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A PARTICULAR CASE OF CORRELATION INEQUALITY FOR
THE GAUSSIAN MEASURE

By Gilles Hargé

Université d’Evry

Our purpose is to prove a particular case of a conjecture concerning
the Gaussian measure of the intersection of two symmetric convex sets of
�n. This conjecture states that the measure of the intersection is greater or
equal to the product of the measures. In this paper, we prove the inequality
when one of the two convex sets is a symmetric ellipsoid and the other one
is simply symmetric. The general case is still open.

1. Introduction. This paper deals with the following conjecture. Let A
and B be two symmetric convex sets; if µ is a centered, Gaussian measure on
�n, could we say that

µ�A ∩B� ≥ µ�A�µ�B� ?(1)

This formulation is due to Das Gupta, Eaton, Olkin, Perlman, Savage and
Sobel [3]. Nevertheless, this question for some particular cases appeared be-
fore 1972 (see also [3] for the history of the problem). An important contribu-
tion is due to Khatri [6] and S̆idák [10] who, in 1967, independently proved
the result if B is of the following form:

B = �x = �x1� � � � � xn�� � x1 �≤ a	
(Sugita [11] gives another proof of this).
In 1977, Pitt [7] proved the inequality (1) in the two-dimensional case.

Recently, Schechtman, Schlumprecht and Zinn [9] have proved (1) if the two
sets are centered ellipsoids.
In this paper, we prove (1) if A is an arbitrary symmetric convex set and B

a centered ellipsoid,

B = �x ∈ �n� �Cx�x� ≤ 1	
(C is a symmetric, nonnegative matrix, �� � is the usual scalar product on

�n).
In particular, it contains the case studied in [6] and [10].
We shall use the following results. Recall that a function f
 �n → �+ is

called log-concave if for x�y ∈ �n and 0 < λ < 1,

f�λx+ �1− λ�y� ≥ f�x�λf�y�1−λ�
Prékopa [8] has proved the following.
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Theorem 1. Let

f
 �n × �p → � log-concave on �n+p�

�x�y� �→ f�x�y�

Then the function

x �→
∫
f�x�y�dy is log-concave on �n�

Now, let C be a symmetric positive definite matrix. We denote by µC the
measure on �n which has the following density with respect to the Lebesgue
measure:

x �→
√
detC

exp�−1/2�Cx�x��√
2π

n

(so µ = µI).
Let

LC�f� = 1
2

(
�f− �Cx�∇f�)�

where f is a function so that this expression makes sense.
Let EµC

�f� = ∫
fdµC, then

EµC
�fLC�g�� = − 1

2 EµC
��∇f�∇g���

If PC
t �f� is the solution of

d

dt
�PC

t �f�� = LC�PC
t �f���

PC
0 �f� = f�

then we can write the Mehler formula (see [4]):

PC
t f�x� =

∫
f

(
exp

(
− t

2
C

)
x+(

I− exp�−tC��1/2y
)
dµC�y��

More exactly, PC
t f�x� = ���exp�−t/2C����f�C−1/2����C1/2x� where � is given

in [4] by

��M�f�x� =
∫
f�M∗x+

√
I−M∗My�dµ�y��

whereM is a matrix such that I−M∗M is a positive matrix.
If C = I, we obtain the Ornstein–Uhlenbeck semigroup.
Using Theorem 1, we see immediatly that PC

t f is log-concave if f is log-
concave.
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2. Proof of the main result.

Theorem 2. Let g
 �n → � be a log-concave, even function and f
 �+ → �+

be a differentiable function such that f
′ ≤ 0 on �+.

Let C be a symmetric positive definite matrix. Then∫
f��C−1x� x��g�x�dµ�x� ≥

∫
f��C−1x� x��dµ�x�

∫
g�x�dµ�x��

Proof. Let y = C−1/2x. The inequality becomes∫
f��y�2�g�C1/2y�dµC�y� ≥

∫
f��y�2�dµC�y�

∫
g�C1/2y�dµC�y��

We remark that ḡ�y� = g�C1/2 y� is a log-concave, even function.
Let ϕ be the following function:

ϕ�t� = EµC
�f��y�2�PC

t �ḡ��y���
We have

lim
t→+∞

ϕ�t� = EµC
�f��y�2��EµC

�ḡ� and lim
t→0

ϕ�t� = EµC
�f��y�2�ḡ��

So, it is sufficient to show that ϕ′ ≤ 0.
ϕ′�t� = EµC

�f��y�2�LC�PC
t �ḡ���

= − 1
2 EµC

��∇�f��y�2���∇�PC
t �ḡ����

= −EµC
�f′��y�2��y�∇�PC

t �ḡ����
The function y �→ PC

t �ḡ��y� is a log-concave, even and positive function if
g �= 0. Then, it is of the form e−G whereG is a convex, even function. Moreover,
G is arbitrarily often differentiable.
So, we have

ϕ′�t� = EµC
�f′��y�2��y�∇G�y�� exp�−G�y����

Using the fact that G is convex and even, we can write

∇G�y� = 0+
∫ 1
0
HessG�ty�ydt�

Thus, we deduce that �∇G�y�� y� is positive, which achieves the proof of the
theorem. ✷

Remark 1. It is possible to prove the theorem without the change of vari-
able used in the beginning of the proof. It is sufficient to choose the following
semigroup, which is connected in a simple way to PC

t 
 P̃C
t = ��exp�− t

2C��
(with � given in [4]). The new proof which we obtain like this is similar to the
previous one.

We deduce the following.
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Corollary 3. Let ν be a centered Gaussian measure on �n. Let C be a
symmetric nonnegative matrix and A a symmetric convex set on Rn. Then

ν���Cx�x� ≤ 1	 ∩A� ≥ ν���Cx�x� ≤ 1	� ν�A��

Proof. If the covariance matrix of ν is not invertible, it is possible to find
an integer k < n and a centered Gaussian measure ν̃ on �k with an invertible
covariance matrix, such that∫

�n
Fdν =

∫
�k

F�P�x1� � � � � xk�0� � � � �0�"�dν̃�x1� � � � � xk��

where P is a real unitary matrix.
So, it is enough to show the result when ν has a density with respect to the

Lebesgue measure. We have

1�Cx�x�≤1 = 1�−∞�1���Cx�x���
We approximate 1�−∞�1� with a decreasing differentiable function. (if C �= 0
then dx�x� �Cx�x� = 1	 = 0). Then we approximate C with a symmetric
positive definite matrix. Since 1A is a log-concave even function, Theorem 2
leads to the conclusion. ✷

Remark 2.

(i) If we want to generalize this method to an arbitrary symmetric convex
set, we need to show that a certain family of semigroups preserves the property
of log-concavity. We deal with semigroups with a generator of the form

L�f� = 1
2 �div�A�x�−1∇f� − �A�x�−1x�∇f���(2)

whereA�x� is a symmetric positive definite matrix. This question is still open.
The reason why it will be sufficient is the following. We would like to

prove Theorem 2 with an even, strictly log-concave function e−F instead of
f��C−1x� x��. It is easy to show that ∇F�x� = A�x�x where A�x� is a sym-
metric positive definite matrix. Let Pt be a semigroup with a generator given
by (2) and define

ϕ�t� =
∫
e−FPtgdµ�

We obtain

ϕ′�t� =
∫
e−FLPtgdµ = − 1

2

∫
�A�x�−1∇�e−F��∇Ptg�dµ

= 1
2

∫
�x�∇Ptg�e−F dµ�

So, ϕ′�t� ≤ 0 if we could prove that Ptg is log-concave and even.
(ii) Inequalities like the one of the theorem and concerning other func-

tions than log-concave functions have been proved in the papers of Bakry and
Michel [1] and of Hu [5]. Proofs also use particular semigroups.
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We could deduce from the corollary the following fact.

Corollary 4. Let f
 � → � be a nonnegative, decreasing, differentiable
function.

Let C and D be a two-symmetric, nonnegative matrix. We assume that C is
invertible. Let g be an even, log-concave function. Then∫

f
(�Cx�x�) exp(− 1

2�Dx�x�
)
g�x�dµ�x�

≥
∫
f��Cx�x�� exp(− 1

2�Dx�x�
)
dµ�x�

∫
gdµ�

Proof.∫
f
(�Cx�x�) exp(−1

2
�Dx�x�

)
g�x�dµ�x�

=
∫
f��C̄y� y��g��I+D�−1/2 y� dµ�y�√

det�I+D�
with C̄ = �I+D�−1/2C�I+D�−1/2�

so ∫
f
(�Cx�x�) exp(−1

2
�Dx�x�

)
g�x�dµ�x�

≥
∫
f��C̄y� y��dµ�y�

∫
g��I+D�−1/2 y� dµ�y�√

det�I+D�

≥
∫
f��Cx�x�� exp

(
−1
2
�Dx�x�

)
dµ�x�

×
∫
g�x� exp

(
−1
2
�Dx�x�

)
dµ�x�

√
det�I+D��

Using Theorem 2 for the second integral, we obtain the result. ✷

This corollary could be seen as a generalization of Theorem 2. The problem
is to replace exp�− 1

2t� by an arbitrary decreasing function, which should allow
us to show the conjecture for the intersection of two ellipsoids instead of B.

3. Relation with Pitt’s proof. We use notations of Theorem 2.
Pitt [7] introduces the function

ψ�t� = Eµ�f��C−1x� x��PI
t �g���

We always have

lim
t→∞

ψ�t� = Eµ�f��C−1x� x���Eµ�g��

lim
t→0

ψ�t� = Eµ�f��C−1x� x��g�
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and

ψ′�t� = − 1
2 Eµ

[�∇(f��C−1x� x��)�∇PI
t �g��

]
So, it is enough to show that ψ is decreasing. The function ϕ of Theorem 2

is better than ψ because we can write ϕ′ as an integral of a function which is
negative everywhere. It is not the case for ψ and it explains the difficulty of
Pitt’s proof.
Pitt has remarked that it is sufficient to show for an arbitrary dimension

the following inequality (which is nothing else but an expression of ψ′):

for all even and log-concave functions f and g

∫
�∇f�∇g�dµ ≥ 0�(3)

This inequality seems to be stronger than conjecture (1). We will prove it in
a particular case which unfortunately gives a result that is weaker than the
one of Theorem 2.

Theorem 5. If f�x� = exp�− 1
2�Cx�x�� with C a nonnegative, symmetric

matrix and if g = e−G where G is even and convex, then∫
�∇f�∇g�dµ ≥ 0�

Proof. Define Ḡ�x� = G��I + C�−1/2 x�. After using a change of variable,
we obtain∫

�∇f�∇g�dµ = α
∫
�Cx�∇Ḡ�x�� exp

(
−Ḡ�x� − �x�2

2

)
dx�

where α is a positive constant.
This is equal to

β
∑
i� j

Ci� jEν

(
xi
∂Ḡ

∂xj

)

with β positive and dν�x� = exp�−Ḡ�x� − �x�2/2� �dx/λ� �λ = ∫
exp�−Ḡ�x� −

�x�2/2�dx��
LetM be the matrix

Mi�j = Eν

(
xi
∂Ḡ

∂xj

)
�

We must show that Tr�CM� ≥ 0. So, it is enough to show thatM is symmetric
and nonnegative.
Let

L = 1
2
��− �∇H�∇�� with H�x� = Ḡ�x� + �x�2

2
�

H is even and convex. It is easy to see that L is symmetric with respect to ν
and

Eν�hLk� = − 1
2 Eν��∇h�∇k���
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We notice that

xj + 2Lxj = − ∂Ḡ

∂xj
⇒ Mi�j = −Eν�xi�xj + 2Lxj��

= −Eν�xixj� +Eν

(�∇xi�∇xj�)
= δij −Eν�xixj��

Consequently, M is symmetric. Let h = �h1� � � � � hn� ∈ �n
 ∑
i� j hihjMi�j =

�h�2 −Eν ��h�x�2�. To proveM is nonnegative, it is sufficient to show

∀h ∈ �n \ �0	� Eν

(〈
h

�h� � x
〉2)

≤ 1�

This is a particular case of a result of Brascamp and Lieb [2], Theorem 5.1,
which is simple to prove in our case. In order to give a complete proof, we will
demonstrate this result using Prekopa’s theorem. Let

k1 =
h

�h� �

We choose �k2� � � � � kn� such that �k1� � � � � kn� is an orthonormal basis of �n.
Using a change of variable, we see that it is enough to prove

∫
y21 exp

(
−Ḡ�Py� − �y�2

2

)
dy ≤

∫
exp

(
−Ḡ�Py� − �y�2

2

)
dy�

where P is an unitary matrix.
F�y� = Ḡ�Py� is even and convex. Consequently, the question is:

∫
y21 exp

(
−F�y� − �y�2

2

)
dy ≤

∫
exp

(
−F�y� − �y�2

2

)
dy ?

We can write

∫
y21 exp

(
−F�y� − �y�2

2

)
dy =

∫ +∞

−∞
y21 exp�−K�y1�� exp

(
−y21
2

)
dy1

with exp�−K�y1�� =
∫
�n−1

exp
(
−F�y1� ȳ� −

�ȳ�2
2

)
dȳ

and with Prékopa’s theorem, K is even and convex.
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Let us make an integration by parts:

∫ +∞

−∞
y1 exp�−K�y1��y1 exp

(
−y21
2

)
dy1

=
∫ +∞

−∞
exp

(
−y21
2

)
�exp�−K�y1�� − y1K

′�y1� exp�−K�y1���dy1

=
∫ +∞

−∞
exp

(
−y21
2

)
exp�−K�y1��dy1

−
∫ +∞

−∞
exp

(
−y21
2

)
y1K

′�y1� exp�−K�y1��dy1�

K is even and convex so y1K′�y1� ≥ 0, we deduce that
∫
y21 exp

(
−F�y� − �y�2

2

)
dy ≤

∫ +∞

−∞
exp

(
−y21
2

)
exp�−K�y1��dy1

≤
∫
exp

(
−F�y� − �y�2

2

)
dy�

Remark 3. One could ask if the following inequality is true. If C is a sym-
metric positive definite n× n matrix, could we write

for all even and log-concave functions f and g�∫
�∇f�∇g� exp(− 1

2�Cx�x�
)
dx ≥ 0 ?

The answer is negative. Let

f�x� = exp(− 1
2�Ax�x�

)
and g�x� = exp(− 1

2�Bx�x�
)
�

with A and B symmetric, nonnegative matrices; we obtain∫
�∇f�∇g� exp(− 1

2�Cx�x�
)
dx = α Tr��A+B+C�−1AB� with α > 0�

In the two-dimensional case, we choose

A =
(
2

√
ε√

ε 2ε

)
� B =

(
1 −6√ε

−6√ε 36ε

)
� C =

(
1 0
0 ε

)
�

In this case, Tr��A+B+C�−1AB� = �1/131��−1+ 174ε�.
Nevertheless, it is possible to deduce from Theorem 5 (or to prove it directly)

that

Tr��I+A+B�−1AB� ≥ 0 if A and B are symmetric and nonnegative
n× n matrices�
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4. Comparison of semigroups. The method used in Theorem 2 allows
us to obtain a result quite better than those of this theorem. The idea is to
compare two particular semigroups.
Let G
 �n → � be differentiable and let C be a symmetric, nonnegative

matrix. �0�� �P� denotes a probability space with a filtration ��t�. Let Bt be
a Brownian motion issued from 0 with values in �n.
Let X be the solution of the following stochastic differential equation:

dXx
t = dBt − 1

2CX
x
t dt− 1

2∇G�Xx
t �dt�

Xx
0 = x�

We associate to Xx
t the semigroup

Pt�f��x� = E�f�Xx
t ���

Theorem 6. If f is log-concave and even and if G�x� = u��x�2� where u
is a differentiable, increasing and Lipschitz function then, for all nonnegative
real t,

Ptf�x� ≥ PC
t f�x��

Proof. First, we remark that the explosion time of X is equal to infinity.
Let

Gn�x� = G�x� if �x� ≤ n�

Gn�x� = u�n2� + 2u′�n2�n��x� − n� if �x� ≥ n�

For all x, we obtain ∇Gn�x� = λn�x�xwith λn ∈ �+. Moreover, ∇Gn is bounded.
Let

dXn
t = dBt − 1

2CX
n
t dt− 1

2∇Gn�Xn
t �dt�

Xn
0 = x�

Define

Pn
t �f�x�� = E�f�Xn

t ���
We will use Girsanov’s theorem for Xn. Let

Bt = B̃t +
∫ t

0
αns ds�

where αnt = 1
2∇Gn�Xn

t �.
Define

Dn
t = exp

(∫ t

0
�αns � dBs� − 1

2

∫ t

0
�αns �2 ds

)
= 1+

∫ t

0
Dn

s �αns � dBs��

Dn
t is a martingale because ∇Gn is bounded.
Define a new probability Qn by

dQn��t
= Dn

t dP��t
�
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B̃ is a Qn-Brownian motion. We have

dXn
t = dB̃t − 1

2CX
n
t dt�

Xn
0 = x�

We can solve this equation and we obtain

Xn
t = exp

(
− t

2
C

)
x+ exp

(
− t

2
C

) ∫ t

0
exp

(
s

2
C

)
dB̃s

= exp
(
− t

2
C

)
x+ �I− exp�−tC��1/2C−1/2Nt�

where Nt ∼ N�0� I� under Qn. Define

P
Qn

t f�x� = EQn
�f�Xn

t ���
Consequently, we have

P
Qn

t f�x� = PC
t f�x��

Moreover,

Pn
t f�x� = E�f�Xn

t �� = EQn
�f�Xn

t ��Dn
t �−1�

and

�Dn
t �−1 = 1−

∫ t

0
�Dn

s �−1�αns � dB̃s� ⇒ Pn
t f�x�

= P
Qn

t f�x� −EQn
�f�Xn

t �
∫ t

0
�Dn

s �−1�αns � dB̃s���

Itô’s formula applied to the function �s� y� �→ P
Qn

t−sf�y� and to the semimartin-
gale �s�Xn

s � gives

P
Qn

t−sf�Xn
s � = P

Qn

t f�x� +
∫ s

0

〈∇PQn

t−uf�Xn
u�� dB̃u

〉 ⇒ f�Xn
t �

= P
Qn

t f�x� +
∫ t

0

〈∇PQn

t−uf�Xn
u�� dB̃u

〉
�

�Dn
t �−1 is a martingale too, so

Pn
t f�x� = P

Qn

t f�x� −
∫ t

0
EQn

(
�Dn

s �−1
〈
αns �∇PQn

t−sf�Xn
s �
〉)
ds�

Moreover, we have〈
αns �∇PQn

t−sf�Xn
s �
〉 = 1

2λn�Xn
s �
〈
Xn

s �∇PC
t−sf�Xn

s �
〉
�

Since f is even and log-concave, PC
t−sf is consequently even and log-concave

too. 〈
Xn

s �∇PC
t−sf�Xn

s �
〉 ≤ 0�
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Therefore,

Pn
t f�x� ≥ PC

t f�x��
Let Tn = inf�t� �Xt� ≥ n	. If t ≤ Tn then X

n
t = Xt. Moreover, limn→+∞Tn

= +∞. Moreover, f is bounded because it is an even, log-concave function. So
we can use the dominated convergence theorem to obtain

lim
n→+∞E�f�Xn

t �� = E�f�Xt���

This achieves the proof. ✷

We deduce from Theorem 6 a new proof of Theorem 2:
Let us take notations of Theorem 2. Using the change of variable in the

beginning of the proof of this theorem, we notice it is enough to show∫
f��y�2�g�C1/2y�dµC�y� ≥

∫
f��y�2�dµC�y�

∫
g�C1/2y�dµC�y��

It is sufficient to assume that f is a strictly positive, decreasing and bounded
function and that f′ is also bounded. Therefore f��y�2� = exp�−u��y�2�� with
u′ ≥ 0 and u′ bounded.
Define G�y� = u��y�2�.
Using Theorem 6, we obtain

Pt�g�C1/2·���x� ≥ PC
t �g�C1/2·���x��

Define a new measure ν by

dν�x� = exp
(− 1

2�Cx�x� −G�x�)∫
exp

(− 1
2�Cx�x� −G�x�)dx dx�

Consequently,∫
Pt�g�C1/2·���x�dν�x� ≥

∫
PC
t �g�C1/2·���x�dν�x��

The infinitesimal generator of X is equal to

L = 1
2��− �Cx+ ∇G�∇���

It is easy to show that L is symmetric with respect to ν and Pt is symmetric
with respect to ν; that is to say,∫

HPtKdν =
∫
KPtHdν�

Therefore ∫
g�C1/2x�dν�x� ≥

∫
PC
t �g�C1/2·���x�dν�x��
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Let t go to infinity:

PC
t �g�C1/2·���x� →

∫
g�C1/2y�dµC�y� ⇒

∫
g�C1/2x�f��x�2�dµC�x�

≥
∫
g�C1/2x�dµC�x�

∫
f��x�2�dµC�x��

5. Moment inequalities.

Theorem 7. Let ν be a centered Gaussian measure on �n. Let f be an even,
log-concave function and A a nonnegative symmetric matrix. Then

∀α > 0�
∫
��Ax�x��α fdν∫

fdν
≤

∫
��Ax�x��α dν �

Proof. Let Ct = �x�f�x� ≥ t	, Ct is convex and symmetric. We have
f�x� = ∫ +∞

0 1Ct
�x�dt. So it is enough to prove

∫
��Ax�x��α 1Ct

dν∫
1Ct

dν
≤

∫
��Ax�x��α dν�

Define a new measure ν̃ by

dν̃ = 1Ct
dν∫

1Ct
dν

�

We obtain ∫
��Ax�x��α dν̃ =

∫ +∞

0
ν̃
(
��Ax�x��α ≥ u

)
du

=
∫ +∞

0

ν
(
��Ax�x�� ≥ u1/α�Ct

)
ν�Ct�

du

≤
∫ +∞

0
ν

(
��Ax�x�� ≥ u1/α

)
du

≤
∫
��Ax�x��α dν�

If we choose �Ax�x� = �h�x�2 with h ∈ Rn, this theorem generalizes some
of the results of Theorem 5.1 of [2]. We obtain in this way a comparison of the
moments of a measure with an even, log-concave density with the moments
of the Gaussian measure. ✷
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