. Consider the p-spin SK models defined by (1.3), p ≥ 3. There
exists βp > 0 such that, for all β < βp ,

N(p−2)/2 ln
Zβ,N

EZβ,N

D→N

(
0,
β4p!

2

)
.(1.12)

REMARK. Note that the result of [1] and [8] in the case p = 2 is not obtained
by setting p = 2 in (1.12). In particular, in that case the limit has a finite mean.
The reader might wonder why in the case p > 2 the limit has mean 0 even though
we do not explicitly center our process. But this is actually easy to understand:
Zβ,N/EZβ,N has mean 1 and variance ∼N−(p−2). Now

ln(Zβ,N/EZβ,N)= ln
(
1+ (Zβ,N/EZβ,N − 1)

)
= (Zβ,N/EZβ,N − 1)+O

(
(Zβ,N/EZβ,N − 1)2

)
,

and so the mean of the left-hand side of (1.12), N(p−2)/2
E ln(Zβ,N/EZβ,N ) =

O(N−(p−2)/2), tends to 0.

The value of βp can be estimated reasonably well. To state a lower bound on βp,
however, we need some notation. We define the functions

I (m1,m2,m3)= 1
4

(
(1+m1 +m2 +m3) ln(1+m1 +m2 +m3)

+ (1−m1 −m2 +m3) ln(1−m1 −m2 +m3)

+ (1+m1 −m2 −m3) ln(1+m1 −m2 −m3)

+ (1−m1 +m2 −m3) ln(1−m1 +m2 −m3)
)
,

(1.13)
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S(m1,m2,m3)=
[(

1+ m1 −m2m3

1−m2
3

)2

+
(

1+ m2 −m1m3

1−m2
3

)2

+ 2m3

(
1+ m1 −m2m3

1−m2
3

)(
1+ m2 −m1m3

1−m2
3

)]1/2

,

(1.14)

R(m1,m2,m3)= 2m1m2m3 −m2
1 −m2

2

2(1−m2
3)

(1.15)

and

Up(m1,m2,m3)

= I (m1,m2,m3)(1+m
p
3 )
[
S(m

p
1 ,m

p
2 ,m

p
3 )
√

2+ 2mp
3

+R(m
p
1 ,m

p
2 ,m

p
3 )(1+m

p
3 )− (2+m

p
3 )
]−1

(1.16)

on the set

A≡ {
m1,m2,m3 ∈ [−1,1]3 | 1−m1 −m2 +m3 > 0,

1−m1 +m2 −m3 > 0,1+m1 −m2 −m3 > 0
}
.

(1.17)

Note that the function I (m1,m2,m3) is symmetric in m1, m2 and m3 and that
S(m1,m2,m3), R(m1,m2,m3) and Up(m1,m2,m3) are symmetric in m1 and m2.
Let

Yp(m1,m2,m3)=max
{
I (m1,m2,m3)

(
2

3
+ 1

m
p
1 +m

p
2 +m

p
3

)
,

Up(m1,m2,m3), Up(m1,m3,m2), Up(m2,m3,m1)

}
.

(1.18)

With this notation we have:

THEOREM 1.3. Let p > 2. Then

inf
m1,m2,m3∈A

Yp(m1,m2,m3)≤ β2
p < 2 ln 2.(1.19)

In particular,

lim
p↑+∞β2

p = 2 ln 2.(1.20)

REMARK. Observe that the variational problem that gives the lower bound
on βp [i.e., (1.19)] is different from that one determining the lower bound on the
critical temperature in Theorem 1.1. This is due to the fact that the former requires
estimates on third moments, while second-moment methods suffice for the latter.
One would, of course, expect that the true values should be the same in both cases.
The point is, however, that both bounds converge to the correct value

√
2 ln 2 in

the limit p ↑∞.
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We would also like to point out that the scaling factor N(p−2)/2 in Theorem 1.2
is on the order of (Eσ,σ ′cov(

√
NXσ ,

√
NXσ ′)n)−1/2 (where Eσ,σ ′ ≡ EσEσ ′ stands

for the expectation with respect to the product measure of two independent
copies σ and σ ′ of the spin variables), where n ≥ 1 is the minimal value for
which the condition Eσ,σ ′cov(

√
NXσ ,

√
NXσ ′)n �= 0 holds. For the Gaussian

process (1.3), n= 2, since

Eσ,σ ′cov(
√
NXσ ,

√
NXσ ′)

=N

(
N

p

)−1 ∑
i1<i2<···<ip

Eσ,σ ′σi1σ
′
i1
· · ·σipσ ′ip = 0,

(1.21)

while

Eσ,σ ′
(
cov(

√
NXσ ,

√
NXσ ′)

)2 =N2

(
N

p

)−2 ∑
i1<i2<···<ip

1=N2

(
N

p

)−1

.(1.22)

Note that, for the model defined by (1.4),

Eσ,σ ′ cov(
√
NX̃σ ,

√
NX̃σ ′)=N−p+1

∑
i1,i2,...,ip

Eσ,σ ′σi1σ
′
i1
· · ·σipσ ′ip

=N−(p−2)/2(p− 1)!!.
(1.23)

Thus n = 1 and the scale of fluctuations of the free energy is bigger. The failure
of (1.21) happens because of sets of p indices {i1, . . . , ip}, where each index has
a pair, as in this case σi1 · · ·σip = 1 for all σ . Let us separate these sets:

X̃σ = N−p/2
∑

i1,i2,...,ip all in pairs

Ji1,i2,...,ip

+N−p/2
∑

i1,i2,...,ip not all in pairs

Ji1,i2,...,ipσi1σi2 · · ·σip

≡ N−p/4
√
(p− 1)!!J +X1

σ ,

(1.24)

where J is a standard Gaussian random variable. Then

ln
Zβ,N

EZβ,N

= βN(2−p)/4
√
(p− 1)!!J + ln

Z1
β,N

EZβ,N

,

where Z1
β,N = Eσ e

β
√
NX1

σ . The first term is a Gaussian random variable with

mean 0 and variance β2(p − 1)!! on the scale N−(p−2)/4. The process X1
σ

satisfies (1.21). Hence for X1
σ we have n > 1 and one can show that the fluctuations

of ln(Z1
β,N/EZβ,N ) are on a smaller scale than N−(p−2)/4. This leads to the

following theorem.
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THEOREM 1.4. Consider the p-spin SK models defined by (1.4), p > 2,
p even. There exists βp > 0 such that, for all β < βp,

N(p−2)/4 ln
Zβ,N

EZβ,N

D→N
(
0, β2(p− 1)!!).(1.25)

Moreover,

inf
0<m<1

(1+m−p)φ(m)≤ β2
p ≤ 2 ln 2,(1.26)

where φ(m)≡ [(1−m) ln(1−m)+ (1+m) ln(1+m)]/2.

However, we see that for both models (1.3) and (1.4) the scale on which the
partition functions fluctuate decreases rapidly as p increases. One might guess that
the scale becomes exponentially small in N in the limiting random energy model.
This is indeed true, but more surprising things happen, as the following theorem
states.

THEOREM 1.5. The free energy of the REM has the following fluctuations:

(i) If β <
√

ln 2/2, then

exp
{
N

2
(ln 2− β2)

}
ln

Zβ,N

EZβ,N

D→N (0,1).(1.27)

(ii) If β =√ln 2/2, then
√

2 exp
{
N

2
(ln 2− β2)

}
ln

Zβ,N

EZβ,N

D→N (0,1).(1.28)

(iii) Let α ≡ β/
√

2 ln 2. If
√

ln 2/2< β <
√

2 ln 2, then

exp
{
N

2
(
√

2 ln 2− β)2 + α

2
(ln(N ln 2)+ ln 4π)

}
ln

Zβ,N

EZβ,N

D→
∫ ∞
−∞

eαz
(
P (dz)− e−z dz

)
,

(1.29)

where P denotes the Poisson point process on R with intensity measure e−x dx.

Theorem 1.5 covers the high-temperature regime. However, in the REM we can
also compute the fluctuations in the low-temperature phase.

THEOREM 1.6. Let α ≡ β/
√

2 ln 2.

(i) If β =√2 ln 2, then

e(ln(N ln 2)+ln 4π)/2
(
Zβ,N

EZβ,N

− 1

2
+ ln(N ln 2)+ ln 4π

4
√
πN ln 2

)
D→

∫ 0

−∞
eαz

(
P (dz)− e−z dz

)+ ∫ ∞
0

ezP (dz).

(1.30)
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(ii) If β >
√

2 ln 2, then

exp
{
−N(β

√
2 ln 2− ln 2)+ α

2
(ln(N ln 2)+ ln 4π)

}
Zβ,N

D→
∫ ∞
−∞

eαzP (dz)

(1.31)

and

lnZβ,N −E lnZβ,N
D→ ln

∫ ∞
−∞

eαzP (dz)−E ln
∫ ∞
−∞

eαzP (dz).(1.32)

REMARK. Note that expressions like
∫ 0
−∞ eαz(P (dz) − e−z dz) are always

understood as limy↓−∞
∫ 0
y e

αz(P (dz)− e−z dz). We will see that all the function-
als of the Poisson point process appearing are almost surely finite random vari-
ables.

REMARK. Note that the Poisson integral
∫∞
−∞ eαzP (dz) is the partition

function of Ruelle’s version of the REM [23]. Thus (1.32) affirms that, above the
critical temperature, the fluctuations of the free energy of the REM converge in
distribution to those of Ruelle’s model. It is obvious that Ruelle must have been
aware of this fact when writing his paper, but he did not give a proof. Rigorous
results in this context have been obtained by Galvez, Martinez and Picco [14]. It is
interesting to compare them to our result. In our notation, their Theorem 1 asserts
that, for β ≥√2 ln 2,

lim sup
N↑∞

ln[Zβ,N e
−N[β√2 ln 2−ln 2]]
α lnN

=+1

2
a.s.,

lim inf
N↑∞

ln[Zβ,N e
−N[β√2 ln 2−ln 2]]
α lnN

=−1

2
a.s.

(1.33)

Moreover, they explained that, for β >
√

2 ln 2,

ln[Zβ,Ne
−N[β√2 ln 2−ln 2]]
α lnN

→−1

2
in probability.

If we denote the logarithm of the left-hand side of (1.31) by GN , we see that

ln[Zβ,N e
−N[β√2 ln 2−ln 2]]
α lnN

=−1

2
+ GN

α lnN
− 1

2

ln(4π ln 2)

lnN
.(1.34)

This explains immediately why this quantity converges to −1/2 in probability.
Also, by the positivity of GN , it gives that the lim inf is −1/2 a.s. almost
immediately. Thus we see that (1.31) is the weak limit theorem to which
Theorem 1 of [14] is the “law of the (noniterated) logarithm.” In their Theorem 2
Galvez, Martinez and Picco observed that the process of Boltzmann weights
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exp(−β√NXσ) properly rescaled converges to the Poisson process introduced by
Ruelle. As these authors state, this is a direct consequence of their Lemma 4, which
in turn is a classical result of extreme value theory (see, e.g., [17], Theorem 5.7.2).
Galvez, Martinez and Picco did not, however, discuss whether and when this
implies the convergence of the normalized partition function, a fact which is not
obvious and indeed only holds if β >

√
2 ln 2. Thus the gap remaining to fully

establish the connection between the REM and Ruelle’s model is now filled.

REMARK. It is interesting to observe that in the REM there is a second “phase
transition” within the high-temperature phase at which the fluctuations become
non-Gaussian. In fact, in the REM the main phase transition can be interpreted as
a breakdown of the law of large numbers, while the second transition corresponds
to a breakdown of the central limit theorem.

The remainder of this paper is organized as follows. In the next section we
present the proofs of Theorems 1.2–1.4. The proof of Theorems 1.2 and 1.3 is
based on an adaptation of the martingale method of Comets and Neveu. The
essential new ingredient is the rather involved truncation procedure inspired by
Talagrand’s work. However, in the proof of the CLT, the computational aspects
become even more involved and require the consideration of truncated third
moments of the partition function. For this reason Section 2 is rather long and
quite technical. However, the proof is organized in such a way that the CLT is first
proven for “very high” temperatures where no truncations are necessary, while
the more technical aspects needed to approach the critical temperature are dealt
with separately later. The proof of Theorem 1.4 is much simpler and does not
use the martingale method, but only truncation. Section 3 is devoted to proving
Theorems 1.5 and 1.6 for the REM. It is technically completely different and
independent from Section 2. It can therefore be read independently from the rest of
the paper. In Appendix A we discuss the case of more general covariance functions
and explain the scalings and the CLT’s that should be expected.

2. The CLT in the p-spin model.

PROOF OF THEOREMS 1.2 AND 1.3. The proof of the central limit theorem
in the p-spin SK model (1.3) relies on a martingale central limit theorem, which
uses the fact that a Gaussian random variable can always be seen as the marginal
distribution of a Brownian motion. Thus we follow Comets and Neveu and
introduce the p-parameter family of independent standard Brownian motions
(Ji1,i2,...,ip (t), t ∈ R

+)i1,i2,...,ip∈N with EJi1,i2,...,ip (t) = 0 and EJ 2
i1,i2,...,ip

(t) = t .
The Hamiltonian of the p-spin SK model can then be written as HN(σ, t) =√
NXσ (t), where

Xσ(t)=
(
N

p

)−1/2 ∑
1≤i1<i2<···<ip≤N

Ji1,i2,...,ip (t)σi1σi2 · · ·σip .(2.1)
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Note that we can also consider it as a Gaussian process on {−1,1}N × R
+ with

mean 0 and correlation function

cov
(
Xσ (t),Xσ ′(s)

)
= (s ∧ t)

N(N − 1) · · · (N − p+ 1)

∑
i1,i2,...,ip different

σi1σ
′
i1
· · ·σipσ ′ip .(2.2)

In particular, we have EH 2
N(σ, t) = Nt and E exp{HN(t, σ )} = exp{Nt/2} for

all σ .
The following proposition provides a representation of the covariances of

the Hamiltonian as a polynomial function of the overlap σ · σ ′ ≡∑N
i=1 σiσ

′
i . We

will not need the explicit form of the coefficients in the rest of the paper but their
order.

PROPOSITION 2.1. There exist functions γp−2k(N), k = 0,1, . . . , [p/2], such
that, for all spin configurations σ,σ ′ ∈)N ,

∑
i1,i2,...,ip different

σi1σ
′
i1
· · ·σipσ ′ip =

[p/2]∑
k=0

γp−2k(N)(σ · σ ′)p−2k.

Moreover, γp(N)= 1 and γp−2k(N)=Nkdp−2k(1+O(1/N)) as N ↑∞, where

dp−2k = (−1)k
p(p− 1) · · · (p− 2k+ 1)

2kk!
= (−1)k

(
p

2k

)
(k − 1)!!, 0< k ≤ p

2
.

(2.3)

PROOF. Let us write∑
i1,i2,...,ip different

σi1σ
′
i1
· · ·σipσ ′ip =

∑
i1,i2,...,ip

∏
{l,k}

1ik �=il σi1σ ′i1 · · ·σipσ ′ip

= ∑
i1,i2,...,ip

∏
{l,k}

(1− 1ik=il )σi1σ ′i1 · · ·σipσ ′ip .
(2.4)

Now we can expand the product

∏
{l,k}

(1− 1ik=il )=
[p(p−1)/2]∑

s=1

(−1)s
∑

(l1,k1),...,(ls ,ks )

s∏
r=1

1ilr=ikr ,(2.5)

where the last sum is over all distinct pairs of indices taking values in {1, . . . , p}.
Now consider the set of bonds (li , ki) as a graph on {1, . . . , p}. This graph induces
a connectivity structure on the set P ≡ {1, . . . , p} and we can decompose P into
its connected components, C1, . . . ,Cr . Each contribution in the sum in (2.5) that
gives rise to the same decomposition into connected components will yield the
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same contribution (up to a sign) to the covariance function when (2.5) is inserted
into (2.4), namely,

∑
1≤j1,...,jr≤N

r∏
l=1

(σjlσ
′
jl
)|Cl |.(2.6)

Thus, if we denote by nodd the number of connected components of odd size and
by neven the number of even size, this is equal to

NnevenNnoddRN(σ,σ
′)nodd =NrRN(σ,σ

′)nodd .(2.7)

Note that nodd differs from p always by an even number, and so all graphs that give
rise to a partition with nodd = p − 2k contribute to the coefficient γp−2k(N). Due
to (2.7), the largest contribution (in powers of N ) comes from those graphs that
provide a decomposition with maximal number of connected components, given
the number of odd-sized components. Obviously, in such a decomposition all even-
sized components are of size 2 and all odd-sized components are of size 1; that is,
there are precisely k even-sized components. To such a decomposition corresponds
a unique graph consisting of k mutually disjoint bonds (pairs). The number of ways
to select k mutually disjoint pairs from p objects is

(p
2k

)
(k − 1)!!. This proves the

proposition. �

It follows from this proposition that

cov
(
HN(σ, t),HN(σ

′, s)
)=N(s ∧ t)f

p
N

(
RN(σ,σ

′)
)
,(2.8)

where RN(σ,σ
′)= (σ · σ ′)N−1 and

f
p
N(x)=

p/2∑
k=0

dp−2kN
−kxp−2k(1+O(1/N)

)
as N ↑∞. We will often use the expansion

f
p
N (x)=

(
1+O(1/N)

)
xp +O(1/N)xp−2 +O(1/N2), N ↑∞,(2.9)

whereO(1) is uniform for x ∈ [0,1]. To conclude the discussion of the covariances
of the Hamiltonian, let us note the following important properties:

Eσ,σ ′ cov
(
HN(σ, t),HN(σ

′, s)
)

= (s ∧ t)NEσ,σ ′f
p
N

(
RN(σ,σ

′)
)

= (s ∧ t)N

(
N

p

)−1 ∑
i1<i2<···<ip

Eσ,σ ′σi1σ
′
i1
· · ·σipσ ′ip = 0

(2.10)
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and

Eσ,σ ′
(
cov

(
HN(σ, t),HN(σ

′, s)
))2

= (s2 ∧ t2)N2
Eσ,σ ′

(
f
p
N

(
RN(σ,σ

′)
))2

= (s2 ∧ t2)N2

(
N

p

)−2

Eσ,σ ′

( ∑
i1<i2<···<ip

σi1σ
′
i1
· · ·σipσ ′ip

)2

= (s2 ∧ t2)N2

(
N

p

)−1(
1+O(1/N)

)
.

(2.11)

For later convenience we introduce the normalized partition function

Z̄N(t)= Eσ exp
{
HN(t, σ )−Nt/2

}
.(2.12)

It is related to the partition function Zβ,N of Section 1 by Z̄N (β
2)=Zβ,N/EZβ,N ,

with equality holding in law. The important point of this construction is that, for all
fixed N > 1, Z̄N (t) is a continuous martingale in the variable t with EZ̄N(t)= 1.

We begin the proof with some preliminary steps along the lines of [9]. Let us
find the bracket 〈Z̄N (t)〉 of the martingale Z̄N (t), that is, the unique increasing
process vanishing at 0, such that Z̄2

N(t) − 〈Z̄N(t)〉 is a continuous martingale
(see [22]). By Itô’s formula, Z̄N (t) satisfies the following stochastic differential
equation:

dZ̄N(t)= Eσ exp
{
HN(t, σ )−Nt/2

}
dHN(t, σ ).(2.13)

Then, due to the well-known properties of martingale brackets,

〈Z̄N(t)〉 = Eσ,σ ′
〈∫ t

0
eHN(s,σ )−Ns/2 dHN(s, σ ),

∫ t

0
eHN(s,σ

′)−Ns/2 dHN(s, σ
′)
〉

= Eσ,σ ′
∫ t

0
eHN(s,σ )+HN(s,σ

′)−Ns Nf
p
N

(
RN(σ,σ

′)
)
ds.

(2.14)

Since

E

∫ t

0
Z̄−2
N (s) d〈Z̄N(s)〉

= E

∫ t

0

Eσ,σ ′eHN(s,σ )+HN(s,σ
′)−Ns Nf

p
N (RN(σ,σ

′))
Eσ,σ ′eHN(s,σ )+HN(s,σ

′)−Ns
ds ≤Nt <∞,

(2.15)

we may introduce the continuous local martingale MN(t) = ∫ t
0 Z̄

−1
N (s) dZ̄N(s).

Thus Z̄N(t) solves the stochastic differential equation

dZ̄N(t)= Z̄N (t) dMN(t),

and the following fundamental representation of Z̄N (t) holds:

Z̄N(t)= exp
{
MN(t)− 1

2 〈MN(t)〉},(2.16)
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which can be rewritten conveniently as

N(p−2)/2 ln Z̄N (t)=N(p−2)/2MN(t)− 1
2N

(p−2)/2〈MN(t)〉.(2.17)

Here 〈MN(t)〉 is the bracket of MN(t) and 〈MN(t)〉 = ∫ t
0 Z̄

−2
N (s) d〈Z̄N(s)〉. Let us

note that

d

dt
〈MN(t)〉 = Z̄−2

N (t)
d

dt
〈Z̄N(t)〉

= Z̄−2
N (t)

(
Eσ,σ ′e

HN(t,σ )+HN(t,σ
′)−Nt Nf

p
N

(
RN(σ,σ

′)
))
.

(2.18)

Note also that MN(t) is locally square integrable. In fact, by (2.15),

EM2
N(t)= E〈MN(t)〉 = E

∫ t

0
Z̄−2
N (s) d〈Z̄N(s)〉 ≤Nt <∞.(2.19)

To prove Theorems 1.2 and 1.3, we will show that, for all t satisfying

t < inf
m1,m2,m3∈A

Yp(m1,m2,m3),(2.20)

the bracket of the local martingale N(p−2)/2MN(t), which is Np−2〈MN(t)〉,
converges to t2p!/2 in probability as N ↑ +∞. Then, by the martingale
convergence theorem (see Theorem 3.1.8 in [16]), the first term in (2.17),
the local martingale N(p−2)/2MN(t), converges in law to a centered Gaussian
process with independent increments M∞(t) as N → ∞ and E(M∞(t) −
M∞(s))2 = (t2 − s2)p!/2. Moreover, if p > 2, the second term in (2.17),
N−(p−2)/2〈N(p−2)/2MN(t)〉, converges to 0. These two facts together with the
equality in law ZN,β/EZN,β = Z̄N(β

2) imply immediately the statement of
Theorem 1.2. Note that, in the case p = 2, that is, the SK model considered in [9],
the second term in (2.17) does not vanish, but converges to one half of the variance
of the process M∞(t). Therefore, in the case p = 2, the fluctuations of the free
energy are not centered in contrast to the case p > 2.

SKETCH OF THE PROOF OF THEOREMS 1.2 AND 1.3. We will now outline
further steps of the proof. First, we show the convergence Np−2〈MN(t)〉 →
t2p!/2 on a more restricted interval of t . Lemma 2.2 reduces this problem to the
convergence of

Np−2
E|VN(t)| → 0 as N ↑ +∞,(2.21)

where

VN(t) :=N−(p−2)
Eσ,σ ′

(
Np−1f

p
N

(
RN(σ,σ

′)
)− tp!)eHN(t,σ )+HN(t,σ

′)−Nt .

The proof of this lemma is based on the fact that

Np−2 d

dt
〈MN(t)〉 − tp! =Np−2 VN(t)

Z̄2
N(t)

,(2.22)
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and is performed via integration. It almost mimics the proof proposed in [9].
In particular, we use the fact that Z̄2

N(t) is not small on events of large probability.
The convergence (2.21) is proved in Proposition 2.3. Let us give some intuition
for it. One can write

EVN(t)=
∑

m=0,±1/N,...,±1

(
Nf

p
N(m)−N2−ptp!)etNf p

N (m)Pm,(2.23)

where by Stirling’s formula

Pm ≡ Pσ,σ ′(σ · σ ′ =mN)∼ 2√
2π(1+m)(1−m)N

e−Nφ(m),(2.24)

φ(m) = [(1 + m) ln(1 + m) + (1 − m) ln(1 − m)]/2 (here and in the rest of
the paper we use the symbol ∼ to denote asymptotic equivalence, i.e., aN ∼
bN ⇔ limN↑+∞ aN

bN
= 1). Note that φ(m) = m2/2(1 + o(1)) as m → 0. Now

split the right-hand side of (2.23) into two terms: the summation in the first term
will be over m with |m| small enough (namely, |m| < N−α with an arbitrary
1/3 < α < 1/2), and in the second, over all other m. It is not difficult to treat the
first term. We replace etNf

p
N (m) by its Taylor expansion and respresent this term as

the sum of three:∑
|m| small

Nf
p
N(m)(1−N2−pt2p!)Pm

+ ∑
|m| small

(
tN2(f p

N (m)
)2 − tN2−pp!)Pm

+ ∑
|m| small

(
Nf

p
N(m)−N2−ptp!)O((

tNf
p
N (m)

)2)
Pm.

(2.25)

The first of these three goes to 0 exponentially fast. This follows from the
property of the covariances (2.10) and from an exponentially small order of
the probability (2.24) on the sets of m distant from 0 for at least N−α with
α < 1/2. The second term of (2.25) converges to 0 on the scale N2−p. This is
a consequence of the second property of the covariances Eσ,σ ′(f

p
N(RN(σ,σ

′)))2 ∼
N−pp! (2.11) and of the same argument about the concentration of Pm in 0.
To analyze the third term of (2.25), one has, by Proposition 2.1, tNf p

N(m) =
O(N1−pα) = o(1) for m = O(N−α) with α > 1/3, p ≥ 3. Let us substitute the
expansion φ(m)∼m2/2 and put s =m

√
N in this term. Again, by Proposition 2.1,

Np/2f
p
N(m)=

[p/2]∑
k=0

dp−2k(m
√
N)p−2k(1+O(1/N)

)
.
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Then the third term of (2.25) can be estimated up to some constant factor and terms
of smaller order by∑

|m| small

∣∣N3t2
(
f
p
N(m)

)3∣∣+ ∣∣N4−pt3p!(f p
N (m)

)2∣∣Pm

∼ N3−3p/2
√

2πN

∑
m
√
N=s

(
t2|Dp(s)|3 +N1−p/2t3p!|Dp(s)|2)e−s2/2,

(2.26)

where Dp(s)≡∑[p/2]
k=0 dp−2ks

p−2k . The sum (2.26) is the integral sum of |Dp(s)|3
over the Gaussian density, which tends to the corresponding finite integral.
Therefore the scale of fluctuations of the third part of (2.25) is N3−3p/2 smaller
than N2−p for p ≥ 3. [Another straightforward but not very elegant way of
considering this term would be to estimate the left-hand side of (2.26) directly as
O(N3−3pα)+O(N4−p−2pα) and to fix 4/9 < α < 1/2 to make its scale smaller
than N2−p for all p ≥ 3.]

To ensure the convergence to 0 of the second term of EVN(t) (the one with
correlations |m| not close to 0), the power of the exponent in it, which is
N(tf

p
N (m) − φ(m)) = N(tmp − φ(m)) + O(1), should be negative. Thus, for

all t < inf0<m<1 φ(m)m
−p , we get Np−2

EVN(t)→ 0. Note that Proposition 2.3
states a stronger result, namely, (2.21). To get rid of the absolute value of VN(t)
in (2.21), we follow an idea suggested in [9] to apply the Cauchy–Schwarz inequal-
ity. Thus, instead of E|VN(t)|, we get WN(t) (see the proof of Proposition 2.3),
which refers to the third moment of Z̄N (t). This will make technical computations
slightly tougher and will lead to the bound on t given in Lemma 2.2.

Note also that these arguments are valid only for p ≥ 3: in the case p = 2,
the third part of (2.25) does not vanish at the right scale. The case p = 2 of [9]
and [28] is different, since, there, the correlation function tf 2

N(m) ∼ tm2 and

the entropy φ(m) ∼ m2/2 are in “competition” in the exponent eN(tf 2
N(m)−φ(m)),

while in our case p > 2 the entropy dominates. The case p = 2 is treated
in [9] by the multidimensional central limit theorem for N independent vectors
(σiσ

′
i , σ

′
i σ

′′
i , σiσ

′′
i ).

Next, we will extend the bound (2.32) to the full regime announced in (2.20).
We have seen that (2.32) was imposed by configurations of spins with rather
big correlations m in the sum (2.23). We will reduce their contribution, using
Talagrand’s idea to truncate the Hamiltonian. Consider, instead of VN(t),

ṼN(t, ε)= Eσ,σ ′
(
Nf

p
N

(
RN(σ,σ

′)
)−N2−ptp!)eHN(t,σ )+HN(t,σ

′)−Nt

×1{HN(t,σ )<(1+ε)tN, HN(t,σ
′)<(1+ε)tN}

for some ε > 0. Then

EṼN(t, ε)=
∑

m=0,±1/N,...,±1

(
Nf

p
N(m)− tN2−pp!)Pm

×Ee
√
Ntξ1+

√
Ntξ2−Nt1{ξ1<

√
Nt(1+ε), ξ2<

√
Nt(1+ε)},

(2.27)
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where ξ1, ξ2 are standard Gaussians with cov(ξ1, ξ2)= f
p
N (m). Let us again split

EṼN(t, ε) into two terms with “small” and “large” m in the sum (2.27). The
analysis of the first term is completely analogous to that in the case of VN(t).
We can neglect the truncation here, since ξ1 and ξ2 are almost independent. In
the second term, ξ1 and ξ2 are more correlated. But, due to the truncation, the
expectation of the exponent involved in this term is much smaller than etNf

p
N (m).

In fact, by the elementary estimate (B.2) for Gaussian random variables,

E exp
{√

Ntξ1 +
√
Ntξ2 −Nt

}
1{ξ1<

√
Nt(1+ε), ξ2<

√
Nt(1+ε)}

≤ E exp
{√

Nt(2+ 2f p
N(m))ξ −Nt

}
1{ξ<2

√
Nt(1+ε)(2+2f p

N (m))
−1/2}

≤ exp
{[−4Nt(1+ ε)2][4+ 4f p

N(m)]−1 + 2Nt(1+ ε)−Nt
}

= exp
{
Nt[f p

N (m)(1+ 2ε)− ε2][1+ f
p
N (m)]−1}.

(2.28)

Then, by (2.9) for any

t < inf
0<m<1

(1+m−p)φ(m)(2.29)

and for an appropriate choice of ε, all terms of the sum (2.27) with m not close to 0
are exponentially small. This implies Np−2

EṼN(t, ε)→ 0. The bound (2.29) is
Talagrand’s bound for the critical temperature in the p-spin SK model; see (1.8).
It tends to 2 ln 2 as p ↑ +∞.

To incorporate this idea into our proof, we reduce the problem of convergence
Np−2〈MN(t)〉→ t2p!/2 to the following statements:

Np−2
E|ṼN(t, ε)| → 0(2.30)

and

Np−2
E
∣∣(VN(t)− ṼN(t, ε)

)
Z̄−2
N (t)

∣∣→ 0(2.31)

for all ε > 0. This is derived in Lemma 2.4 again from (2.21). In Proposition 2.5 we
show (2.30). Note that if the absolute value were in (2.17) we would have obtained
our CLT just up to Talagrand’s bound for the critical temperature (2.16). But again,
because of the absolute value, we must apply the Cauchy–Schwarz inequality
and pass to the third moment of Z̄N(t). This makes technical computations
much harder and leads to a different condition on β , whose large p asymptotics
will, however, be seen to be the same (up to constants) as that of Talagrand’s
bound. Namely, we get three standard Gaussian random variables ξ1, ξ2, ξ3

with covariances f p
N (m1), f

p
N(m2), f

p
N(m3). To benefit from the truncation for

obtaining a good bound on t , we have to take into account four different cases:
one when all m1,m2,m3 are large and others when two of these correlations
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are large and the third is small. Then the analogue of (2.29) is the minimum of
four estimates of this kind. Therefore the bound (2.20) is the minimum of four
functions. The convergence (2.31) is the subject of Proposition 2.6. Its proof uses
ideas of Talagrand and a concentration of measure inequality.

LEMMA 2.2. Let

T < inf
A

I (m1,m2,m3)

m
p
1 +m

p
2 +m

p
3

.(2.32)

Then

sup
0≤t≤T

|Np−2〈MN(t)〉 − t2p!/2|→ 0(2.33)

in probability.

PROOF. Let us denote by

VN(t)= d

dt
〈Z̄N(t)〉 −N2−ptZ̄2

N(t)p!.

Then

d

dt
Np−2〈MN(t)〉 − tp! =Np−2VN(t)Z̄

−2
N (t)

=Np−2VN(t) exp
{−2MN(t)+ 〈MN(t)〉}.

Let us introduce the events AN
a,b := {−MN(t) ≤ a + (b/2)〈MN(t)〉 for all t ≥ 0}.

Note that, by an appropriate choice of a > 0 and b > 0, their probabilities can
be made arbitrarily close to 1. In fact, the process BN(t) =MN(St), where St =
min{s | 〈MN(s)〉 = t}, is a standard Brownian motion and MN(t)= BN(〈MN(t)〉).
By the well-known fact for Brownian motion,

P{AN
a,b} = P

{−BN(t)≤ a + (b/2)t for all t ≥ 0
}≥ 1− exp{−ab}.(2.34)

We have ∣∣∣∣(Np−2 d

dt
〈MN(t)〉 − tp!

)
1{AN

a,b}
∣∣∣∣

=Np−2|VN(t)| exp
{−2MN(t)+ 〈MN(t)〉}1{AN

a,b}(2.35)

≤Np−2 exp{2a}|VN(t)| exp
{
(1+ b)〈MN(t)〉}.
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Let us also introduce the function χb(x) := [1 − exp{(1+ b)x}][1+ b]−1. Then,
by (2.35) for all t ≤ T ,∣∣Np−2χb

(〈MN(t)〉 − t2N2−pp!/2
)
1{AN

a,b}
∣∣

=Np−2
∣∣∣∣∫ t

0

(
d

ds
〈MN(s)〉 − sN2−pp!

)
1{AN

a,b}

× exp
{−(1+ b)

(〈MN(s)〉 − s2N2−pp!/2
)}
ds

∣∣∣∣
≤Np−2

∫ t

0

∣∣∣∣ dds 〈MN(s)〉 − sN2−pp!
∣∣∣∣1{AN

a,b}

× exp
{−(1+ b)

(〈MN(s)〉 − s2N2−pp!/2
)}
ds

≤N(p−2)/2 exp
{
2a + TN(2−p)/2(1+ b)

} ∫ t

0
|VN(s)|ds.

(2.36)

This yields

Np−2 sup
0≤t≤T

∣∣χb(〈MN(t)〉 − t2N2−pp!/2
)∣∣1{AN

a,b}

≤Np−2 exp
{
2a+ TN(2−p)/2(1+ b)

}∫ T

0
|VN(s)|ds.

(2.37)

We will show in Proposition 2.3 that limN↑+∞Np−2
E|VN(t)| = 0 uniformly in t ∈

[0, T ]. Consequently, supN>1,t≤T Np−2
E|VN(t)| <∞. Then, by the dominated

convergence theorem,

lim
N↑+∞E

[
Np−2 sup

0≤t≤T
∣∣χb(〈MN(t)〉 − t2N2−pp!/2

)∣∣1{AN
a,b}

]
= 0.

It follows that, for all a, b > 0,

Np−2 sup
0≤t≤T

∣∣χb(〈MN(t)〉 − t2N2−pp!/2
)∣∣1{AN

a,b} → 0 as N ↑+∞

in probability. Then also Np−2 sup0≤t≤T |χb(〈MN(t)〉 − t2N2−pp!/2)| → 0 as
N →∞, since by (2.34) the probability of the events AN

a,b can be made arbitrarily
close to 1. This last fact implies (2.33) and the lemma is proved. �

It remains to prove the following proposition.

PROPOSITION 2.3. Assume that T satisfies (2.32). Then

lim
N↑+∞Np−2

E|VN(t)| = 0(2.38)

uniformly in [0, T ].
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PROOF. It follows from (2.14) and the definition of VN(t) that

Np−2VN(t)= Eσ,σ ′
(
Np−1f

p
N

(
RN(σ,σ

′)
)− tp!)eHN(t,σ )+HN(t,σ

′)−Nt .

By the Cauchy–Schwarz inequality,

Np−2
E|VN(t)|
= E

∣∣∣Eσ e
HN(t,σ )−Nt/2

Eσ ′
(
Np−1f

p
N

(
RN(σ,σ

′)
)− tp!)eHN(t,σ

′)−Nt/2
∣∣∣

≤ [
EEσ e

HN(t,σ )−Nt/2]1/2

× [
EEσ e

HN(t,σ )−Nt/2[
Eσ ′

(
Np−1f

p
N

(
RN(σ,σ

′)
)− tp!)

× eHN(t,σ
′)−Nt/2]2]1/2

=
[
Eσ,σ ′,σ ′′

(
Np−1f

p
N

(
RN(σ,σ

′)
)− tp!)(Np−1f

p
N

(
RN(σ,σ

′′)
)− tp!)

× eNt(f
p
N (RN(σ,σ

′))+f p
N (RN(σ,σ

′′))+f p
N (RN(σ

′,σ ′′)))
]1/2

.

Then it suffices to prove that

WN(t)= Eσ,σ ′,σ ′′
(
Np−1f

p
N

(
RN(σ,σ

′)
)− tp!)(Np−1f

p
N

(
RN(σ,σ

′′)
)− tp!)

× eNt(f
p
N (RN(σ,σ

′))+f p
N (RN(σ,σ

′′))+f p
N (RN(σ

′,σ ′′)))

tends to 0 uniformly in [0, T ] as N ↑+∞. We represent it as

WN(t)=
∑

m1,m2,m3∈AN

(
Np−1f

p
N (m1)− tp!)(Np−1f

p
N (m2)− tp!)

× eNt(f
p
N (m1)+f p

N (m2)+f p
N (m3))Pm1,m2,m3,

where, by a standard combinatorial calculation,

Pm1,m2,m3 ≡ P{σ · σ ′ =m1N,σ · σ ′′ =m2N,σ ′ · σ ′′ =m3N}

= 2−2N

(
N

N(1+m1)/2

)(
N(1+m1)/2

N(1+m1 +m2 +m3)/4

)
(2.39)

×
(

N(1−m1)/2

N(1+m2 −m1 −m3)/4

)
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for m1,m2,m3 ∈ AN = A ∩ {0,±1/N,±2/N, . . . ,±1}3. By Stirling’s formula
we obtain

Pm1,m2,m3 =
16 exp{−NI (m1,m2,m3)}√

(2π)3N3

× [
(1+m1 +m2 +m3)(1−m1 −m2 +m3)

]−1/2

× [
(1+m1 −m2 −m2)(1−m1 +m2 −m3)

]−1/2

×
(

1+O

(
1

N

))
as N ↑+∞

(2.40)

for any given m1,m2,m3 ∈AN . Let us note that

I (m1,m2,m3)− (m2
1 +m2

2 +m2
3)/2=O

(
(|m1| + |m2| + |m3|)3)(2.41)

as m1,m2,m3 → 0. Then, for all sufficiently small ε > 0, there exists a constant
h > 0 such that

sup
t∈[0,T ]

[
t (m

p
1 +m

p
2 +m

p
3 )− I (m1,m2,m3)

]
<−h(m2

1 +m2
2 +m2

3)/2(2.42)

for all m1,m2,m3 ∈A ∩ {|m1| + |m2| + |m3|< ε}. Let us fix such a small ε > 0
and an arbitrary constant 0 < δ < 1/6 and then split WN(t) into three terms,
WN(t)= I 1

N(t)+ I 2
N(t)+ I 3

N(t), where

I 1
N(t)=

∑
m1,m2,m3∈AN

|m1|+|m2|+|m3|<N−1/3−δ

(
Np−1f

p
N (m1)− tp!)(Np−1f

p
N (m2)− tp!)

× etN(f
p
N (m1)+f p

N (m2)+f p
N (m3))Pm1,m2,m3,

I 2
N(t)=

∑
m1,m2,m3∈AN

N−1/3−δ<|m1|+|m2|+|m3|<ε

(
Np−1f

p
N(m1)− tp!)(Np−1f

p
N(m2)− tp!)

× etN(f
p
N (m1)+f p

N (m2)+f p
N (m3))Pm1,m2,m3,

I 3
N(t)=

∑
m1,m2,m3∈AN|m1|+|m2|+|m3|>ε

(
Np−1f

p
N(m1)− tp!)(Np−1f

p
N(m2)− tp!)

× etN(f
p
N (m1)+f p

N (m2)+f p
N (m3))Pm1,m2,m3 .

We will show that I 1
N(t), I

2
N(t) and I 3

N(t) converge to 0 uniformly in [0, T ] as
N →∞.

To prove this for the first term, let us replace the exponent exp(tN(f
p
N (m1)+

f
p
N (m2)+f

p
N (m3))) by its Taylor expansion. We then multiply all expansion terms

up to the second order by (Np−1f
p
N(m1) − tp!)(Np−1f

p
N (m2) − tp!) and open

the brackets getting 40 terms. Let us show that all but four of them are at most
O(1/N). First, all terms that can be written as

∑
|m1|+|m2|+|m3|<N−1/3−δ (f

p
N (mi))×
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(f
p
N (mj ))

n
Pm1,m2,m3 , with i, j = 1,2,3, i �= j , n = 0,1,2,3, are exponentially

small. In fact, by (2.10) and the independence of the random variables σ ·σ ′, σ ·σ ′′
and σ ′ · σ ′′ in pairs on )3

N under the uniform product measure,∑
m1,m2,m3∈AN

(
f
p
N (mi)

)(
f
p
N(mj )

)n
Pm1,m2,m3

= Eσ,σ ′,σ ′′f
p
N

(
RN(σ,σ

′)
)
Eσ,σ ′,σ ′′

(
f
p
N

(
RN(σ,σ

′′)
))n = 0.

Moreover, by (2.40) and (2.41),

P
(|RN(σ,σ

′)| + |RN(σ,σ
′′)| + |RN(σ

′, σ ′′)|>N−1/3−δ)
≤ exp{−h′N1/3−2δ}(2.43)

for some h′ > 0. To consider other obtained terms, we note that Eσ σi1 · · ·σip
equals 1 if all indices of the set i1, . . . , ip have pairs and 0 otherwise. Then

Eσ,σ ′,σ ′′
(
f
p
N

(
RN(σ,σ

′)
))3

=
(
N

p

)−3

Eσ,σ ′,σ ′′

( ∑
i1<i2<···<ip

σi1σ
′
i1
· · ·σipσ ′ip

)3

=C(p)

(
N

p

)−3(
N

p

)(
N

p/2

)
=O(N−3p/2),

Eσ,σ ′,σ ′′f
p
N

(
RN(σ,σ

′)
)
f
p
N

(
RN(σ,σ

′′)
)
f
p
N

(
RN(σ

′, σ ′′)
)

=
(
N

p

)−3(
N

p

)
=O(N−2p),

Eσ,σ ′,σ ′′f
p
N

(
RN(σ,σ

′)
)
f
p
N

(
RN(σ,σ

′′)
)(
f
p
N

(
RN(σ

′, σ ′′)
))2

=C′(p)
(
N

p

)−4(
N

p

)(
N

p/2

)
=O(N−5p/2),

with some C(p) > 0, C′(p) > 0 for p even and C(p) = C′(p) = 0 for p odd.
Thus, again by the argument (2.43),∑

|m1|+|m2|+|m3|<N−1/3−δ
Np+1(f p

N(m1)
)3

Pm1,m2,m3

=O(N1−p/2),∑
|m1|+|m2|+|m3|<N−1/3−δ

N2p−1f
p
N(m1)f

p
N (m2)f

p
N (m3)Pm1,m2,m3

=O(N(1−p)/2),

(2.44)
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|m1|+|m2|+|m3|<N−1/3−δ

N2pf
p
N(m1)f

p
N (m2)

(
f
p
N (m3)

)2
Pm1,m2,m3

=O(N−p/2),∑
|m1|+|m2|+|m3|<N−1/3−δ

N2(f p
N (m1)

)2
Pm1,m2,m3

=O(N2−p).

(2.45)

These observations let survive only four terms and lead to the following
representation:

I 1
N(t)=

∑
|m1|+|m2|+|m3|<N−1/3−δ

(
t2N2p(f p

N(m1)f
p
N(m2)

)2 − t2Np(f p
N (m1)

)2
p!

− t2Np
(
f
p
N(m2)

)2
p! + t2(p!)2

)
Pm1,m2,m3

+ ∑
|m1|+|m2|+|m3|<N−1/3−δ

(
Np−1f

p
N(m1)− tp!)(Np−1f

p
N(m2)− tp!)

×O
(
tN

(
f
p
N (m1)+ f

p
N(m2)+ f

p
N (m3)

)3)
Pm1,m2,m3 +O(N−1).

(2.46)

By the property of the covariances (2.11) and the independence of σ ·σ ′ and σ ·σ ′′,
the first term in (2.46) equals (t2N2p(N

p

)−2 − t2p!Np
(N
p

)−1 − t2p!Np
(N
p

)−1 +
t2(p!)2), up to exponentially small terms, as again the argument (2.43) applies.
Therefore this term in (2.46) vanishes.

To investigate the second term in (2.46), one has tNf
p
N (m) = o(1) for

m = O(N−1/3−δ), p ≥ 3 and also Np/2f
p
N (m) =

∑[p/2]
k=0 dp−2k(m

√
N)p−2k(1 +

O(1/N)) by Proposition 2.1. Let us put mi

√
N = si , i = 1,2,3. Since, by (2.40)

and (2.41),

sup
|m1|+|m2|+|m3|<N−1/3−δ

|Pm1,m2,m3e
N(m2

1+m2
2+m2

3)/2(2πN)3/2/16− 1| =O(N−3δ),

this term can be estimated up to some constant and terms of smaller order by

N1−p/2√
(2πN)3

∑
s1,s2,s3=0,±1/

√
N,±2/

√
N,...

|s1|+|s2|+|s3|<N1/6−δ

(
|t3Dp(s1)Dp(s2)| +N1−p/2(|t4p!Dp(s1)|

+ |t2p!Dp(s2)|)+N2−p|(p!)2t5|
)

× (|Dp(s1)| + |Dp(s2)| + |Dp(s3)|)3
e−(s2

1+s2
2+s2

3 )/2(1+O(N−3δ)
)
,

where the polynomial Dp(si)≡∑[p/2]
k=0 dp−2ks

p−2k
i , i = 1,2,3. The last sum is the

integral sum over the density of three independent Gaussian random variables and
it converges to the corresponding finite integral. Thus the second term in (2.46) is
O(N1−p/2) uniformly in t ∈ [0, T ]. The analysis of IN1 (t) is finished.
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Next, let us study I 2
N(t). Due to (2.40), the expansion (2.9) and the choice

of ε > 0 according to (2.42), there exist constants C2, h2 > 0 such that, for all
sufficiently large N ,

sup
t∈[0,T ]

|m1|+|m2|+|m3|>N−1/3−δ
|m1|+|m2|+|m3|<ε

exp
{
Nt

(
f
p
N (m1)+ f

p
N(m2)+ f

p
N (m3)

)}
Pm1,m2,m3

≤ C2 sup
|m1|+|m2|+|m3|>N−1/3−δ

|m1|+|m2|+|m3|<ε

exp
{−Nh(m2

1 +m2
2 +m2

3)/2
}

≤ C2 exp{−h2N
1/3−2δ}.

The remaining sum in this term has polynomial growth as N ↑ +∞, and the
uniform convergence I 2

N(t)→ 0 in [0, T ] is proved.
Finally, let us consider I 3

N(t). By Stirling’s formula, Pm1,m2,m3 ≤ C
√
N

× e−NI (m1,m2,m3) for some C > 0 and all (m1,m2,m3) ∈ AN ∩ {|m1| + |m2| +
|m3| > ε}. Then, by (2.9) and the assumption (2.32), for given T there exist
constants C3 > 0, h3 > 0 such that

sup
t∈[0,T ], |m1|+|m2|+|m3|>ε

eNt(f
p
N (m1)+f p

N (m2)+f p
N (m3))Pm1,m2,m3

≤ C3
√
N sup

t∈[0,T ], |m1|+|m2|+|m3|>ε
eN[t (m

p
1+mp

2+mp
3 )−I (m1,m2,m3)]

<C3
√
Ne−h3N.

The remaining sum in this term has again polynomial growth, whence I 3
N(t)→ 0

uniformly in [0, T ]. The proposition is proved. �

REMARK. Let us note that the restriction (2.32) on T was essential only
for the analysis of the third term I 3

N(t). This means that the convergence
Np−2

E|VN(t)| → 0 breaks down for larger T only because of the configurations
of spins with rather big overlaps σ · σ ′, σ · σ ′′, σ ′ · σ ′′. To extend our result to the
whole interval (2.20) of admissible T , we need to reduce the contribution of these
configurations into WN(t). For that purpose we will follow Talagrand’s [27] idea
of truncating the Hamiltonian.

Now we prove the statement of the previous lemma for all T satisfying (2.20).

LEMMA 2.4. Let

T < inf
m1,m2,m3∈A

Yp(m1,m2,m3).
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Then

sup
0≤t≤T

|〈N(p−2)/2MN(t)〉 − t2p!/2| → 0(2.47)

in probability.

PROOF. Let us fix ε > 0 such that, for some constants h1, h2 > 0,

sup
t∈[0,T ], mp

1+mp
2+mp

3<3ε

[
t (m

p
1 +m

p
2 +m

p
3 )− I (m1,m2,m3)

]
< −h1(m

2
1 +m2

2 +m2
3)

(2.48)

and

sup
t∈[0,T ], m1,m2,m3∈A

m
p
1+mp

2+mp
3>3ε

t
[
min

{
Q(m

p
1 ,m

p
2 ,m

p
3 , ε), L(m

p
1 ,m

p
2 ,m

p
3 , ε),

L(m
p
1 ,m

p
3 ,m

p
2 , ε), L(m

p
2 ,m

p
3 ,m

p
1 , ε)

}]
− I (m1,m2,m3) <−h2,

(2.49)

where

Q(m1,m2,m3, ε)= [−9ε2 + 6(1+ 2ε)(m1 +m2 +m3)
]

× [
2(3+ 2m1 + 2m2 + 2m3)

]−1
,

L(m1,m2,m3, ε)= [−1−m3 − (1+ ε)2 + (1+ ε)S(m1,m2,m3)
√

2+ 2m3

+R(m1,m2,m3)(1+m3)
][1+m3]−1.

Condition (2.48) is the same as (2.42) and, due to (2.41), for any given T > 0 it is
possible to find an appropriate ε > 0 such that (2.48) is satisfied. However, ε > 0
ensuring (2.49) exists, if and only if T satisfies the assumption (2.20). The meaning
of (2.49) will become clear in the proof of Proposition 2.5. Let us introduce

ṼN(t, ε)= Eσ,σ ′
(
Nf

p
N

(
RN(σ,σ

′)
)−N2−ptp!)eHN(t,σ )+HN(t,σ

′)−Nt

×1{HN(t,σ )<(1+ε)tN, HN(t,σ
′)<(1+ε)tN},

V̄N(t, ε)= Eσ,σ ′
(
Nf

p
N

(
RN(σ,σ

′)
)−N2−ptp!)eHN(t,σ )+HN(t,σ

′)−Nt

×1{HN(t,σ )>(1+ε)tN or HN(t,σ
′)>(1+ε)tN}

= VN(t)− ṼN(t, ε).

Let us also fix some T0 > 0 satisfying assumption (2.32) of the previous lemma.
Proceeding along the lines of the proof of Lemma 2.2, we get, for all t ∈ [T0, T ],
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Np−2|χb(〈MN(t)〉 − t2N2−pp!/2)|1{AN
a,b}

≤Np−2 exp
{
2a + T0N

2−p(1+ b)
}

×
∫ T0

0
|VN(s)|ds +Np−2 exp

{
2a + tN2−p(1+ b)

}∫ t

T0

|ṼN(s, ε)|ds

+Np−2
∫ t

T0

|V̄N(s, ε)|Z̄−2
N (s)

× exp
{−(1+ b)(〈MN(s)〉 − s2N2−pp!/2)

}
1{AN

a,ε} ds.

Then

Np−2 sup
T0<t≤T

∣∣χb(〈MN(t)〉 − t2N2−pp!/2
)∣∣1{AN

a,b}

≤Np−2 exp
{
2a + T0N

2−p(1+ b)
}

×
∫ T0

0
|VN(s)|ds +Np−2 exp

{
2a+ TN2−p(1+ b)

}∫ T

T0

|ṼN(s, ε)|ds

+Np−2 exp
{
TN2−p(1+ b)

} ∫ T

T0

|V̄N(s, ε)|Z̄−2
N (s) ds.

It was proved in Lemma 2.2 that Np−2
E|VN(t)| → 0 uniformly in [0, T0] as

N ↑ +∞. Proposition 2.5 shows that, for ε > 0 satisfying (2.48) and (2.49),
Np−2

E|Ṽ (t, ε)| → 0 uniformly in t ∈ [T0, T ]. Proposition 2.6 proves that
Np−2

E|V̄ (t, ε)Z−2
N (t)|→ 0 uniformly in [T0, T ] for all ε > 0. Then

lim
N↑+∞E

[
sup

T0≤t≤T
∣∣Np−2χb

(〈MN(t)〉 − t2N(2−p)/2p!/2
)∣∣1{AN

a,b}
]
= 0.

Then sup0≤t≤T |Np−2χb(〈MN(t)〉 − t2N2−pp!/2)| converges to 0 in probability,
since the probability of the eventsAN

a,b can be made arbitrarily close to 1 by (2.34).
This implies (2.47) and the proof of the lemma is complete. �

PROPOSITION 2.5. Assume that T > 0 satisfies (2.20). Let us fix 0 < ε < 1/2
such that (2.48) and (2.49) hold. Then, for any T0 > 0, T0 < T ,

lim
N↑+∞Np−2

E|ṼN(t, ε)| = 0(2.50)

uniformly in t ∈ [T0, T ].

PROOF. Let us estimate Np−2
E|ṼN(t, ε)| by the Cauchy–Schwarz inequality

as in the proof of Proposition 2.3 for Np−2
E|VN(t)|. After that we split it into four
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terms:
Np−2

E|ṼN(t, ε)| ≤ [
Ĩ 1
N(t, ε)− Ĩ 2

N(t, ε)+ Ĩ 3
N(t, ε)+ Ĩ 4

N(t, ε)
]1/2

,

where

Ĩ 1
N(t, ε)=

∑
m1,m2,m3∈AN

m
p
1+mp

2+mp
3≤ε2/4

(
Np−1f

p
N(m1)− tp!)(Np−1f

p
N(m2)− tp!)

×Pm1,m2,m3Ee
HN(t,σ )+HN(t,σ

′)+HN(t,σ
′′)−3tN/2,

Ĩ 2
N(t, ε)=

∑
m1,m2,m3∈AN

m
p
1+mp

2+mp
3<ε

2/4

(
Np−1f

p
N(m1)− tp!)(Np−1f

p
N(m2)− tp!)

×Pm1,m2,m3E
[
eHN(t,σ )+HN(t,σ

′)+HN(t,σ
′′)−3Nt/2

×1{HN(t,σ )≥Nt(1+ε) or HN(t,σ
′)≥Nt(1+ε) or HN(t,σ

′′)≥Nt(1+ε)}
]
,

Ĩ 3
N(t, ε)=

∑
m1,m2,m3∈AN

ε2/4≤mp
1+mp

2+mp
3≤3ε

(
Np−1f

p
N (m1)− tp!)(NN−1f

p
N(m2)− tp!)

×Pm1,m2,m3E
[
eHN(t,σ )+HN(t,σ

′)+HN(t,σ
′′)−3Nt/2

×1{HN(t,σ )<Nt(1+ε), HN(t,σ
′)<Nt(1+ε), HN(t,σ

′′)<Nt(1+ε)}
]
,

Ĩ 4
N(t, ε)=

∑
m1,m2,m3∈AN

m
p
1+mp

2+mp
3>3ε

(
Np−1f

p
N(m1)− tp!)(Np−1f

p
N(m2)− tp!)

×Pm1,m2,m3E
[
eHN(t,σ )+HN(t,σ

′)+HN(t,σ
′′)−3tN/2

×1{HN(t,σ )<Nt(1+ε), HN(t,σ
′)<Nt(1+ε), HN(t,σ

′′)≥Nt(1+ε)}
]
.

We will prove the uniform convergence to 0 in [T0, T ] as N ↑ +∞ of all these
four terms.

The first term Ĩ 1
N(t) is not truncated and it refers to the configurations of spins

with small correlations mp
1 , mp

2 and m
p
3 . The proof of its uniform convergence

to 0 in [T0, T ] relies on Proposition 2.1, (2.9)–(2.11) and the choice of ε according
to (2.48). It is completely analogous to the proof of the uniform convergence to 0
of the sum I 1

N(t) + I 2
N(t) in the proof of Proposition 2.3. Therefore we omit the

details.
The second term Ĩ 2

N(t) also contains only configurations of spins with very
small correlations. If these correlations were 0, that is, if HN(t, σ ), HN(t, σ

′) and
HN(t, σ

′′) were independent, then, indeed, the expectation involved in this term
would satisfy

E
[
eHN(t,σ )+HN(t,σ

′)+HN(t,σ
′′)−3Nt/21{·}

]
≤ 3E

[
e
√
Ntξ−Nt/21{ξ>√Nt(1+ε)}

]
≤ exp{−Ntε2/2}



FLUCTUATIONS OF THE FREE ENERGY 631

(ξ is a standard Gaussian) by a well-known estimate for Gaussian random
variables (B.1). We show that very small correlations m1, m2, m3 do not de-
stroy the exponential convergence to 0 of the corresponding expectation. Con-
sidering the third term Ĩ 3

N(t), we neglect the truncation and use the asymp-
totic expansion (2.40) and condition (2.48). So we prove that the expectation
EeHN(t,σ )+HN(t,σ

′)+HN(t,σ
′′)−3Nt/2 multiplied by the probability of any given cor-

relations goes to 0 exponentially fast. Finally, Ĩ 4
N(t) refers to the configurations of

spins with rather large correlations. Here, applying the estimate (B.1), we benefit
from the truncation. The choice of ε > 0 according to (2.49) plays a crucial role
in the analysis of this term. [Remember that this choice was possible only for T
satisfying (2.20).]

Now we proceed with the detailed proof. To treat the second term Ĩ 2
N(t, ε), we

write

E
[
eHN(t,σ )+HN(t,σ )+HN(t,σ

′′)−3Nt/2

× 1{HN(t,σ )>Nt(1+ε) or HN(t,σ
′)>Nt(1+ε) or HN(t,σ

′′)>Nt(1+ε)}
]

= E

[
e
√
Nt(ξ1+ξ2+ξ3)−3Nt/21{ξ1>

√
Nt(1+ε) or ξ2>

√
Nt(1+ε) or ξ3>

√
Nt(1+ε)}

]
,

where ξ1, ξ2 and ξ3 are Gaussian random variables with mean 0, variance 1 and
covariances

cov(ξ1, ξ2)= f
p
N

(
RN(σ,σ

′)
)=m

p
1 +O(1/N),

cov(ξ1, ξ3)= f
p
N

(
RN(σ,σ

′′)
)=m

p
2 +O(1/N),

cov(ξ2, ξ3)= f
p
N

(
RN(σ

′, σ ′′)
)=m

p
3 +O(1/N), m

p
1 +m

p
2 +m

p
3 ≤ ε2/4.

One gets

E

[
e
√
Nt(ξ1+ξ2+ξ3)−3Nt/21{ξ1>

√
Nt(1+ε)}

]
= e−3Nt/2

E

[
e
√
Ntξ11{ξ1>

√
Nt(1+ε)}E(e

ξ2+ξ3 | ξ1)
]

= eNtγ−3Nt/2
E

[
e
√
Nt(1+µ)ξ11{ξ1>

√
Nt(1+ε)}

]
,

where γ = 1 + f
p
N (m3) − (f

p
N (m1) + f

p
N (m2))

2/2, µ = f
p
N(m1) + f

p
N(m2) =

m
p
1 + m

p
2 + O(1/N). Since m

p
1 + m

p
2 ≤ ε2/4 < ε, we may use the estimate for

standard Gaussian random variables (B.1), which implies

E

[
e
√
Nt(ξ1+ξ2+ξ3)−3Nt/21{ξ1>

√
Nt(1+ε)}

]
≤ C1e

Nt(f
p
N (m1)+f p

N (m2)+f p
N (m3)−(ε−f p

N (m1)+f p
N (m2))

2/2)

≤ C′1eNt(m
p
1+mp

2+mp
3−(ε−mp

1+mp
2 )

2/2) ≤ C′1e−NT0ε
2/8
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for some constants C1,C
′
1 > 0, all t ∈ [T0, T ] and all N > 0, if mp

1 +m
p
2 +m

p
3 <

ε2/4, 0 < ε < 1/2. Thus

sup
0≤mp

1+mp
2+mp

3≤ε2/4
E
[
eHN(t,σ )+HN(t,σ )+HN(t,σ

′′)−3Nt/2

× 1{HN(t,σ )>Nt(1+ε) or HN(t,σ
′)>Nt(1+ε) or HN(t,σ

′′)>Nt(1+ε)}
]

≤ 3C′1e−NT0ε
2/8

for all t ∈ [T0, T ]. Since the other terms in Ĩ 2
N(t, ε) have polynomial growth, the

uniform convergence Ĩ 2
N(t, ε)→ 0 in [T0, T ] follows.

Let us turn to Ĩ 3
N(t, ε). By the expansions (2.40), (2.9) and condition (2.48),

sup
ε2/4≤mp

1+mp
2+mp

3≤3ε
E
[
exp

{
HN(t, σ )+HN(t, σ

′)+HN(t, σ
′′)− 3Nt/2

}
× 1{HN(t,σ )<Nt(1+ε), HN(t,σ

′)<Nt(1+ε), HN(t,σ
′′)<Nt(1+ε)}

]
× Pm1,m2,m3

≤ C2 sup
ε2/4≤mp

1+mp
2+mp

3≤3ε
exp

{
N
[
t (f

p
N(m1)+ f

p
N (m2)+ f

p
N(m3))− I (m)

]}
≤ C′2 sup

ε2/4≤mp
1+mp

2+mp
3≤3ε

exp
{−h1N(m2

1 +m2
2 +m2

3)
}

≤ C′2 exp{−h1ε
4/pN/4}

for all t ∈ [T0, T ], where C2,C
′
2 > 0 are constants. All other terms in Ĩ 3

N(t, ε) have
polynomial growth; hence I 3

N(t, ε)→ 0 uniformly in [T0, T ].
Finally, consider Ĩ 4

N(t, ε). We have

E
[
eHN(t,σ )+HN(t,σ

′)+HN(t,σ
′′)−3Nt/2

× 1{HN(t,σ )<Nt(1+ε), HN(t,σ
′)<Nt(1+ε), HN(t,σ

′′)<(1+ε)Nt}
]

≤ E

[
e

√
Nt(3+2f p

N (m1)+2f p
N (m2)+2f p

N (m3)) ξ−3Nt/2

× 1{
√

3+2f p
N (m1)+2f p

N (m2)+2f p
N (m3) ξ≤3Nt(1+ε)}

]
.

Since f p
N (m1)+ f

p
N(m2)+ f

p
N (m3)=m

p
1 +m

p
2 +m

p
3 +O(1/N) > 3ε, we may

apply the estimate (B.2), which yields

E
[
eHN(t,σ )+HN(t,σ

′)+HN(t,σ
′′)−3Nt/2

× 1{HN(t,σ )<Nt(1+ε), HN(t,σ
′)<Nt(1+ε), HN(t,σ

′′)<(1+ε)Nt}
]

≤ C3 exp
{
NtQ(f

p
N (m1), f

p
N (m2), f

p
N (m3), ε)

}
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for some constant C3 > 0, all t ∈ [T0, T ], N > 0 and mp
1 +m

p
2 +m

p
3 > 3ε. On the

other hand, we also have

E

[
eHN(t,σ )+HN(t,σ

′)+HN(t,σ
′′)−3Nt/2

× 1{HN(t,σ )<Nt(1+ε), HN(t,σ
′)<Nt(1+ε), HN(t,σ

′′)<(1+ε)Nt}
]

≤ E

[
eHN(t,σ )+HN(t,σ

′)+HN(t,σ
′′)−3Nt/2

× 1{HN(t,σ
′)<Nt(1+ε), HN(t,σ

′′)<Nt(1+ε)}
]

= E

[
e
√
Ntξ2+

√
Ntξ3−3Nt/2

E(e
√
Ntξ1 | ξ2, ξ3)1{ξ2<

√
Nt(1+ε), ξ3<

√
Nt(1+ε)}

]
= e−Nt+Ntα

E

[
e
√
Nt(1+µ2)ξ2+

√
Nt(1+µ3)ξ31{ξ2<

√
Nt(1+ε), ξ3<

√
Nt(1+ε)}

]
≤ e−Nt+Ntα

E

[
e

√
Nt((1+µ2)

2+(1+µ3)
2+2f p

N (m3)(1+µ2)(1+µ3))ξ

× 1{
√

2+2f p
N (m3) ξ<2

√
Nt(1+ε)}

]
,

where ξ1, ξ2, ξ3 are the same as in the analysis of the second term, ξ is a standard
Gaussian and

α = (
2f p

N(m1)f
p
N(m2)f

p
N (m3)− (

f
p
N(m1)

)2 − (
f
p
N(m2)

)2)
/
(
2− 2(f p

N(m3)
2),

µ2 = (
f
p
N (m1)− f

p
N(m2)f

p
N (m3)

)
/
(
1− (

f
p
N(m3)

)2)
,

µ3 = (
f
p
N (m2)− f

p
N(m1)f

p
N (m3)

)
/
(
1− (f

p
N(m3)

2).
One checks that√

(1+µ2)
2 + (1+µ3)

2 + 2f p
N(m3)(1+µ2)(1+µ3)

≥ 2(1+ f
p
N (m3)+ (f

p
N(m1)+ f

p
N (m2))/2)√

2+ 2f p
N(m3)

≥ 2(1+ 3ε/2)√
2+ 2f p

N(m3)
+O

(
1

N

)
,

when m
p
1 +m

p
2 +m

p
3 > 3ε. So, we are again in the position to apply (B.2). This

yields

E

[
eHN(t,σ )+HN(t,σ

′)+HN(t,σ
′′)−3Nt/2

× 1{HN(t,σ )<Nt(1+ε), HN(t,σ
′)<Nt(1+ε), HN(t,σ

′′)<(1+ε)Nt}
]

≤ C4e
tNL(f

p
N (m1),f

p
N (m2),f

p
N (m3),ε),

where C4 > 0 is a constant. Permuting m1, m2 and m3, we can derive in the
same way that the same expectation does not exceed exp{tNLp(f

p
N (m1), f

p
N(m3),
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f
p
N (m2), ε)} and exp{tNLp(f

p
N (m2), f

p
N(m3), f

p
N(m1), ε)} multiplied by some

constant. Thus, taking into account (2.9), we obtain

sup
m
p
1+mp

2+mp
3>3ε

E
[
exp

{
HN(t, σ )+HN(t, σ

′)+HN(t, σ
′′)− 3Nt/2

}
× 1{HN(t,σ )<Nt(1+ε), HN(t,σ

′)<Nt(1+ε), HN(t,σ
′′)<Nt(1+ε)}

]
× Pm1,m2,m3

≤ sup
m
p
1+mp

2+mp
3>3ε

C5
√
N exp

{
tN min

[
Q(m

p
1 ,m

p
2 ,m

p
3 , ε),

Lp(m1,m2,m3, ε),

Lp(m
p
1 ,m

p
3 ,m

p
2 , ε), Lp(m

p
2 ,m

p
3 ,m

p
1 , ε)

]
−NI (m1,m2,m2)

}

(2.51)

for all t ∈ [0, T0], where C5 > 0 is a constant. Now the relevance of assump-
tion (2.49) becomes clear. Due to (2.49), the right-hand side of (2.51) tends to 0
exponentially fast, as it can be estimated by C5

√
N exp{−h2N}. The other terms

in Ĩ 4
N(t, ε) have polynomial growth. Thus Ĩ 4

N(t, ε) ↓ 0 uniformly in [T0, T ]. This
concludes the proof of the proposition. �

PROPOSITION 2.6. For all T > 0 satisfying (2.20) and all ε > 0,

lim
N↑+∞Np−2

E
∣∣V̄N(t, ε)Z̄−2

N (t)
∣∣= 0(2.52)

uniformly in any interval [T0, T ], where 0 < T0 < T .

PROOF. It follows from the definition of V̄N(t) that

Np−2
E|V̄N(t, ε)Z̄−2

N (t)| ≤ C̄NE
Eσ e

HN(t,σ )1{HN(t,σ )>Nt(1+ε)}
Eσ eHN(t,σ )

(2.53)

for all t ≥ 0, where C̄ > 0 is a constant. We will show that the expectation of this
last fraction tends to 0 exponentially fast. First of all, we observe that, by (B.1),

EEσ e
HN(t,σ )1{HN(t,σ )>Nt(1+ε)}

EEσ eHN(t,σ )

= EEσ e
HN(t,σ )−Nt/21{HN(t,σ )>Nt(1+ε)} ≤ e−Ntε2/2.

(2.54)

Let us represent the fraction on the right-hand side of (2.53) as

E
Eσ e

HN(t,σ )1{HN(t,σ )>Nt(1+ε)}
Eσ e

HN(t,σ )

= E
Eσ e

HN(t,σ )−Nt/21{HN(t,σ )>Nt(1+ε)}
exp{ln Eσ eHN(t,σ ) −E lnEσ eHN(t,σ ) +E lnEσ eHN(t,σ ) −Nt/2} .

(2.55)
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To expand this formula, we will use the concentration of measure as in (B.3). The
random variable Eσ e

HN(t,σ ) has the same distribution as φ(J1, . . . , J(Np)
), where

the function

φ(x1, . . . , x(Np)
)= ln Eσ exp

{√
tN

(
N

p

)−1/2 ∑
i1<···<ip

xi1,i2,...,ipσi1σi2 · · ·σip
}

is defined on R
(Np), J1, . . . , J(Np)

are standard Gaussian random variables. The

Lipschitz constant of φ(x1, . . . , x(Np)
) is at most

√
tN

(N
p

)−1/2(N
p

)1/2 = √
tN .

Substituting this function and u=Ntε2/4 into (B.3), we derive

P
{∣∣ln Eσ e

HN(t,σ ) −E lnEσ e
HN(t,σ )

∣∣>Ntε2/4
}≤ e−Ntε4/32.(2.56)

Let us introduce the events ON
t,ε := {| lnEσ e

HN(t,σ )−E lnEσ e
HN(t,σ )|>Ntε2/4}.

Consequently, by (2.55) and (2.56),

E
Eσ e

HN(t,σ )1{HN(t,σ )>Nt(1+ε)}
Eσ e

HN(t,σ )

= E

1{ON
t,ε}Eσ e

HN(t,σ )−Nt/21{HN(t,σ )>Nt(1+ε)}
exp{ln Eσ eHN(t,σ )−E ln Eσ eHN(t,σ )+E ln Eσ eHN(t,σ ) −Nt/2}

+P{ON
t,ε}

≤ eNtε2/4
E

Eσ e
HN(t,σ )−Nt/21{HN(t,σ )>Nt(1+ε)}

exp{E lnEσ eHN(t,σ ) −Nt/2} + e−Ntε4/32.

(2.57)

Observe that, for any T satisfying (2.20) and any 0 < T0 < T , there exists
a constant K > 0 such that

−K√N < E ln Eσ e
HN(t,σ )−Nt/2≤ 0(2.58)

for all t ∈ [T0, T ]. The upper bound in (2.58) is immediate by the Jensen
inequality. Whenever the second moment of Z̄N (t) truncated is finite, the
left-hand side of (2.58) was established by Talagrand [27] in the analysis of
the critical temperature. We will outline his proof in our situation. For given T

satisfying (2.20), let us fix ε̃ > 0 such that (2.48) and (2.49) hold. Let us define

Z̄N (t, ε̃)= Eσ e
HN(t,σ )−Nt/21{HN(t,σ )<Nt(1+ε̃)}.

By (B.2) there exists a constant K1 < 0 such that

EZ̄N (t, ε̃)≥K1(2.59)

for all t ∈ [T0, T ]. Moreover, there exists a constant K2 > 0 such that

EZ̄3
N(t, ε̃)≤K2(2.60)
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for all t ∈ [T0, T ]. The proof of (2.60) is analogous to the proof of the uniform
convergence to 0 of W̃N(t, ε) in Proposition 2.5. We decompose Z̄N (t, ε̃) into
four terms in the same way as we decomposed W̃N(t, ε). The last three of them
go to 0 uniformly in t ∈ [T0, T ] and exponentially fast by the same arguments
as Ĩ 2

N(t), and Ĩ 3
N(t) and Ĩ 4

N(t) do. We work out the first term similarly to the sum
IN1 (t) + IN2 (t) in Proposition 2.6. The only difference is the absence of terms in
brackets in front of the exponent. The change si =mi

√
N makes the analogue of

IN1 (t) tend to the integral over R
3 of the density of three independent standard

Gaussians, which equals 1. Thus, in fact, Z̄N (t, ε̃) converges to 1 uniformly in
[T0, T ] and (2.60) is obvious. Hence, for all t ∈ [T0, T ],

EZ̄2
N(t, ε̃)

(EZ̄N (t, ε̃))2
≤ (EZ̄3

N(t, ε̃))
2/3

(EZ̄N (t, ε̃))2
≤ K

2/3
2

K2
1

:=K3.(2.61)

Then starting from the Paley–Zygmund inequality and finally applying the
concentration of measure inequality (B.3) with u = Nt/2 − E lnEσ e

HN(t,σ ) +
ln(K1/2), we deduce

1

4K3
≤ (EZ̄N(t, ε̃))

2

4EZ̄2
N(t, ε̃)

≤ P
{
Z̄N (t, ε̃) > EZ̄N(t, ε̃)/2

}
≤ P

{
Eσ e

HN(t,σ ) > K1e
Nt/2/2

}
= P

{
ln Eσ e

HN(t,σ ) −E lnEσ e
HN(t,σ )

> Nt/2−E lnEσ e
HN(t,σ )+ ln(K1/2)

}
≤ exp

{[
Nt/2−E lnEσ e

HN(t,σ )+ ln(K1/2)
]2
/2Nt

}
,

from which (2.58) follows. Finally, (2.54), (2.57) and (2.58) together imply

E
Eσ e

HN(t,σ )1{HN(t,σ )>Nt(1+ε)}
Eσ eHN(t,σ )

≤ eNtε2/4+K√N
EEσ e

HN(t,σ )−Nt/21{HN(t,σ )>Nt(1+ε)} + e−Ntε4/32

≤ e−Ntε2/4+K√N + e−Ntε4/32,

(2.62)

and the proposition is proved. �

PROOF OF (1.20). To complete the proof of Theorem 1.3, it remains to show
that

lim
p↑+∞ inf

m1,m2,m3∈A
Yp(m1,m2,m3)= 2 ln 2.(2.63)
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Making use of the functions S(m1,m2,m3) and R(m1,m2,m3), we get

Up(m1,m2,m3)

= I (m1,m2,m3)(1+m
p
3 )

×
[(

4
(

1+m
p
3 +

m
p
1 +m

p
2

2

)2

+ (m
p
1 −m

p
2 )

2(1+m
p
3 )

(1−m
p
3 )

)1/2

− (m
p
1 −m

p
2 )

2

2(1−m
p
3 )

−m
p
1m

p
2 − (2+m

p
3 )

]−1

.

(2.64)

It follows from (2.64) that, for any p = 2k > 2 and any sequence (m1,n,m2,n,

m3,n) ∈ A such that m1,n → 1, m2,n → 1, m3,n → 1, as n → ∞, limn↑+∞
×Yp(m1,n,m2,n,m3,n) = 2 ln 2. [In fact, by the definition of A, we have ||m1| −
|m2|| ≤ 1−|m3| for all (m1,m2,m3) ∈A, whence (mp

1,n−m
p
2,n)

2 = o(1−m
p
3,n).]

Thus lim supp↑+∞ infm1,m2,m3∈A Yp(m1,m2,m3) ≤ 2 ln 2. This fact and the next
proposition together imply (2.63). �

PROPOSITION 2.7. Let {pn} be a sequence of positive even numbers, pn ↑
+∞. Assume that the sequence (m1,n,m2,n,m3,n) ∈ A satisfies one of the
following conditions:

(i) |m1,n|→ 1, |m2,n|→ 1, |m3,n| → 1;
(ii) there exist δ > 0 and a pair i and j , i, j = 1,2,3, i �= j , such that

|mi,n|→ 1 and |mj,n| ≤ 1− δ for all sufficiently large n;
(iii) there exists δ > 0 such that |m1,n| ≤ 1− δ, |m2,n| ≤ 1− δ, |m3,n| ≤ 1− δ

for all sufficiently large n.

Then,

lim inf
n↑+∞Ypn(m1,n,m2,n,m3,n)≥ 2 ln 2.(2.65)

PROOF. In cases (i) and (iii) it suffices to substitute the sequence (m1,n,m2,n,

m3,n) into the function I (m1,m2,m3)(2/3 + (m
p
1 + m

p
2 + m

p
3 )
−1). In case (ii)

assume that, for example, |m3,n| → 1 and |m1,n| ≤ 1 − δ. Then m
pn
1,n = o(1).

By definition of the set A we obtain ||m1,n|−|m2,n|| ≤ 1−|m3,n|→ 0 as n ↑+∞;
thus mpn

2,n = o(1) and (m
pn
1,n −m

pn
2,n)

2/(1−m
pn
3,n)= o(1). Moreover, if m3,n → 1,

then m1,n −m2,n→ 0 and if m3,n→−1, then m1,n +m2,n→ 0 and therefore in
both of these cases lim infn↑+∞ I (m1,n,m2,n,m3,n)≥ ln 2. This yields

lim inf
n↑+∞Ypn(m1,n,m2,n,m3,n)

≥ lim inf
n↑+∞Upn(m1,n,m2,n,m3,n)

≥ lim inf
n↑+∞ ln 2

1+m
pn
3,n

m
pn
3,n+ o(1)

≥ 2 ln 2,

and the proposition is proved. �
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PROOF OF THEOREM 1.4. From the discussion in the Introduction it remains
to show N(p−2)/4 ln(Z1

β,N/EZβ,N )→ 0 in probability as N ↑∞, where Z1
β,N =

Eσ e
β
√
NX1

σ and

X1
σ =N−p/2

∑
i1,i2,...,ip

not all in pairs

Ji1,i2,...,ipσi1σi2 · · ·σip .(2.66)

Since EZβ,N/EZ
1
β,N = 1+O(N(2−p)/2), one can concentrate on the convergence

of the free energy N(p−2)/4 ln(Z1
β,N/EZ

1
β,N ). To prove the result up to Talagrand’s

bound, let us again truncate the Hamiltonian. Then

N(p−2)/4 ln
Z1
β,N

EZ1
β,N

= N(p−2)/4 ln
(

1+ Z̃1
β,N −EZ̃1

β,N

EZ1
β,N

)

+N(p−2)/4 ln
(

1+ Ẑ1
β,N −EẐ1

β,N

Zβ,N − (Ẑ1
β,N −EẐ1

β,N)

)
,

(2.67)

where Z̃1
β,N = Eσ e

β
√
NX1

σ1{X1
σ<β

√
N(1+ε)} and Ẑ1

β,N = Eσ e
β
√
NX1

σ ×
1{X1

σ>β
√
N(1+ε)}. To treat the first term in (2.67), it suffices to show the conver-

gence to 0 of

N(p−2)/2 Var
( Z̃1

β,N −EZ̃1
β,N

EZ1
β,N

)

= E
∑

σ ·σ ′=mN,

m=0,1/N,...,1

(
e
β
√
NX1

σ+β
√
NX1

σ ′−β2NE(X1
σ )

2

× 1{X1
σ<β

√
N(1+ε), X1

σ ′<β
√
N(1+ε)} − 1

)
Pm,

where Pm = P(σ · σ ′ = mN) with the asymptotics (2.24). It is not difficult to
reduce this to the convergence of

N(p−2)/2
E

∑
σ ·σ ′=mN,
|m|<N−1/3−δ

(
e
β
√
NX1

σ+β
√
NX1

σ ′−β2NE(X1
σ )

2 − 1
)
Pm

=N(p−2)/2
∑

σ ·σ ′=mN,

|m|<N−1/3−δ

(
eβ

2Nf
p
N (m)− 1

)
Pm,

(2.68)

with an arbitrary 0 < δ < 1/6 along the lines of Proposition 2.5. [Here f p
N(N

−1(σ ·
σ ′))= Eσ,σ ′ cov(Xσ ,Xσ ′)= (N−1(σ · σ ′)p −N−p/2(p− 1)!!.] For this purpose,
first for given β smaller than Talagrand’s bound (1.26) we choose ε > 0 such
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that the power of the exponent in (2.28) is negative for all m with |m| > ε. Thus
the truncation makes the sum over |m| > ε exponentially small. The next step
is similar to that one for Ĩ 2

N(t) and Ĩ 3
N(t) in Proposition 2.5 by the use of the

asymptotics f p
N (m) = o(m2) and φ(m) ∼ m2/2 as m ↓ 0. It reduces the problem

to the analysis of the sum of untruncated Boltzmann weights with |m|< ε2/4, as
it shows that the rest tends to 0 exponentially fast. The part of this last sum with
N−1/3−δ < |m|< ε2/4 goes to 0 exponentially fast as well by the same arguments
used for I 2

N(t) in Proposition 2.3. Finally, to study (2.68), we replace eβ
2Nf

p
N(m)−1

by its Taylor expansion. Then the sum over the first term is exponentially small.
This is a consequence of the property of X1

σ :∑
m=0,1/N,...,N

f
p
N (m)Pm = Eσ,σ ′ cov(X1

σ ,X
1
σ ′)

= N−p/2
∑

i1,...,ip
not all in pairs

Eσ,σ ′σi1σ
′
i1
· · ·σipσ ′ip = 0

and of the fact that Pm is exponentially small for |m| > N−1/3−δ with δ > 1/6.
The sum over the second term of the Taylor expansion is of order at most
O(N2−2p/3−2pδ) and multiplied by N(p−2)/2 converges to 0 for all p ≥ 3 if
δ > 1/12 is fixed.

To consider the second term in (2.67), one proves that E(Ẑ1
β,N/Z

1
β,N ) and

E(EẐ1
β,N/Z

1
β,N) are exponentially small for any ε > 0. This is completely

analogous to (2.53) in Proposition 2.6; therefore we omit the details. �

3. The fluctuations of the partition function in the REM. Amazingly
enough, the simplest of all our models, the REM, will be seen to offer in some
sense the most interesting behavior with regard to the fluctuations of the free
energy. The main surprise here will be the existence of an intermediate region
of temperatures where a CLT does not hold, but there a nonstandard limit theorem
will be proven.

We begin with the proof of (i) of Theorem 1.5.

PROPOSITION 3.1. Whenever 0 < β <
√

ln 2/2,

exp
{
N

2
(ln 2− β2)

}
ln

Zβ,N

EZβ,N

D→N (0,1).(3.1)

PROOF. This result will follow from the standard CLT for triangular arrays.
Let us first write

ln
Zβ,N

EZβ,N

= ln
(

1+ Zβ,N −EZβ,N

EZβ,N

)
.(3.2)
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We will show that the second term in the logarithm properly normalized will
converge to a normal random variable. To see this, write

Zβ,N −EZβ,N

EZβ,N

= ∑
σ∈SN

e−N(ln 2+β2/2)(eβ√NXσ − eNβ
2/2)≡ ∑

σ∈SN

YN(σ ).(3.3)

Note that EYN(σ )= 0 and EY2
N(σ )= e−N(2 ln2−β2)[1− e−Nβ2] and thus

E

(
Zβ,N −EZβ,N

EZβ,N

)2

= e−N(ln 2−β2)[1− e−Nβ2].(3.4)

Therefore we can write

Zβ,N −EZβ,N

EZβ,N

= exp
{
−N

2
(ln 2− β2)

}√
1− e−Nβ2 1

2N/2

∑
σ∈SN

ỸN(σ ),(3.5)

where ỸN(σ ) = exp{N2 (2 ln 2 − β2)}[1 − e−Nβ2]−1/2YN(σ ) has mean 0 and
variance 1. By the CLT for triangular arrays (see [25]), it follows readily that

1

2N/2

∑
σ∈SN

ỸN(σ )
D→N (0,1)(3.6)

if the Lindeberg condition holds, that is, in this case, if, for any ε > 0,

lim
N↑+0

EỸ2
N(σ )1{|ỸN(σ)|≥ε2N/2} = 0.(3.7)

But

EỸ2
N(σ )1{|ỸN(σ)|≥ε2N/2}

= 1√
2π(1− e−Nβ2

)

× e−2Nβ2
∫ ∞
√
N(ln 2/(2β)+β)+lnε/(

√
Nβ)+o(1/√N)

e2
√
Nβz−z2/2dz+ o(1)

= 1√
2π(1− e−Nβ2

)

∫ ∞
√
N(ln 2/(2β)−β)+lnε/(

√
Nβ)+o(1/√N)

e−z2/2dz+ o(1).

(3.8)

It is easy to check that the latter integral converges to 0 if and only if β2 < ln 2/2.
Using now the fact that ex = 1+ x + o(x) as x→ 0, it is now a trivial matter to
deduce the assertion of the proposition. �

Since the Lindeberg condition clearly fails for 2β2 ≥ ln 2, it is clear that we
cannot expect a simple CLT beyond this regime. Such a failure of the CLT is always
a problem related to “heavy tails” and results from the fact that extremal events
begin to influence the fluctuations of the sum. It appears therefore reasonable to
separate from the sum the terms where Xσ is anomalously large. For Gaussian
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r.v.’s it is well known that the right scale of separation is given by uN(x) defined
by

2N
∫ ∞
uN (x)

dz√
2π

e−z2/2 = e−x,(3.9)

which (for x >− lnN/ ln 2) is equal to (see, e.g., [17])

uN(x)=
√

2N ln 2+ x√
2N ln 2

− ln(N ln 2)+ ln 4π

2
√

2N ln 2
+ o

(
1√
N

)
,(3.10)

where x ∈R is a parameter. Let us now define

Zx
N,β ≡ Eσ e

β
√
NXσ1{Xσ≤uN (x)}.(3.11)

We may write

Zβ,N −EZβ,N

EZβ,N

= 1+ Z
x
β,N −EZx

β,N

EZβ,N

+ Zβ,N −Zx
β,N −E(Zβ,N −Zx

β,N )

EZβ,N

.

(3.12)

Let us first consider the last summand. We introduce the random variable

WN(x)=
Zβ,N −Zx

β,N

EZβ,N

= e−N(ln 2+β2/2)
∑
σ∈SN

eβ
√
NXσ1{Xσ>uN(x)}.(3.13)

It will be convenient to rewrite this as [we ignore the subleading corrections
to uN(x) and only keep the explicit representation (3.10)]

WN(x)= exp{−N(ln 2+ β2/2)} ∑
σ∈SN

exp
{
β
√
NuN

(
u−1
N (Xσ )

)}
1{u−1

N (Xσ )>x}

= exp{−N(ln 2+ β2/2)} exp
{
βN

√
2 ln 2− β

ln(N ln 2)+ ln 4π

2
√

2 ln 2

}
× ∑

σ∈SN

exp
{

β√
2 ln 2

u−1
N (Xσ )

}
1{u−1

N (Xσ )>x}.

(3.14)

Let us now introduce the point process on R given by

PN ≡
∑
σ∈SN

δ
u−1
N (Xσ )

.(3.15)

A classical result from the theory of extreme order statistics (see, e.g., [17]) asserts
that the point process PN converges weakly to a Poisson point process on R with
intensity measure e−x dx. We can, of course, write∑

σ∈SN

exp
{

β√
2 ln 2

u−1
N (Xσ )

}
1{u−1

N (Xσ )>x}
D→

∫ ∞
x

eαzPN(dz),(3.16)
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where we set α ≡ β/
√

2 ln 2. Clearly, the weak convergence of PN to P implies
convergence in law of the right-hand side of (3.16), provided that eαx is integrable
on [x,∞) w.r.t. the Poisson process with intensity e−x . This is, in fact, never
a problem: the Poisson point process has almost surely support on a finite set, and
therefore eαx always a.s. integrable. Note, however, that for β ≥√2 ln 2 the mean
of the integral is infinite, indicating the passage to the low-temperature regime.
Note also that the variance of the integral is finite exactly if α < 1/2, that is,
β2 < ln 2/2, that is, when the CLT holds. On the other hand, the mean of the
integral diverges if x ↓ −∞; note that at −∞ the points of the Poisson point
process accumulate, and there is no finite support argument as before that would
assure the existence if x is taken to −∞. The following lemma provides the first
step in the proof of part (ii) of Theorem 1.5 and of Theorem 1.6.

LEMMA 3.2. Let WN(x),α be defined as above and let P be the Poisson
point process with intensity measure e−z dz. Then

exp
{
N

2
(
√

2 ln 2− β)2 + α

2
[ln(N ln 2)+ ln 4π ]

}
WN(x)

D→
∫ ∞
x

eαzP (dz).(3.17)

REMARK. Note that the mean of the right-hand side is finite if and only if
β <

√
2 ln 2. Thus only in that case does this lemma also allow one to deal with

the centered variable appearing in (3.12).
We now need to turn to the remaining term,

Zx
β,N −EZx

β,N

EZβ,N

= VN(x)

EZβ,N

,(3.18)

where

VN(x)≡ Zx
β,N −EZx

β,N .(3.19)

One might first hope that this term upon proper scaling would converge to
a Gaussian; however, one can easily check that this is not the case (the Lindeberg
condition will not be verified). However, it will not be hard to compute all moments
of this term:

LEMMA 3.3. Let VN(x) be defined by (3.19). Then, for α > 1/2 and any
integer k ≥ 2,

lim
N↑+∞

E[VN(x)]k
[2−N exp{Nβ√2 ln 2− α

2 [ln(N ln 2)+ ln 4π ]}]k

=
k∑

i=1

1

i!
∑

C1≥2,...,Ci≥2∑
j Cj=k

k!
C1! · · ·Ci !

e(kα−i)x

(C1α− 1) · · · (Ciα − 1)
.

(3.20)
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For α = 1/2, we have, for k even,

lim
N↑+∞

E[VN(x)]k
[2−NeNβ√2 ln 2]k =

k!
(k/2)!2k =

(k − 1)!!
2k/2(3.21)

and, for k odd,

lim
N↑+∞

E[VN(x)]k
[2−NeNβ

√
2 ln 2]k = 0(3.22)

(which are the moments of the normal distribution with variance 1/2).

PROOF. This is a pure computation. Set TN(σ ) ≡ eβ
√
NXσ 1{Xσ≤uN (x)}. Note

that, for β <
√

2 ln 2,

ETN(σ )=
∫ uN (x)

−∞
dz√
2π

exp
{
−z2

2
+ β

√
Nz

}
= exp

{
Nβ2

2

}(
1−

∫ ∞
uN (x)−β

√
N

dz√
2π

exp
{
−z2

2

})
∼ exp

{
β2N

2

}
,

(3.23)

while, for β >
√

2 ln 2 and all k ≥ 1 and for β >
√

ln 2/2 and for k ≥ 2,

E
[
TN(σ )

]k = ∫ uN (x)

−∞
dz√
2π

exp
{
−z2

2
+ kβ

√
Nz

}

= exp
{
Nk2β2

2

}∫ uN (x)−kβ
√
N

−∞
dz√
2π

exp
{
−z2

2

}

∼ exp
{
Nk2β2

2

}
e−(uN (x)−kβ

√
N)2/2

√
2π(kβ

√
N − uN(x))

∼ 2−Ne−x

kα− 1
exp

{
k

[
β
√

2 ln 2N + αx − α

2
[ln(N ln 2)+ ln 4π ]

]}
.

(3.24)

Formula (3.24) is also valid for β =√2 ln 2 with k > 1 and for β =√
ln 2/2 with

k > 2. It is easy to see from the computations above that, for β = √
2 ln 2 with

k = 1 and also for β =√ln 2/2 with k = 2, we have

E
[
TN(σ )

]k ∼ ek
2β2N/2

2
= 2−Ne−x

2
ek[β

√
2 ln 2N+αx].(3.25)

We set T̃N (σ ) ≡ 2−NTN(σ ); by (3.24) we get, for β >
√

ln 2/2 with k ≥ 2 and
also for β >

√
2 ln 2 with k ≥ 1,

E
[
T̃N (σ )

]k ∼ 2−Ne−x

kα − 1
exp

{
k

[
β
√

2 ln 2N −N ln 2+ αx

− α

2
[ln(N ln 2)+ ln 4π ]

]}
.

(3.26)
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This formula is also true for β = √
ln 2/2, k > 2 and β = √

2 ln 2, k > 1. For
β =√2 ln 2 and k = 1 and also for β =√ln 2/2 and k = 2 by (3.25),

E
[
T̃N (σ )

]k ∼ 2−Ne−x

2
ek[β

√
2 ln 2N−N ln 2+αx].(3.27)

Now

E
[
VN(x)

]k = E

( ∑
σ∈SN

[
T̃N (σ )−ET̃N (σ )

])k

= ∑
σ1,...,σk∈SN

E

k∏
i=1

[
T̃N (σi)−ET̃N (σi)

]

=
k∑

i=1

∑
C1,...,Ci≥2∑

j Cj=k

k!
C1! · · ·Ci !

(
2N

i

)

×E
[
T̃N (σ )−ET̃N (σ )

]C1 · · ·E[T̃N (σ )−ET̃N (σ )
]Ci .

(3.28)

Note finally that, for l ≥ 2 and β ≥√ln 2/2,

E
[
T̃N (σ )−ET̃N (σ )

]C
=

C∑
j=1

(−1)j
(
C

j

)
ET̃N (σ )

C−j [
ET̃N (σ )

]j ∼ ET̃N (σ )
C.

(3.29)

In fact, if
√

ln 2/2 ≤ β <
√

2 ln 2, l ≥ 2, j ≥ 1, j �= l − 1, l, then, by (3.23)
and (3.26) and (3.27),

E[T l−j
N (σ )][ETN(σ )]j

E[T l
N (σ )]

= eNj (β
2/2−β√2 ln 2)O(Nαj/2).(3.30)

For l ≥ 2, j = l − 1, l,

E[T l−j
N (σ )][ETN(σ )]j

E[T l
N (σ )]

= eNl(β2/2−β√2 ln 2)+N ln 2O(Nαl/2)

≤ e−N ln 2/2O(Nαl/2).

(3.31)

For β ≥√2 ln 2, l ≥ 2 and j ≥ 1 by (3.26) and (3.27),

E[T l−j
N (σ )][ETN(σ )]j

E[T l
N (σ )]

=O(2−N).(3.32)
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Thus, for l ≥ 2 and β >
√

ln 2/2 and also for l ≥ 3 and β =√ln 2/2,

E
[
T̃N (σ )−ET̃N (σ )

]C
∼ 2−Ne−x

kα − 1

[
2−N exp{Nβ√2 ln 2} exp{αx}

× exp
{
−α

2
[ln(N ln 2)+ ln 4π ]

}]C
.

(3.33)

Inserting this result into (3.28) gives the assertion of the lemma, namely, (3.20).
For β =√ln 2/2 and l = 2 by (3.27), we have

E
[
T̃N (σ )−ET̃N (σ )

]2 ∼ 2−Ne−x

2

[
2−NeNβ

√
2 ln 2eαx

]2
.(3.34)

Inserting this formula into (3.28), we see that the term with l1, . . . , li = 2, i = k/2
brings the main contribution to the sum, and all others are of smaller order, because
of the polynomial terms exp{−lα/2 ln(N ln 2)} in (3.33). This implies (3.21)
and (3.22) and the lemma is proved. �

REMARK. One sees that if we let x ↓ −∞, and rescale properly, the
corresponding moments converge to that of a centered Gaussian r.v. This could
alternatively be seen by checking that the Lindeberg condition holds for the
truncated variables provided x ≤−2 ln ln 2N .

A standard consequence of Lemma 3.3 is the weak convergence of the
normalized version of VN(x):

COROLLARY 3.4. For
√

ln 2/2< β ,

exp
{
N

2
(
√

2 ln 2− β)2 + α

2
[ln(N ln 2)+ ln 4π ]

}
VN(x)

EZβ,N

D→V(x,α),(3.35)

where V(x,α) is the random variable with mean 0 and k-th moments given by the
right-hand side of (3.20). For β =√ln 2/2,

√
2 exp

{
N

2
(
√

2 ln 2− β)2
}

VN(x)

EZβ,N

D→N (0,1).(3.36)

The next proposition will imply (ii) of Theorem 1.5.

PROPOSITION 3.5. Let
√

ln 2/2 < β <
√

2 ln 2. Then, for x ∈ R chosen
arbitrarily,

exp
{
N

2
(
√

2 ln 2− β)2 + α

2
[ln(N ln 2)+ ln 4π ]

}
ln

Zβ,N

EZβ,N

D→V(x,α)+
∫ ∞
x

eαzP (dz)−
∫ ∞
x

eαze−z dz,
(3.37)

where V(x,α) and P are independent random variables.
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PROOF. Equation (3.37) would be immediate from Lemma 3.2 and Corol-
lary 3.4 if WN(x) and VN(x) were independent. However, while this is not true,
they are not far from independent. To see this, note that if we condition on the
number of variables Xσ , nN(x), that exceed uN(x), the decomposition in (3.12)
is independent. On the other hand, one readily verifies that Corollary 3.4 also
holds under the conditional law P[·|nN(x) = n], for any finite n, with the same
right-hand side V(x,α). But this implies that the limit can be written as the sum
of two independent random variables, as desired. �

Since, for β2 > ln 2/2, α > 1/2, EV(x,α)2 = ex(2α−1)/(2α − 1) tends to 0 as
x ↓ −∞, therefore we see that

V(x,α)=D lim
y↑+∞

∫ x

−y
eαzP (dz)−

∫ x

−y
eαze−z dz,(3.38)

which means that we can make sense out of the Poisson integral
∫∞
−∞ eαz(P (dz)−

e−z dz). We see that Propositions 3.1 and 3.5 imply Theorem 1.5. �

REMARK. The appearance of the intermediate region with non-Gaussian
fluctuations may appear surprising in view of the fact that in the p-spin models
we could prove the CLT up to a much higher value of β , in fact up to almost the
critical value. The reason, however, lies in the fact that in the p-spin model the
Gaussian part of the fluctuation is always on a polynomial scale in N , while
the truncation error ((Zβ,N −ZT

β,N )/EZβ,N) is exponentially small even when we

truncate at β(1+ ε)
√
N , way below where we truncate in the REM. This means

that the CLT contribution will always dominate the extremal fluctuations. In the
REM everything is exponentially small, and while a sufficiently truncated partition
function gives a Gaussian contribution, this is dominated by the larger extremal
fluctuations in the intermediate regime. In other words, the extra correlations in
the p-spin models strengthen the Gaussian fluctuations more than the extremal
ones, which sounds intuitive.

PROOF OF THEOREM 1.6. We will see that the computations above almost
suffice to conclude the low-temperature case as well. With the notation from above,
we write

Zβ,N =Zx
β,N + (Zβ,N −Zx

β,N ).(3.39)

Clearly, for β ≥√2 ln 2,

Zβ,N −Zx
β,N = exp

{
N [β√2 ln 2− ln 2] − α

2
[ln(N ln 2)+ ln 4π ]

}
× ∑

σ∈SN

1{u−1
N (σ)>x} exp{αu−1

N (Xσ )}
(3.40)
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so that, for any x ∈R,

(Zβ,N −Zx
β,N ) exp

{
−N [β√2 ln 2− ln 2] + α

2
[ln(N ln 2)+ ln 4π ]

}
D→

∫ ∞
x

eαzP (dz).

(3.41)

Now write

Zx
β,N = EZx

β,N

(
1+ Zx

β,N −EZx
β,N

EZx
β,N

)
.(3.42)

Let us first treat the case β >
√

2 ln 2. By (3.24) we have

EZx
β,N ∼

2−Ne−x

α − 1
exp

{
β
√

2 ln 2N + αx − α

2
[ln(N ln 2)+ ln 4π ]

}
.(3.43)

Thus

exp
{
−N [β√2 ln 2− ln 2] + α

2
[ln(N ln 2)+ ln 4π ]

}
Zx
β,N

= ex(α−1)

α− 1

(
1+ Zx

β,N −EZx
β,N

EZx
β,N

)(
1+ o(1)

)
.

(3.44)

Using Lemma 3.3, we see that now

Zx
β,N −EZx

β,N

EZx
β,N

ex(α−1)

α− 1

converges in distribution to a random variable with moments given by the
right-hand side of (3.20). Moreover, as x ↓ −∞, this variable converges to 0 in
probability. Since the same is true for the prefactor, the assertion of the theorem is
now immediate.

Let us consider now the case β =√2 ln 2. Proceeding as in (3.24),

EZ0
β,N =

2N√
2π

∫ uN (0)−
√

2N ln 2

−∞
e−z2/2 dz

= 2N
(

1

2
− ln(N ln 2)+ ln 4π

4
√
Nπ ln 2

+O

(
(lnN)2

N

))
.

(3.45)

We use the decomposition

Zβ,N = Zβ,N −Z0
β,N +EZ0

β,N + (Z0
β,N −EZ0

β,N ).(3.46)

By (3.45), EZ0
β,N/EZβ,N ∼ 1/2. By (3.14), we easily see that

Zβ,N −Z0
β,N

EZβ,N

=WN(x)→ 0 a.s.(3.47)
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even though EWN(0)= 1/2! Thus the more precise statement consists of saying
that

e[ln(N ln 2)+ln 4π ]/2WN(0)
D→

∫ ∞
0

ezP (dz).(3.48)

Note that, of course, the limiting variable has infinite mean, but is a.s. finite.
Finally, by Corollary 3.4,

e[ln(N ln 2)+ln 4π ]/2
Z0
β,N −EZ0

β,N

EZβ,N

D→V(0,1).(3.49)

The same arguments as those given after Proposition 3.5 allow us to iden-
tify V(0,1) with the centered Poisson integral

∫ 0
−∞ ez(P (dz)− e−z dz). This im-

plies (1.31). Equation (1.32) is an immediate corollary. This concludes the proof
of Theorem 1.6. �

APPENDIX A

More general covariance functions. Let X be a Gaussian vector on the hy-
percube SN = {−1,1}N with mean 0 and covariances cov(Xσ ,Xσ ′) =
f
p
N (RN(σ,σ

′))≡∑[p/2]
k=0 αp−2k(N)RN(σ,σ

′)p−2k, where αp−2k(N)∼ αp−2kN
−k

as N ↑ ∞. Assume that n is the minimal positive integer number such that
Eσ,σ ′(cov(Xσ ,Xσ ′))n �= 0. Then Eσ,σ ′(cov(Xσ ,Xσ ′))n ∼CN−np/2.

CONJECTURE. Let p > 2 and define ZN,β = Eσ e
β
√
NXσ . There exists βc > 0

such that, for all β < βc,

Nn(p−2)/4 ln
Zβ,N

EZβ,N

D→N (0, β2nC/n!).(A.1)

Moreover, the constant C can be computed as follows. Here n is also the
minimal positive integer such that E(

∑[p/2]
k=0 αp−2kξ

p−2k)n �= 0, where ξ is

a standard Gaussian random variable and C = E(
∑[p/2]

k=0 αp−2kξ
p−2k)n.

Trying to prove this conjecture by the martingale method of [9] in the same
way as in Theorem 1.2, one successfully arrives at the analogue of (2.21)
where the scaling factor is Nn(p−2)/2 and VN(t) = Eσ,σ ′(Nf

p
N(RN(σ,σ

′)) −
tn−1Nn(2−p)/2C/(n− 1)!)eHN(t,σ )+HN(t,σ

′). By the same arguments as for (2.23),
one shows that Nn(p−2)/2

EVN(t)→ 0 (just substitute the Taylor expansion of
etNf

p
N (m) up to the nth order).

However, to get rid of the absolute value in (2.21), we apply the Cauchy–
Schwarz inequality and pass to the third moment of the partition function. Then,
because of the nonindependence of three random variables σ ·σ ′, σ ·σ ′′ and σ ′ ·σ ′′,
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the terms (2.44) and (2.45) will not be small in a general situation. Consider the
example of a process such as (1.4) where the summation is over the sets of p
indices {i1, . . . , ip} with at most two indices equal. Then n= 2 but the term (2.44)
is a constant. Similarly, in the model (1.4) of Theorem 1.4 (the summation over all
possible sets of indices) with p odd, we have n = 2, the term (2.45) equals 0,
all other terms obtained from the second-order expansion are small and only
the term (2.44) is large. To overcome this difficulty, one could use the Cauchy–
Schwarz inequality in a different way passing to the fourth moment of the partition
function. But then very tough computations will be required.

APPENDIX B

Two useful theorems. We state two useful results for the convenience of the
reader. The first concerns standard estimates for truncated exponential moments of
Gaussian random variables.

FACT B.1. Let ξ be a Gaussian random variable with Eξ = 0, Eξ2 = 1. Then,
for all a, b > 0,

E
[
exp{aξ}1{ξ>b}]≤ 1√

2π(b− a)
exp{−b2/2+ ab} if b > a,(B.1)

E
[
exp{aξ}1{ξ<b}]≤ 1√

2π(a− b)
exp{−b2/2+ ab} if b < a.(B.2)

The second is the Gaussian concentration of measure inequality, to be found,
for example, in [18].

FACT B.2. Assume that f (x1, . . . , xd) is a function on R
d with a Lipschitz

constant L. Let J1, . . . , Jd be independent standard Gaussian random variables.
Then, for any u > 0,

P
{|f (J1, . . . , Jd)−Ef (J1, . . . , Jd)|> u

}≤ exp
{−u2/(2L2)

}
.(B.3)
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