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SYLVESTER’S QUESTION: THE PROBABILITY THAT n
POINTS ARE IN CONVEX POSITION1

BY IMRE BARANY´ ´
Hungarian Academy of Sciences and University College London

Ž .For a convex body K in the plane, let p n, K denote the probability
that n random, independent, and uniform points from K are in convex
position, that is, none of them lies in the convex hull of the others. Here

Ž .we determine the asymptotic behavior of p n, K by showing that, as n
n

2 'goes to infinity, n p n , K tends to a finite and positive limit.Ž .

1. Introduction. Assume K � R2 is a convex compact set with nonempty
interior. In what follows we determine, asymptotically, the probability that n
random, independent and uniform points from K are in convex position, that

Ž .is, none of them is in the convex hull of the others. Write p n, K for the
probability in question.

Ž .Work on p n, K started a long time ago. In the Educational Times in
� � Ž .1864 Sylvester 17 asked what the value of p 4, K was without specifying

K. Several answers came in. Most of them were different. The question was
Ž .changed. For what K is p 4, K minimal and maximal. A solution came from

� � 2Blaschke 6 . For every convex body K � R ,
p 4, triangle � p 4, K � p 4, disk .Ž . Ž . Ž .

� �Valtr 18 showed that
2 n 3n � 3 !Ž .

p n , triangle � ,Ž . 3n � 1 ! 2n !Ž . Ž .
a surprisingly exact result. But since K can be sandwiched between two

Ž . Ž 2 �2 .ntriangles and since p n, triangle is, asymptotically, 13.5e n , we get that
n

2 'c � n p n , K � cŽ .1 2

with universal constants 0 � c � c � �. Our main result is the following1 2
theorem.

THEOREM 1. For every convex set K � R2 with Area K � 1,
n

2 'lim n p n , KŽ .
1 2 3Ž . Ž .exists and equals e A K where A K is the supremum of the affine perime-4

ter of all convex sets S � K.
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Ž . Ž .Write AP K for the affine perimeter of K. The definition is in Section 4 .
Ž .As p n, K is invariant under nondegenerate affine transformations, the

1 2 3Ž .limit in the theorem equals e A K �Area K in general.4
� �Theorem 1 of 2 says that there is a unique convex compact K � K with0

Ž . Ž .AP K � A K . The proof of Theorem 1 above gives more than just the0
Ž .asymptotic behavior of p n, K . Namely, if the random points x , . . . , x from1 n

K are in convex position, then their convex hull is, with high probability, very
Ž .close to K . For the formulation of this ‘‘limit shape’’ result we use � A, B to0

denote the Haussdorf distance of A, B � R2. Write, further, CC for the collec-
tion of convex compact sets K � R2 with nonempty interior and X or X forn
the random sample x , . . . , x . In formulae we abbreviate the statement ‘‘X1 n n
is in convex position’’ to ‘‘X convex.’’n

THEOREM 2. For every K � CC and every � � 0,

�lim � � conv X , K � � X � K , X convex � 0.Ž .n 0 n n
n��

This theorem is a law of large numbers in the following sense. For C � CC

Ž .and a unit vector u, let C u � C denote the point where the linear function
Ž .ux reaches its maximum on C assuming this point is unique . Writing

C � conv X , we have from the proof of Theorem 1 that for every unit vectorn n
Ž .u, the expectation of C u , conditional to X being in convex position, equalsn n

Ž . Ž .K u , and Theorem 2 says that C u is concentrated around its expectation.0 n
ŽOne can prove Theorem 2 along these lines; we choose, however, another

.approach to be used when proving Theorems 3 and 4. In the case when K is
� �the square we could even prove 4 a central limit theorem for the random

Ž . � �variable C u , a result which is similar to that of Sinai 16 for the case ofn
convex lattice polygons lying in a large square. Recent progress in this

� �direction is due to Vershik and Zeitouni 21 .

2. Further results. Let X � X be again a random sample of n uni-n
Ž .form, independent points from K � CC. Define Q X as the random collection

Ž .of all convex polygons spanned by the points of X, that is, P � Q X if and
� 4only if P � conv x , . . . , x for some k-tuple x , . . . , x � X that is ini i i i1 k 1 k

Ž . Žconvex position k 	 3 . Without a doubt, the most frequently studied see
� � � � � �. Ž .14 , 15 , 22 polygon in Q X is its largest element which is just conv X.

� �Write Q for the number of elements in a set Q. Next we determine the
� Ž . �expectation of Q X :n

THEOREM 3. For each K � CC with Area K � 1,

�1�3 �2�32.1 lim n log E Q X � 3 � 2 A K .Ž . Ž . Ž .n
n��

Ž .Again, there is a limit shape to the elements of Q X . One way of
formulating this is in the following theorem.
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THEOREM 4. For each K � CC and for each � � 0,

E P � Q X : � P , K � �� 4Ž . Ž .n 0
2.2 lim � 0.Ž .

� �E Q Xn�� Ž .n

� �This paper is closely related to the results of 2 which is about the limit
1 2shape of convex lattice polygons contained in K. The lattice is Z and then

main result is that, as n goes to infinity, the overwhelming majority of the
convex lattice polygons contained in K are very close to K . Formally,0

1 2Ž .writing PP K for the convex Z -lattice polygons contained in K � CC, forn n

every � � 0,

P � PP K : � P , K � �� 4Ž . Ž .n 0
2.3 lim � 0.Ž .

PP Kn�� Ž .n

This is completely parallel to Theorem 4 above. Results of this type were first
� � � �proved by the author 1 and Vershik 20 for the case when K is the square;

� �later Sinai 16 found stronger forms of the limit shape theorem. The ana-
� �logue of Theorem 3 is the following result from 2 : Under the assumptions of

Theorem 3,

3
� 3Ž .�2�32.4 lim n log PP K � 3 A K ,Ž . Ž . Ž .n (4� 2n�� Ž .

Ž .where � s is Riemann’s zeta function.
Ž . Ž .In 2.1 and 2.4 n appears with different exponents. The reason is that in

Ž . Ž .2.1 the number of random points in K is n while in 2.4 the number of
lattice points is n2. It has been my conviction that random points and lattice
points, in relation to convex bodies, behave essentially the same way. The

Ž . Ž .analogy between 2.1 and 2.4 is another confirmation and so is the one
Ž . Ž . � �between 2.2 and 2.3 . In fact, this paper and 2 establish analogous

statements for random points and for lattice points in K.
The next section is about higher dimensions. Then we define the affine

� �perimeter and recall several of its properties, mainly from Blaschke’s book 6
� � � �and from 2 , 11 . We also need the special positioning of K and the existence

of a small circle rolling freely within K . In Section 5 we give the proof of0
Theorem 1. Theorem 2 is proved in Section 6. The final sections contain proofs
Ž .or sketches of proofs of Theorems 3 and 4.

Ž .3. Higher dimensions. The probability p n, K can be defined for con-
vex bodies K � Rd with d � 2 as well. Most of the known results are about

d � �the case when K � B , the Euclidean unit ball. Hostinksy 9 determined
Ž 3. � � Ž d . � �p 5, B , later Kingman 10 calculated p d 
 2, B . Miles 13 showed

Ž d . � � Žlim p d 
 3, B � 1. He conjectured and Buchta 7 showed lim p dd�� d��
d . � �
m, B � 1 for every fixed m � 3. Barany and Furedi 3 proved that´ ´ ¨

Ž d . �1 d �2p n, B is close to one as long as n � d 2 and close to zero for
n � d2d �2.
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The results of this paper must have higher-dimensional analogues. How-
ever, the proofs given here do not go through. It is not only the unicity of the
convex subset of K � Rd with maximal affine surface area that is missing.

� � ŽFor comments on this, see Remark 1 in 2 . Actually, the unicity of K is not0
.needed for the proof of Theorem 1. It is not clear what could replace the

Ž . dmultiplicative formula 5.2 . Nevertheless I think that for a convex K � R of
Ž .volume 1 with obvious extensions of the definitions ,

n Ž . Ž .d
1 � d�12�Žd�1. '3.1 n p n , K � const d A K 1 
 o 1 .Ž . Ž . Ž . Ž . Ž .Ž .

There is a similar statement in the theory of best approximation of convex
bodies by polytopes. Namely, let S be a convex body with smooth, say CC 2,

Ž .boundary and Vol S � 1 and P be a convex polytope with n vertices. Whenn
approximation of S by P is measured by the volume of their symmetricn
difference, there is a best approximating polytope P� with n vertices. It isn

� �known 8 that

Ž . Ž .d
1 � d�1�2�Žd�1.3.2 n Vol S � P � const d AP S 1 
 o 1 .Ž . Ž . Ž . Ž . Ž .Ž .n

� � �Moreover, there are indications 8 that the vertices of P are distributedn
‘‘uniformly’’ in a small neighborhood U of �S. The width of U at z � �S isn n

�2�Žd�1. 1�Žd
1.Ž .n 	 z where 	 is the product curvature. This speculation and
Ž .3.1 suggest that the random sample X is in convex position and conv X isn n

Ž .nvery close to a fixed smooth convex S � K with probability Vol U . Thisn
quantity is the largest when S � K . Thus X is most likely to be close to K0 n 0
when the sample is in convex position. Perhaps this can be used to attack
Ž .3.1 , the high-dimensional variant of Theorem 3 or its lattice-polytope ana-
logue. Of the latter, it is known that for K � CC with Vol K � 1,

�d Žd�1.�Žd
1.0 � c � n log PP K � c ,Ž .1 n 2

Ž . Ž . dwhere PP K is the set of convex 1�n Z -lattice polytopes contained in Kn
� Ž .� � �cf. 2.4 . This follows from the results of 5 .

Returning to the planar case, it is very likely that Blaschke’s inequality
Ž .1.1 extends to

p n , triangle � p n , K � p n , disk .Ž . Ž . Ž .
� �4. Affine perimeter. We are going to use the results of 2 on affine

perimeter extensively. Given S � CC, choose a subdivision x , . . . , x , x �1 m m
1
� �x of the boundary �S and lines L supporting S at x for all i � m where1 i i

� � � 4 Žm � 1, . . . , m . Write y for the intersection of L and L if L � L ,i i i
1 i i
1
.then y can be any point between x and x . Let T denote the trianglei i i
1 i

with vertices x , y , x and also its area. The affine perimeter of S isi i i
1
defined as

m 3
4.1 AP S � 2 lim T ,Ž . Ž . 'Ý i

1
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�where the limit is taken over a sequence of subdivisions with max x �1, . . . , m i
�x � 0. The existence of the limit, and its independence of the sequencei
1

3mchosen, follow from the fact that Ý T decreases as the subdivision is'1 i
refined. Consequently,

m 3
4.2 AP S � 2 inf T .Ž . Ž . 'Ý i

1

Ž � � � �.We record further properties of the map AP: CC � R see 6 , 11 :

4.3 AP 
S � 
2�3AP S when 
 � 0,Ž . Ž . Ž .
1�3 2 24.4 AP LS � det L AP S when L: R � R is linear,Ž . Ž . Ž . Ž .

2�1�3 2�34.5 AP S � 	 ds � r d� ,Ž . Ž . H H
�S 0

Ž . �1where 	 is the curvature and r � r � � 	 is the radius of curvature at
Ž . Ž . Ž .the boundary point with outer normal u � � cos �, sin � . In 4.5 , of

course, �S has to be sufficiently smooth.
The affine length of a convex curve is defined analogously. We will need the

� 4following fact. Given a triangle T � conv a, b, c , let M be the unique parabola
which is tangent to ac at a and to bc at b.

Among all convex curves connecting a and b within T the arc of the
Ž . Ž .4.6 parabola M is the unique one with maximal affine length, and AP M

3'� 2 T .

Ž . � Ž . Ž .4 Ž . � 4We defined A K � sup AP S : S � CC K , where CC K � S � CC: S � K
� �and cited Theorem 1 of 2 about the existence and unicity of K � CC, K � K0 0

Ž . Ž .with AP K � A K .0
Ž . Ž .As p n, K is invariant under nondegenerate affine transformations, we

want to choose a ‘‘good position’’ for K. We assume first that Area K � 1. Let
E be the maximum area ellipse contained in K. It is well known that

' Ž . Ž . Ž .Area E 	 ��3 3 . Clearly AP K � A K 	 AP E . The affine isoperimetric0 'inequality implies Area K 	 Area E 	 ��3 3 and so the maximum area0
ellipse E in K has area at least � 2�27.0 0

We say that K is in special position if Area K � 1 and E coincides with a0

'circle of radius r centered at the origin. Clearly, r 	 ��27 � 1�3 which0 0
implies, in turn, that diam K � 3. So we have:

Every K � CC can be brought to special position by a suitable affine
Ž . Ž4.7 transformation. In special position, r B � K and K � 3B where B is0 0

.the unit circle centered at the origin .

We will write CC for the collection of K � CC that are in special position. Wes
will need several properties of K .0

Evidently �K � �K � �, as otherwise a slightly enlarged copy of K0 0
Ž .would be contained in K and would have larger affine perimeter than A K .
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Ž .Thus � K ��K consists of countably many convex arcs A , A , . . . , to be0 1 2
called free arcs. The second property we need is:

Each free arc A is an arc of a parabola whose tangents at the endpoints
4.8Ž . are tangent to K as well.0

� �It is proved in 2 that � K contains no line segment on its boundary. This0
Ž . Ž .implies that the point z � � �K where the outer normal to K is u � �0 0

Ž . � .cos �, sin � is uniquely determined for every � � 0, 2� . One can prove
more: when K � CC , the radius of curvature to K exists and is boundeds 0

Ž . Ž .away from 0 and � at every z � . Of this we only need and prove :

Ž . Ž .4.9 The circle of radius 
 � 1�240 rolls freely within K provided K � CC ,0 s

that is, for every z � K there is a circle B of radius 
 such that z � B � K .0 z z 0
Ž .We prove 4.9 at the end of this section.

� 4 Ž .U � u , . . . , u is an ordered set of unit vectors with u � cos � , sin �m 1 m i i i
� � Ž � � � 4.for i � m where m is a shorthand for 1, . . . , m if 0 � � � � � ��� �1 2

� � 2� . U is dense if every arc of the unit circle whose length is 5��mm m
contains at least one of the u . We say that the points x , . . . , x are ini 1 m

Ž .convex position with respect to u , . . . , u , or in u-convex position, for short1 m
� �if, for every i � m ,

� �max u x : j � m � u x .� 4i j i i

Note that x � x is possible. Write T for the triangle bounded by thei i
1 i
� � Ž . Ž .segment x , x and lines u x � x � 0 and u x � x � 0. We de-i i
1 i i i
1 i
1

note the area of this triangle with the same letter T . Finally, if X �i
� 4x , . . . , x is in u-convex position, we define1 m

m 3
T X � T X , U � 2 T .Ž . Ž . 'Ým i

1

For every � � 0 and every K � CC there is m such that for alls 0
Ž .4.10 m � m , for all dense ordered set U of unit vectors and for all0 m

� 4 Ž . Ž .X � x , . . . , x � K in u-convex position, T X, U � A K 
 � .1 m m

Ž .PROOF. Note first that T X is the affine perimeter of a convex body
Ž . Ž . � �M X . Here M X is bounded by parabola-arcs touching edges y , v andi i

� � Ž .v , y of T at y and y where v is the third vertex of T . Assumei i
1 i i i
1 i i
Ž .4.10 is false. Then there is a sequence of U ’s and X ’s with larger and larger

Ž . Ž .m’s so that T X 	 A K 
 � . Choose a convergent subsequence of the0
Ž .M X ’s. Clearly, the limit M is a convex subset of K. Since the affine

Žperimeter is upper semicontinuous this was proved in more general form by
� �. Ž . Ž .Lutwak 12 , AP M 	 AP K 
 � , a contradiction.0

Ž .PROOF OF 4.9 Fix an x, y coordinate system and consider the parabola
M whose equation ist

2y � g x � 118 x � tŽ . Ž .t
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� � �Ž . � �4with t � �1�6, 1�6 . As K � CC , �K � x, y : x � �1�3, 1�3 is thes 0
Ž .graph of two functions; let f x be the smaller. Then f is evidently convex

Ž . Ž . � � � Ž . Ž .and f x � g x for all x � �1�3, 1�3 . Set m � min g x � f x : x �t t t
� �4�1�3, 1�3 .

� � � Ž . Ž .4The set C � x � �1�3, 1�3 : m � g x � f x is nonempty and closed.t t t
Further, there is a unique tangent to f at x � C and it is parallel to thet
tangent of g at x. We claim C is connected. Assume not, then there is ant t

Ž .open interval x , x disjoint from C but with x , x � C . However, replac-1 2 t 1 2 t
Ž Ž .. Ž Ž ..ing the piece of �K between x , f x and x , f x with the arc of the0 1 1 2 2

Ž . Ž .parabola g x � m would produce, by 4.6 , a larger affine perimeter contra-t t
dicting the maximality of K .0

Thus C is either a point or an interval. Increasing the coefficient 118 tot
120 in the definition of M ensures that C is a single point for everyt t

� �t � �1�6, 1�6 . Assume the coefficient is 120 and keep the notation the
same. Then t � C is a point-to-point map. We claim it is continuous.t

Assume t is a sequence with limit t . Then C has a convergent subse-j 0 t j

quence with limit x , say. It is easy to see that x � C holds. However, C0 0 t t0 j

cannot have two distinct accumulation points showing that the map in
question is, indeed, continuous.

A simple inspection, using the special position of K, shows that C ��1�6
Ž .�1�120 and C � 1�120. Thus the parabola g x � m slides freely on1�6 t t

� K between x � �1�120 and 1�120. The circle of radius 1�240 rolls freely0
within the parabola M , so it also rolls freely on �K on the intervalt 0
� ��1�120, 1�120 . Since we can fix the coordinate system arbitrarily to the
origin we get that the same circle rolls freely within K . �0

5. Proof of Theorem 1. Fix K in special position and let X �n
� 4x , . . . , x be an n-sample of random, independent, uniform points from K.1 n

Ž .Let m be large it will depend on � � 0 to be given later and U be anm
Ž . � � �4ordered, dense set of unit vectors. Define i j by u x � max u x : i � n .j iŽ j. j i

Ž .Clearly, i j is well defined with probability 1 and the points x , . . . , xiŽ1. iŽm.
are in convex position with respect to u , . . . , u . Repetitions may, however,1 m
occur but only in contiguous intervals. So let y , . . . , y be the collection of the1 k
distinct x ’s in their original order. To fix the notation, assume y isiŽ j. h

� � � 4maximal for u , u , . . . , u while h � k . Write Y � y , . . . , y .i 
1 i 
2 i 1 kh� 1 h�1 h

We also say, with a slight but convenient abuse of language, that Y is in
u-convex position and that Y is the u-max of X, in notation: Y � u-max X.

Ž .Now p n, K can be computed as

� �p n , K � � X convex � ��� dx . . . dxŽ . H H 1 n
X convex

m
n � �� ��� � X convex, Y � u-max X dy ��� dy ,H HÝ Ý 1 kž /k

k�3 Y u-convex

5.1Ž .
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where the second sum is taken over all possible choices of 1 � i � ��� � i �1 k
m and the probability under the integral is understood with Y fixed and
X �Y varying so that X is in convex position and Y is the u-max of X.

� �The points of X �Y have to lie in the triangles T with h � k where Th h
� � Ž .is bounded by the segment y , y and by the lines u x � y � 0 andh h
1 i hh

Ž .u x � y � 0. Writing p for the number of points of X �Y lying in T ,i h
1 h hh
 1

we have

� �� X convex, Y � u-max X
� � � �� � X convex, Y � u-max X X � T � p �hŽ .Ý h h

� �� � X � T � p �hŽ .h h5.2Ž .
k

pn � k� h� T � KŽ .Ý Ł hp , . . . , pž /1 k 1

� �� � p points for a convex chain in T � K ,h h

where Ý� is taken over all p , . . . , p that sum to n � k. The conditional1 k
probability can be replaced by the product since the events happening in
distinct triangles are independent. We have to explain what stands after the

Ž .last � in 5.2 : we say that points z , . . . , z form a convex chain in T � K1 p
where T is a triangle with distinguished vertices z , z � K if all the z0 p
1 i

� 4are in T � K and conv z , z , . . . , z , z has p 
 2 vertices. In our case the0 1 p p
1
�distinguished vertices are, of course, y and y . Now � p points form ah h
1

�convex chain in T � K is meant with p random, independent points drawn
uniformly from T � K. This probability is known when T � K ; it is proved in
� � Ž � � .4 see also 19 for a related statement that

2 p

� �5.3 � p points form a convex chain in T � .Ž .
p! p 
 1 !Ž .

Here is a quick sketch of the proof. First assume that z , . . . , z are drawn1 p
Ž .from the unit square and seek the probability that they, together with 0, 0

Ž . �Ž . Ž . Ž .4and 1, 1 form a convex chain in the triangle conv 0, 0 , 1, 0 , 1, 1 . The
vertical and horizontal lines through the z have p2 intersection points,j

Žarranged in a matrix. Every one of the p! diagonals i.e., one point from every
.vertical and every horizontal line of this matrix is equally likely but only one

Ž . Ž .of them is an increasing chain from 0, 0 to 1, 1 . So z , . . . , z is an1 p
increasing chain with probability 1�p!. Now an increasing chain is just an

Ž .ordered set of p 
 1 positive vectors. It turns out all of their permutations
are equally likely. Clearly all of them are increasing but only one is convex.

Ž Ž . .�1This gives p! p 
 1 ! for the probability in the square. The case of the
triangle now follows readily.

Ž .We are going to estimate p n, K first from above and then from below. We
Ž . Ž .use 5.1 and 5.2 . Assume a small positive � is given, and choose m0

Ž .according to 4.1 and let m � m .0
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ŽFor the upper estimate we assume first that K is a convex polygon in
.special position . Let U be an ordered, dense set of unit vectors with them

extra condition that the outer unit normals to the edges of K are all
Ž . Žcontained in U . This implies T � K � T and so we can apply 5.3 . This ism h h

. Ž . Ž .the only point where K has to be a polygon. We continue 5.2 using 5.3 ,

phk 2TŽ .h�� �5.4 � X convex, Y � u-max X � n � k !Ž . Ž . Ý Ł 2p ! p 
 1 !Ž .1 h h

� Ž . phŽ 2Ž . .�1with the previous remark about Ý . Here 2T p ! p 
 1 ! �h h h
Ž 3 �3. ph2 e T p and it is easy to show that the product, over h � 1, . . . , k, of theh h
last expression is maximal, subject to the condition Ý p � n � k, whenh

3
T' h

p � n � k .Ž .h 3kÝ T'j�1 j

ŽTo see this, consider p a positive real variable and determine the condi-h
tional maximum of the logarithm of the product, the condition being Ý p � nh

.� k. We have then

phk k2TŽ . ph h3 �3� 2 e T pŽ .Ł Ł h h2p ! p 
 1 !Ž .1 1h h

n�k33 n�k3 k 332 e Ý T' e T Y1 h Ž .ž /
� � ,3 3ž /n � k 4 n � kŽ . Ž .� 0

3
Ž . Ž .where T Y is to be understood as 2Ý T , or as T x , . . . , x possibly' h iŽ1. iŽm.

Ž .with repeated elements. We continue 5.4 by observing that the number of
n � 1terms in the sum is ,ž /k � 1

� �� X convex, Y � u-max X
n�k33e T YŽ .n � 1� n � k !Ž . 3ž /k � 1 ž /4 n � kŽ .5.5Ž .

n�k32e T YŽ .n � 1� n .2ž /k � 1 ž /4 n � kŽ .

Ž . Ž . Ž .According to 4.10 and the choice of m, T Y � A K 
 � . Returning now
Ž .to 5.1 we see that each integral is bounded by the right-hand side of the last

Ž . Ž .formula with T Y replaced by A K 
 � . The number of terms of the second
Ž . � �sum in 5.1 is equal to the number of ways to partition m into k contiguous
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mintervals, that is, . So we inferž /k

n�k32m e A K 
 �Ž .Ž .m n n � 1� �� X convex � nÝ 2ž / ž / ž /k k k � 1 ž /4 n � kŽ .k�3

n�m32e A K 
 �Ž .Ž .
m 2 m� 2 n .2ž /4 n � mŽ .

Here m is fixed and depends only on � , so for large enough n we have
2en 32 'n p n , K � A K 
 2� .Ž . Ž .Ž .

4

Now let K � CC be arbitrary with area K � 1. Choose a convex polygon P
Ž . Ž .containing K so that A P � A K 
 � . Writing Z for a random n-tuple ofn

points from P we have

�� �p n , K � � X convex in K � � Z convex in P Z � KŽ . n n n

� �� Z convex in P and Z � Kn n� � �� Z � Kn

nArea P
� �� � Z convex in Pnž /Area K5.6Ž .

n32e A P 
 2�Ž .Ž .n n� Area P p n , P � Area PŽ . Ž . Ž . 2ž /4n Area P
n32e A K 
 3�Ž .Ž .

� .2ž /4n

To estimate from below we do not need the auxiliary polygon. Shrink first
Ž .K and K from the origin by a factor 
 � 1 so that0

AP 
K � 
2�3AP K � AP K � � .Ž . Ž . Ž .0 0 0

We will fix a large m soon. Define z as the point where u x reaches itsh h
� Ž . Ž .�maximum in 
K where we simply define u � cos 2� h�m , sin 2� h�m0 h

� � Ž . � �for all h � k . Let T z be the triangle bounded by the segment z , zh h h
1
Ž . Ž .and lines u x � z � 0 and u x � z � 0. Choose m so large that, forh h h
1 h
1

� � Ž . Ž .all h � m , the third vertex, v , of T z the intersection of the two lines ish h
� � � �in K and, further, the length of the edges z , v and v , z is at leasth h h h
1

Ž . Ž .
�240 tan ��m � 1�80m, since 
 can be chosen as close to 1 as you wish.
� Ž . �The existence of such an m follows from 4.9 . Finally, let B be the circle ofh
radius 1�100m3 with z � B � 
K .h h 0

Ž .Since we are to estimate p n, K from below we concentrate on the large
Ž . Ž .terms in 5.1 and 5.2 . We only consider the terms with k � m and will only

integrate over y � B . Then, since B is very small, y , . . . , y are inh h h 1 m
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Ž .u-convex position. Moreover, all vertices of the triangles T � T y belong toh h
Ž . Ž . Ž .K. Thus T y � K � T y and 5.3 can be used, again. Further, since y ish h h

Ž .in B and the length of an edge of T z is at least 1�80m, a littleh h
elementary geometry reveals that

1
T y 	 T z 1 � .Ž . Ž .h h ž /7m

Ž .Using this in 5.2 we see that, assuming y � B ,h h

� �� X convex, Y � u-max X
m

pn � m� h	 T yŽ .Ý Ł hp , . . . , pž /1 m 1

� � p points form a convex chain in T yŽ .h h
5.7Ž .

pn�m hm1 2T zŽ .Ž .h�	 n � m ! 1 � .Ž . Ý Ł 2ž /7m p ! p 
 1 !Ž .1 h h

Ž Ž .. phŽ . �3 Ž 3 Ž .ŽThe factors in the product are at least 2T z p 
 1 ! 	 2 e T z ph h h h
.�3 .Ž ph
1 . Ž .
 1 . The last expression is maximal, under the condition Ý p 
 1h

� n, when
3

T z' Ž .h
p 
 1 � n.h 3

mÝ T zŽ .'j�1 j

Using this and some simple estimates, it is easy to see that the maximal
Ž .value of the last product in 5.7 is at least

n33 n3 33e 2Ý T z' Ž .h e A K � 2�Ž .Ž .ž /
	 .3 3ž /4n 4n� 0

Ž .Recall that only the case k � m is considered in 5.1 , and only one term from
Ž . Ž . Ž .the sum in 5.2 . Using the last inequality in 5.7 and 5.1 yields

n3 n�m3e A K � 2� 1Ž .Ž .np n , K 	 n � m ! 1 �Ž . Ž . 3ž / ž /m ž / 7m4n
m�23� � 100mŽ .

n3 n�m2 m1 e A K � 2� 1Ž .Ž . �23	 1 � � 100m ,Ž .2 ž /ž /m! 7m4n

where the square bracket comes from integrating over B m times. Then, forh
large enough n,

2en 32 'n p n , K 	 A K � 3� ,Ž . Ž .Ž .
4

proving the theorem. �
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� �6. Proof of Theorem 2. We need further results from 2 . Assume first
that K is in special position, and a small � � 0 is given. Recall the notation
Ž . � 4 � �CC K � S � CC: S � K . Lemma 5 from 2 states the following:

Ž .There are halfplanes H , . . . , H , each with 1 � ��24 K � H , and1 p 0 i
Ž .points z , . . . , z � K � � 1 
 ��24 K , where p and q are at most1 q 0

Ž . Ž .6.1 const�� , such that the following holds. For every C � CC K with
Ž . � �� C, K � � , either there is an i � p with C � H or there is an0 i

� �j � q with z � C.j

� � ŽActually, Lemma 5 in 2 is stated without ��24 in ‘‘there exists � � 0’’
.form but the same proof with simple and generous computations shows the

Ž .validity of 6.1 . The second thing we need is a pointed version of the
Ž � �.existence and unicity of K Theorem 4 in 2 :0

Ž . Ž .For every K � CC and every z � K there is a unique K z � CC K0
Ž . Ž Ž .. Ž . Ž .6.2 containing z such that AP K z � AP S for every convex S � CC K0

Ž .with z � S, different from K z .0

Assume now n is large, X is a random n-sample from K, write C �n n
conv X . Let E and F , respectively, denote the event that X � H , andn i j n i
z � C , and G the event that X is in convex position. We want to boundj n n

� � C , K � � and GŽ .n 0
�� � C , K � � G � .Ž .n 0 � �� G

Ž .By 6.1 , the numerator is smaller than
p q

� �� E � G 
 � F � G .Ý Ýi j
1 1

Ž . Ž .The unicity of K and 6.2 imply the existence of � � 0 such that A K � H0 i
Ž . Ž Ž .. Ž .
 3� � A K and AP K z 
 4� � A K . Now for large enough n, Theo-0 j

rem 1 ensures
n32e A K � �Ž .Ž .� �6.3 � G 	 .Ž . 2ž /4n

� �Next we estimate � E � G . Using Theorem 1 we havei

� � � �� E � G � � X � H and X convexi n i n

� � �� � X convex X � H � X � Hn n i n i

n
Area K � HŽ .i� p n , K � HŽ .i ž /Area K

n n32e A K � H 
 � Area K � HŽ . Ž .Ž .i i� 2 ž /ž / Area K4n Area K � HŽ .i

6.4Ž .

n n2 2e e3 3� A K � H 
 � � A K � 2� .Ž . Ž .Ž .Ž .i2 2ž / ž /4n 4n
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� �Estimating � F � G is similar but one has to be more careful. We have toj

repeat the proof of Theorem 1, upper bound, with the extra condition z � C .j n
Ž .For the sake of simplicity we ignore the use of the auxiliary polygon. At the
very start of the proof we defined x , . . . , x which was abbreviated as YiŽ1. iŽm.

Žafter getting rid of repetitions. This gives rise to the convex polygon which
.clearly depends only on Y ,

� �P Y � x : u x � x � 0 for h � m .Ž . Ž .� 4h iŽh.

Ž .Now the proof goes unchanged up to 5.5 , this time with the condition
Ž . Ž . Ž .z � C which implies z � P Y because C � P Y . We claim that T Y �j n j n

Ž Ž ..� � AP K z provided m is large enough.0 j

Ž .The proof is almost identical to that of 4.10 . Assume the claim is false.
Ž .Then there is a sequence of Y ’s with larger and larger m’s so that T Y � �

Ž Ž .. Ž . Ž . Ž . Ž .	 AP K z . Define the convex body M Y as in 4.10 . Then M Y � P Y0 j

Ž Ž .. Ž . Ž .and AP M Y � T Y . Choose a convergent subsequence of the M Y ’s
Ž .with limit M � CC K . Evidently z � M. Since the affine perimeter is upperj

Ž � �. Ž . Ž Ž ..semicontinuous see 12 , AP M � � 	 AP K z , a contradiction.0 j
Ž . Ž Ž ..Now, with the claim just proved, the inequality T Y � AP K z 
 � �0 j

Ž . Ž .A K � 3� can be used in 5.5 . So we have, repeating the same steps,

n32e A K � 2�Ž .Ž .
� F � G � .j 2ž /4n

Ž . Ž . Ž .Now 6.2 , 6.3 and 6.4 show

3nA K � 2�Ž .
�� � C , K � � G 	 p 
 q ,Ž . Ž .n 0 ž /A K � �Ž .

which is very small when n is large. �

7. Proof of Theorem 3. We are to estimate

n

� �E Q X � � x , . . . , x convexŽ . Ý Ýn i i1 k
x , . . . , xk�3 i i1 k

n
n � �� � y , . . . , y convexÝ 1 kž /k

k�3

7.1Ž .

where y , . . . , y are random, independent, uniform points from K. Given1 k
� � 0, choose n , by Theorem 1, so large that for m 	 n ,0 0

m m3 32 2e A K 1 � � e A K 1 
 �Ž . Ž . Ž . Ž .
7.2 � p m , K � .Ž . Ž .2 2ž / ž /4m 4m
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3 3�2'Let k � 2 A K 1 � � n and assume k is an integer and n is soŽ . Ž .
Ž .large that k � n . Then the kth term in the last line of 7.1 is at least0

exp 3 � 2�2�3A K n1�3 1 � � ,� 4Ž . Ž .
as one can easily check.

� Ž . �To bound E Q X from above, choose n so large thatn

3 3�2'k � 2 A K 1 
 � nŽ . Ž .0

Ž .is much larger than n . We can estimate the sum in the last line of 7.1 as0

n n0 n nE Q X � 
 p k , KŽ . Ž .Ý Ýn ž / ž /k k
k�3 n 
10

k32n e A K 1 
 �Ž . Ž .n n� n 
 Ý0 2n ž /ž / ž /0 k 4kn0

k32n ken e A K 1 
 �Ž . Ž .n� n 
 ,Ý0 2n ž /ž / ž /0 k 4kn0

Ž .where we used 7.2 as well. The maximal term in the second sum occurs at
� �2�3 Ž . 1�3Ž .1�34k � k and turns out to be smaller than exp 3 � 2 A K n 1 
 � ,0

yielding
1�3n �2�3 1�30E Q X � n 
 n exp 3 � 2 A K n 1 
 �Ž . Ž . Ž .� 4n

� exp 3 � 2�2�3A K n1�3 1 
 � . �� 4Ž . Ž .

8. Proof of Theorem 4. We have to estimate the expectation of the
Ž . Ž . Ž .number of P � Q X that satisfy � P, K � � . We use 6.1 and estimaten 0

Ž .the expectations of P � Q X satisfying P � H , and z � P, respectively.n i j
� �The previous section contains bounds for � X � H , X convex and alsok i k

� � � Ž . �for � z � X , X convex . Using them the way we computed E Q X , therej k k n

is no difficulty completing the proof. �
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