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A PROBABILISTIC APPROACH TO THE
TWO-DIMENSIONAL

NAVIER–STOKES EQUATIONS

BY BARBARA BUSNELLO

University of Pisa

We turn the Navier-Stokes equations for a 2-dimensional viscous
incompressible fluid into a system of functional integrals in the trajectory
space of a suitable diffusion process. Using probabilistic techniques as
Girsanov’s transformation and Bismut-Elworthy formula, we prove the
existence of a unique global solution of this system in a constructive way.

Ž .1. Introduction. We consider here the Navier�Stokes NS equations
for velocity u and pressure p in a viscous, incompressible, planar fluid with
initial velocity u in the absence of external forces,0

� u
� 2� u � � u � �p � ��u � t , x � � � � ,Ž . Ž .

� t1.1Ž .
� 2� � u � 0 � t , x � � � �Ž .

with initial and boundary conditions

u 0, x � u x � x � �2 ,Ž . Ž .0
1.2 �Ž . lim u t , x � 0 � t � �Ž .

� �x ���

We will call stream function a function 	 such that

�	
t , xŽ .

� x2�� 	 t , x � � u t , x .Ž . Ž .
�	

� t , xŽ .� 0
� x1

Ž . Ž .We recall the formulation of system 1.1 , 1.2 in terms of the vorticity
Ž2. Ž1. Ž
 � rot u � � u � � u and the corresponding stream function vanishing1 2
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.at infinity 	 and the velocity

�

� � 21.3 � � 	 � � 
 � � �
 , t , x � � � � ,Ž . Ž .Ž .

� t


 0, x �rot u x � 
 x , x � �2 ,Ž . Ž . Ž .0 0

� �	 � 
 , t , x � ��� �2Ž .t t

lim 	 t , x � 0, t � ��Ž .
� �x ���

u � �� 	 .
Ž � � .See 3 , page 44.

Ž .The aim of this work is to analyze system 1.3 with probabilistic methods.
This was suggested to the author by Mark Freidlin. Using probabilistic

Ž .representations we transform 1.3 in the problem
t , x � 2
 t , x � E 
 X , t , x � � � � ,Ž . Ž .Ž .0 t

t , x t , x 'dX � �u t � s, X ds � 2� dW ,Ž .s s swhere
t , xX � x ,0

1.4Ž .

�1 1
� � 2u t , x � � E 
 t , x � W W ds, t , x � � � � ,Ž . Ž . Ž .H s s2 s0

W 1 �t Ž .where W � is a two-dimensional Brownian motion BM and W2t tž /Wt

W 2
t� .1ž /�Wt

We denote by C the space of continuous functions on �2 vanishing at0
�Ž 2 . 2infinity, equipped with the L � , by C the set of continuous function on �K

whose support is compact, and for all Banach space X, we denote by
Ž� � . Ž� � . �Ž� � .BC 0, � , X the space C 0, � , X � L 0, � , X . Furthermore, for sake of

r rŽ 2 . � � � � r 2simplicity, we use the notation L for L � and for .r L Ž� .
� � 1 Ž .Ben-Artzi in 1 showed that, for initial vorticity 
 in L , system 1.3 has0

a long-time solution. He proved that this solution is unique and regular and,
for 
 in C� � L1, he proposed an iterative method to obtain the solution.0 0

Ž .Initially, our plan was to recover the same results for system 1.4 by
probabilistic techniques. We realize it just partially: we prove existence and
uniqueness under the assumption that the initial vorticity belongs to L p � Lq

with 1 	 p � 2 � q, and we do not prove regularity results for the solution.
However, for 
 in L p � Lq, we provide a method constructing the solution0

� � 1 �which extends that proposed in 1 for initial vorticities in L � C .0
The work is organized as follows: In Section 2 we turn the NS system into

Ž .the system of functional integrals 1.4 . The third and fourth sections contain
some preliminary results which we need in our proofs of the existence and the
uniqueness of the solution. In Section 3 we provide some useful estimates for

pŽ .the L � norms of the Girsanov densities corresponding to stochastic dif-
Ž .ferential equations SDE with additive noise, and in Section 4 we prove that

Ž .the operators corresponding to stochastic differential equations SDE with
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additive noise and divergence-free drift do not increase the L p norms. In
p q Ž .Section 5, using these results, we show that, if 
 � L � L , system 1.4 has0

a unique global solution. The last section deals with SDEs where the noise is
additive and the drift satisfies a ‘‘quasi-Lipschitz’’ estimate which the fluid
velocity satisfies, provided that the initial vorticity belongs to L p � L� for

� � Žsome p � 1, 2 we prove that Lebesgue measure is invariant with respect to
.those SDEs .

Subjects partially related to those of the present paper are studied in a
� �different way by Marchioro and Pulvirenti in 8 .

2. The transformation of NS equations into a system of functional
Ž .integrals. We consider here system 1.3 and we convert it into a system of

functional integrals. Some difficulties arise when we try to transform the
elliptic equations since we need a probabilistic representation of the solution
of Poisson’s equation. Section 2.1 contains a failed attempt to represent, when
f � C� , the unique solution in C of �	 � f using the probabilistic expres-K 0
sion of the heat semigroup. In Section 2.2 we provide probabilistic representa-
tions of the derivatives of 	 . Using these representations and the representa-
tion of the solution of parabolic equations with initial condition via SDE, in

Ž .Section 2.3 we rewrite 1.3 as a system of functional integrals.

2.1. Probabilistic representation of the solution of Poisson’s problem in �2.
Consider the Poisson equation

2.1 �	 � f .Ž .
1The operator A � � generates a strongly continuous semigroup of contrac-2

Ž .tions on C the set of all bounded and uniformly continuous functions and,b
Ž .�1for all � � 0, the resolvent A � �I can be expressed as follows:

��1 ��sA � �I f x � e P f x dsŽ . Ž . Ž . Ž .H s
0

�
�� s� e E f x � W ds � f � C .Ž .H s b

0

So one could hope that, for f � C , the integralb

�1
2.2 	 x � E f x � W dsŽ . Ž . Ž .H s2 0

Ž .converges providing the solution of 2.1 . Unfortunately, that integral does
not converge in general, as the next proposition proves. This result is known
Ž � � .see 9 , Exercise 2.29 , but we include a short proof.

PROPOSITION 2.1.1. Let f : �2 � �� be a continuous function, f � 0. Then,
for every x � �2, we have

��

P f x dt � ��.Ž . Ž .H t
0
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FIG. 1.

	 4PROOF. There exists a � 0 such that f � a � �. Since f is continuous,
2 Ž . 	 4 2there exist y in � and  � 0 such that B y,  
 f � a . Fix x � � . There

� �exist �, � � 0, 2� and r, R � � such that 0 	 � � � � 2� , 0 � r � R and
	 � � Ž . 4 Ž . Ž .z � r � z � R, � � arg z � � 
 B y � x,  see Figure 1 . It follows that

P W � x � B y ,  � P W � B y � x , Ž . Ž .Ž . Ž .t t

� � � r 2 R2Ž .
� exp � � exp �ž / ž /ž /2� 2 t 2 t

and

�� ��
2 2� � � r RŽ .

E f W � x dt � a exp � � exp � dt .Ž .H Ht ž / ž /ž /2� 2 t 2 t0 0

Note that

� � � r 2 R2 1Ž .
exp � � exp � �ž / ž /ž /2� 2 t 2 t t

and, in consequence,
�� �� c

E f W � x dt � a dt � �. �Ž .H Ht t0

� Ž .Hence, if f � C and f � 0, we cannot write the solution of 2.1 in theK
Ž .form 2.2 .
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REMARK 2.1.1. From the preceding proposition we deduce that, if f is a
continuous function which changes sign, then, for all x � �2, the integrals

�� � �Ž .� �� � �Ž .�H E f x � W dt and H E f x � W dt diverge. Nevertheless, it0 t 0 t
�� � Ž .�would be an error to deduce that the integral H E f x � W dt is undeter-0 t

� Ž .�� � �Ž .�mined, because the equivalence E f x � W � E f x � W doest t
� Ž . �� � Ž .�not hold in general for instance, if f x � x, then H E f 0 � W dt �0 t

�� � � �H E W dt � 0 .0 t

2.2. Probabilistic representations of the derivatives of the solution of Pois-
2 � Ž .�son’s problem in � . Consider the function x � E f x � W . Under suit-t

able assumptions on f, it is differentiable, and the partial derivatives can be
expressed by the Bismut-Elworthy formula

� 1
iE f x � W � E f x � W WŽ . Ž .t t t� x ti

Ž � �.see 4 . Note that no derivatives of f appear in this formula. Applying
formally the Bismut-Elworthy formula to differentiate the expression

��
1	 x � E f x � W dt ,Ž . Ž .H t2

0

we obtain
���	 1 1

ix � E f x � W W dt .Ž . Ž .H t t� x 2 t0i

We now want to investigate under which conditions these integrals converge.
The next proposition provides some sufficient conditions.

PROPOSITION 2.2.1. Let f � L p � Lq with 1 	 p � 2 � q 	 �. Then the
integrals

�� 1
i	 x � E f x � W W dt , i � 1, 2Ž . Ž .Hi t tt0

converge and there exists a constant c such thatp, q

� � � � 2	 x 	 c f � x � � .Ž . p , qi p , q

� � � �Here and in the following, the notation denotes the norm �p, q p
� � .q

The proof relies on the following two remarks.

� �REMARK 2.2.1. For all p � 1, �� there exists a constant c such thatp

1ppŽ i. '� � �E W 	 c t � t � 0, �� .t p

This property is a consequence of a well-known fact about Gaussian random
variables.

� �REMARK 2.2.2. For all r � 1, � there exists a constant c such that
Ž i. �1 r�12 r� � � �E f x � W W 	 c f t � f � L � t � 0.Ž . rt t r
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PROOF. Using Holder’s inequality and the preceding remark, one can¨
write the following chain of inequalities:

Ž i. Ž i. �r r� � � � � �E f x � W W 	 f x � W WŽ . Ž . L Ž� . L Ž� .t t t t

1r2� �1 y
r '	 f x � y exp � dy c tŽ .H r �ž /2ž /2� t 2 t�

� � �1 r�12	 f c t . �p r �

PROOF OF PROPOSITION 2.2.1. It is enough to prove the theorem for 1 �
p � 2 � q � �. By the preceding remark, for all t � 0, we have

1
Ž i. �1 p�12� � � �E f x � W W 	 c f t I tŽ . Ž .pt t p� �1, ��t

� � �1 q�12� c f t I t .Ž .qq � �0, 1�

Since �1p � 12 � �1 and �1q � 12 � �1, the function on the right
Ž .is integrable. Therefore the integrals 	 x converge andi

� 1�1 p�12 �1 q�12� � � � � �	 x 	 c f t dt � c f t dtŽ . pH qHi p� q �
1 0

1 1 1 1
� � � �� c f � � 1 � c f 1 � �p qp� q �ž / ž /p 2 q 2

1 1 1 1
� � � �� c f � � c f � . �p qp� q �ž / ž /p 2 2 q

REMARK 2.2.3. If f � L1 � C1, thenb

� � f
E f x � W � E x � WŽ . Ž .t t� x � xi i

and the integrals

� � f
2.3 E x � W dtŽ . Ž .H t� x0 i

converge. This seems to be in contradiction with Proposition 2.2.1. It is not:
Ž 1.the functions � f� x have to change the sign while f � C � L and, as wei b

have remarked, from Proposition 2.2.1 we cannot argue that the integrals
Ž .2.3 are undetermined.

Now we prove some regularity results for the functions 	 .i

PROPOSITION 2.2.2. If f � L p � Lq with 1 � p � 2 � q, then the functions
Ž .	 x are uniformly continuous.i
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PROOF. The inequality

� 1 1
Ž i. Ž i.E f x � W W � E f x � W W dtŽ . Ž .˜H t t t tt t0

� � � �	 c � f � f � c � f � f ,p q1 x�x 2 x�x˜ ˜

r � �together with the uniform continuity of the shift in L for r � 1, � , leads us
Ž .to conclude that the functions 	 x are uniformly continuous. �i

PROPOSITION 2.2.3. If f � L p � Lq and 1 	 p � 2 � q, then the functions
Ž .	 x are in C .i 0

PROOF. For all R � 0, we have

1
Ž i.E f x � W WŽ .t tt

1 1
Ž i. Ž i.� E f x � W W I � E f x � W W I .Ž . Ž .t t 	 �W � 	 R4 t t 	 �W � � R4t tt t

Concerning the first addendum, we have

1
Ž i. �1 p�12� � � �E f x � W W I 	 c f I t I tŽ . Ž .p �1, ��t t 	 �W � 	 R4 p 	 � y�x � 	 R4tt

� � �1 q�12� c f I t I t .Ž .q �0, 1�q 	 � y�x � 	 R4

Hence, for all fixed R,

� 1
Ž i.� �E f x � W W I dtŽ .H t t 	 �W � 	 R4tt0

� � � � � �	 C f I � C f I � 0 as x � �,p q1 	 � y�x � 	 R4 2 	 � y�x � 	 R4

� �where the convergence follows from the fact that, for all x � R, the inclusion
	 � � 4 	 � � � � 4y � x 	 R 
 y � x � R holds. Consider now the second addendum. For
all t � 0, we get

1
Ž i.� �sup E f x � W W IŽ .t t 	 �W � � R4tž /tx

1 1
�1 q 12 �1 p 12� � � �	 t f t I � t f t I .q p �1, ���0, 1�t t

Ž .Since the function of t on the left-hand side is dominated as R varies and
converges to 0 as R � �, the dominated convergence theorem entails that

� 1
Ž i.� �sup E f x � W W I dt � 0 as R � �.Ž .H t t 	 �W � � R4tž /t0x
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Fix an arbitrary � � 0. Choosing R so that, for each x,

� 1
Ž i.� �E f x � W W I dt 	 � ,Ž .H t t 	 �W � � � x � 24tt0

we obtain

� 1
Ž i.� �lim E f x � W W dtŽ .H t tt� �x �� 0

� 1
Ž i.� �	 lim E f x � W W I dtŽ .H t t 	 �W � 	 R4tt� �x �� 0

� 1
Ž i.� �� lim E f x � W W I dtŽ .H t t 	 �W � 	 R4tt� �x �� 0

	 � .

The result follows from the arbitrariness of � . �

Ž . Ž . Ž .We can summarize Propositions 2.2.1 , 2.2.2 and 2.2.3 with the follow-
ing assertion: the map

s : L p � Lq �2 � C �2 ,Ž . Ž .0

�� 1
if � E f x � W W dtŽ .H t tt0

is well defined and continuous.
Ž .How are this integrals 	 x related to the Poisson equation? It is knowni

that, if f � C� , the Poisson equationK

2.4 �	 � fŽ .

has a unique solution in C�, given by0

1
� �	 x � log x � y f y dyŽ . Ž .H

22� �

and its partial derivatives may be expressed by

�	 1 1
x � x � y f y dyŽ . Ž . Ž .H i i22� x 2� � �x � y�i

1 1
� y f y � x dyŽ .H i222� � �y�

Ž � � . � 1 �see 6 , Chapter 4 . Since f � C 
 L � L , the integralsK

�� 1
i	 x � E f x � W W dt , i � 1, 2Ž . Ž .Hi t tt0
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converge. Applying the Fubini�Tonelli theorem, we get

�� 1
iE f x � W W dtŽ .H t tt0

�� 1 1 12i � �� f x � y y exp � y dy dtŽ .H H ž /2t 2 t 2� t0 �

��1 1 1 2i � �� f x � y y exp � y dt dyŽ .H H 2 ž /2� 2 t2 t� 0
��1 1 1 2i � �� f x � y y exp � y dyŽ .H 2 ž /2� 2 t� �y� 0

1 1
i� f x � y y dy.Ž .H 22� � �y�

� � Ž .In conclusion, if f � C , the unique solution in C of 2.4 has derivativesK 0

���	 1 1
ix � E f x � W W ds.Ž . Ž .H s s� x 2 s0i

Ž . � Ž .So, if the functions 
 t, � belong to C , we obtain for the velocity field u t, xK
the representation formula

��1 1
�u t , x � � E 
 t , x � W W ds.Ž . Ž .H s s2 s0

2.3. A system of functional integrals for vorticity and velocity. We can
now summarize our efforts. We are not able to give a probabilistic expression
for the stream function 	 . On the contrary we have a probabilistic represen-
tation of velocity u in term of vorticity 
 ,

��1 1
�u t , x � E 
 t , x � W W ds.Ž . Ž .H s s2 s0

On the other hand, it is known that, if 
 � C , the solution of the problem0 b

�

� 2� u � � 
 � � �
 , t , x � � � � ,Ž . Ž .

� t


 0, x � 
 x , x � �2Ž . Ž .0

may be written in the form

t , x
 t , x � E 
 X ,Ž . Ž .0 t

where X t, x solvess

t , x t , x 'dX � �u t � s, X ds � 2� dW ,Ž .s s s

X t , x � x0
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Ž � �.see 5 . Therefore we are interested in studying the system of functional
integrals,

t , x � 2
 t , x � E 
 X , t , x � � � � ,Ž . Ž .Ž .0 t

t , x t , x t , x'where dX � �u t � s, X ds � 2� dW , X � x ,Ž .s s s 0

�1 1
� � 2u t , x � � E 
 x � W W ds, t , x � � � � .Ž . Ž . Ž .H t s s2 s0

3. The Girsanov densities. The reader will see that our fundamental
tool in the sequel is the Girsanov formula which plays the role that the

� � Ž .integral formula for evolutionary equations plays in 1 . The system 1.4
contains a SDE with an additive noise multiplied by a positive constant; that
is, a SDE of the following type:

dX x � u t , X x dt � �dW ,Ž .t t t

X x � x .0

3.1Ž .

We will find that the drift u is bounded and, more precisely, belongs to
Ž� � . Ž .BC 0, � , C . So u is not necessarily Lipschitzian in x, and 3.9 has0

generally just weak solutions. That is, there exists a Brownian motion
Ž .depending on x such that 3.1 admits a solution, but this does not happen for

Ž .all Brownian motions. Moreover, for system 3.1 the pathwise uniqueness
Ž .which entails the existence with respect to each Brownian motion does not

Ž .hold, but two solutions corresponding eventually to two different BM must
Ž � � .have the same law see 9 , Chapter IX .

Fix f � L� and consider the function
x2 P x , u 2� � x � E f X � � ,Ž .t

Ž x x x x x, u x . Ž . 2where � , F , F , W , X , P is a solution of 3.1 . As x varies in � , int t t
Ž .order to get solutions of 3.1 , we have to change the underlying BM. For that

P x� Ž x, u.�reason, to obtain continuity results for x � E f X and to approximatet
P x� Ž x, un.�that function by maps x � E f X corresponding to more regulart

drifts u , it will be convenient to use the Girsanov formula.n
Ž� � . Ž .Take u � BC 0, � , C and fix a BM � , F , F , W , P . Letb t t

Ž x x x x x, u x . Ž .� , F , F , W , X , P be a solution of 3.1 . The Girsanov theorem andt t t
Ž .the uniqueness in law of the solution of 3.1 allow us to conclude that

xP x P x �E f X � E f x � �W Z � f � L ,Ž .Ž .t t t

where Z x is the processt

1 1 1t t 2x � �3.2 Z � exp u s, x � �W dW � u s, x � �W dsŽ . Ž . Ž .H Ht s s s2½ 5� 2 �0 0

and solves the SDE
1

x xdZ � u s, x � �W Z dW ,Ž .s s s s�3.3Ž .
Z x � 1.0
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Due to the boundedness of u, for all T � 0, the Girsanov density process
Ž x . p � � Ž � �Z is a martingale bounded in L for all p � 1, � see 9 , Chapters 0 	 s	 T

.VIII, paragraph 1 .
pŽ .We will find some useful upper bounds for the norm in L � of these

Girsanov densities and of the difference of two such densities using the
Ž .Burkholder�Davis�Gundy BDG inequalities, which are the content of next

theorem.

� �THEOREM 3.0.1. Let p � 0, � . There exist two positive constants c and Cp p
such that, for all continuous local martingales M vanishing at zero,

p2 p2�² : ² :� �E M , M 	 c E M 	 C E M , M� �p � p

Ž � � .see 9 , page 151 .
� �We indicate by � the norm�

� � � � � �u � sup u t , � � u � BC 0, � , C ,Ž . Ž .� � b
� �t� 0, �

Ž� � . 2 x, uand, for each u � BC 0, � , C and x � � , we use the notation Z tob t
Ž .denote the corresponding process defined by 3.2 .

� � x, u � q �The next lemma provides an upper bound for the norm E Z .t

� �LEMMA 3.0.1. For each q � 2, � , there exists a constant c � 0 such that,
Ž� � .for all u � BC 0, � , C ,b

q� �u �qx , u q2 2� � �E Z 	 c exp c t � t � 0, � , � x � � .t ž /ž /�

x, u Ž .PROOF. Since Z solves 3.3 , we havet
q1tqx , u x , u� �E Z 	 c 1 � E u s, x � �W Z dW � t � 0.Ž .Ht q s s sž /�0

Therefore, by BDG inequalities,
q21 tq 2 2x , u x , u� � � � � �E Z 	 c 1 � c E u s, x � �W Z dsŽ .Ht q s sq ž /ž /� 0

� t � 0,
and from Holder’s inequality it follows¨

1 tq q q	x , u Žq2.�1 x , u� � � � � �E Z 	 c � c E t u s, x � �W Z dsŽ .Ht q q s sq� 0

q� �u t� q	 Žq2.�1 x , u� �	 c � c t E Z ds.Hq q sž /� 0

Finally, applying Gronwall’s lemma, we get
q� �u �q 	x , u q2� �E Z 	 c exp c t � t � 0. �t q q ž /ž /�
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� �REMARK. In the same way, one can prove that, for each q � 2, � , there
exists a constant c � 0 such that

q� �u � , tqx , u q2 2� � �E Z 	 c exp c t � t � 0, � , � x � � ,t ž /ž /�

� � � Ž .� Ž� � .where u � sup u s, � � u � BC 0, � , C .�, t �s��0, t � b

� �COROLLARY 3.0.1. For each p � 1, 2 there exists a constant c � 0 such
that

2� �u �px , u 2� � �E Z 	 c exp c t � t � 0, � , � x � � .t ž /ž /�

PROOF. For p � 2 the proof is very similar to that of the preceding lemma
Ž .and slightly simpler it does not avoid the use of Holder’s inequality . If¨

� � x, u � p � � � x, u � 2 � p2p � 2, then E Z 	 E Z . �t t

qŽ .Now we estimate the L � norm of the difference of two densities.

� �LEMMA 3.0.2. For each q � 2, � , there exists a constant c such that, for
Ž� � .all u, v � BC 0, � , C ,b

q q q� � � � � �u � v u � v� � �qx , u x , v q2 q2� �E Z � Z 	 c t exp c tt t qž / ž /� �

2�� t � 0, � , � x � � .

PROOF. Since Z x, u solvest

1
x xdZ � u s, x � �W Z dW ,Ž .s s s s�

Z x � 10

and Z x, v solvest

1
x xdZ � v s, x � �W Z dW ,Ž .s s s s�

Z x � 1,0

we have
qx , u x , v� �E Z � Zt t

q1t x , u	 c E u � v s, x � �W Z dWŽ . Ž .Hq s s s�0

q1t x , u x , v� c E v s, x � �W Z � Z dWŽ . Ž .Hq s s s s�0
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and, applying the BDG inequality, we get
qx , u x , v� �E Z � Zt t

q21 t 2 2	 x , u� � � �	 c E u � v s, x � �W Z dsŽ . Ž .Hq s sq ž /� 0

q21 t 2 2	 x , u x , v� � � �� c E v s, x � �W Z � Z dr .Ž .Hq s s sq ž /� 0

According to Holder’s inequality, we get¨
qx , u x , v� �E Z � Zt t

1 t q q	 q2�1 x , u� � � �	 c E t u � v s, x � �W Z dsŽ . Ž .Hq s sq� 0

1 t q q	 Žq2.�1 x , u x , v� � � �� c E t v s, x � �W Z � Z dsŽ .Hq s s sq� 0

1 tq q	 Žq2.�1 x , u� � � �	 c t u � v E Z ds�Hq sq� 0

1 tq q	 Žq2.�1 x , u x , v� � � �� c t v E Z � Z ds�Hq s sq� 0

q� �1 u �q	 Žq2.�1 q2� �	 c t u � v tc exp c t�q q ž /ž /� �

1 tq q	 Žq2.�1 x , u x , v� � � �� c t v E Z � Z ds.�Hq s sq� 0

Finally, applying Gronwall’s lemma, we obtain
q q q� � � � � �u � v u � v� � �qx , u x , v q2 q2� �E Z � Z 	 c t exp c t . �t t qž / ž /� �

REMARK. In the same way, one can prove that
q q q� � � � � �u � v u � v� , t � , t � , tqx , u x , v q2 q2� �E Z � Z 	 c t exp c tt t qž / ž /� �

2�� t � 0, � , � x � � .

� �COROLLARY 3.0.2. Let p � 1, 2 . For all q � 2 there exists c such that
p q q� � � � � �u � v u � v� � �px , u x , v p2 p q q2� �E Z � Z 	 c t exp c tt t qž / ž /ž /� �

2�� t � 0, � , � x � � .
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PROOF. It is enough to note that for all random variable X and for all
p � q, the following inequality holds:

1p 1qp q� � � �� � � �E X 	 E X . �

4. The operators corresponding to certain SDEs on ��2 do not
1 � � � 2 2increase the L norm. Fix � in � and let u: 0, �� �� � � be a

continuous and bounded function. Consider the SDE

dX x � u t , X x dt � � dW � t � 0,Ž .t t t

X x � x .0

4.1Ž .

As we remarked in the previous section, for each x � �2, there exist a
Ž x x x x x . xBrownian motion � , F , F , W , P and a process X which solve thet t t

equation. Furthermore, two different solutions have the same law.
For all t � 0, we denote by P the mapt

P : L� � L�
t

defined by
xP x 2P f x � E f X � x � � ,Ž . Ž .t t

Ž x x x x x, u x . Ž . �where � , F , F , W , X , P is a solution of 4.1 . Here, in order to bet t t
�Ž 2 Ž 2 . 2 . �Ž 2 Ž 2 . 2 .more precise, we have to define P : L � , B � , LL � L � , B � , LL .t

�We have to take the �-algebra of Borel to overcome measurability problems.
Ž� � .We will show that, if u � BC 0, � , C and div u � 0 in the distributionalb x

sense, the operators P do not increase the L1 norm; that is,t

xP x 1 � 2� �4.2 E f X dx 	 f x dx � f � L � L � .Ž . Ž . Ž .Ž .H Ht
2 2� �

Ž� � 1. Ž .We first prove it for u � BC 0, � , C in Section 4.1 and then we extend theb
Ž� � . Ž .result for u � BC 0, � , C in Section 4.2 .b

We state in advance a useful remark.

p � � xREMARK ON MEASURABILITY. If f belongs to L for some p � 1, � and Xt
Ž . xŽ .is a process such that, for all �, the functions x, t � X � are continuoust

Ž . Ž xŽ ..then the functions x, � � f X � are measurable. Therefore the mapst
Ž .x � P f x are Lebesgue measurable.t

xŽ .PROOF. Fix t � 0. Since the maps x � X � are continuous, the functiont
Ž . xŽ . Ž Ž 2 .x, � � X � is measurable with respect to the �-algebras B � �t

Ž 2 .. Ž . Ž xŽ ..F, B � . Hence, for all g � C , the map x, � � g X � is measurable0 t
Ž Ž 2 . Ž �..with respect to B � � F, B � . In view of the existence of a sequence in

C which converges almost surely to f , we can conclude that the map0
Ž . Ž xŽ .. Ž Ž �..x, � � f X � is measurable with respect to MM � F, B � where MM ist
the �-algebra of the Lebesgue measurable sets of �2. Finally we note that,

Ž . Ž . � Ž . x � 2fixing a BM �, F, F , W , P , we have P f x � E f x � W Z � x � � .t t t t t
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Using this expression for P f , it is not difficult to prove the last assertion. �t

Ž� � 1.4.1. When the drift is in BC 0, � , C . Suppose that u satisfies theb
following hypotheses:

A1. u is uniformly continuous and bounded.
A2. u admits derivatives � u� x and � u� x uniformly continuous and1 2

bounded.
A3. � u� x � � u� x � 0.1 2

Ž Ž . Ž . . Ž .Fix a standard planar Brownian motion �, F, F , W , P in 4.1 .t t � 0 t t � 0
Ž .For each x, 4.1 has a solution unique up to indistinguishability. Moreover,

there exists a process continuous in x and t which, for all x, is indistinguish-
able from a solution. We will say that such a process is a continuous solution

Ž .of 4.1 .

Ž x . Ž .THEOREM 4.1.1. Let �, F , F , W , X , P be a continuous solution of 4.1� t t t
and fix t � 0. Then, for P-almost all � � �, the function

�2 � x � X x � � �2Ž .t

is a diffeomorphism and its differential has determinant everywhere equal
to 1.

Ž � � . Ž� �Kunita in 7 , page 218 showed that, if d � �, b � BC 0, T ,
1, � Ž d d .. Ž� � 1, � Ž d d�d ..C � , � and � � BC 0, T , C � , � , the SDE

dX x � b t , X x dt � � t , X x dW ,Ž . Ž .t t t t

X x � x ,0

4.3Ž .

Ž Ž . .where W is a fixed d-dimensional Brownian motion on �, F, F , P ,t t t � 0
Ž x .has a solution X such that for all � � � , for P-a.a. �, the mapt t ��0, T �

xŽ . 1, � Ž d d .x � X � is in C � , � . We note that Kunita requires more smoothnesst
for the derivatives: our case is not contained in Kunita’s theorem. We do not
need any Holder continuity for the derivatives, because our SDE has an¨
additive noise.

PROOF OF THEOREM 4.1.1. Since the noise is additive, we can construct a
Ž .continuous solution of 4.1 in the following way. Take a version W of thet

fixed BM such that all the paths are continuous. For all � � � and x � �2,
the equation

tx x � �Y � � x � u s, Y � � �W � ds � t � 0, TŽ . Ž . Ž .Ž .Ht s s
0

Ž . Ž xŽ ..has a unique solution u is uniformly Lipschitzian in x . We denote Y �t t � 0
that solution and set

Y x � � X x � � �W � � x , � t , � � .Ž . Ž . Ž .t t t
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Clearly, for each x and �, we have
tx x � �4.4 X � � x � u s, X � ds � �W � � t � 0, T .Ž . Ž . Ž . Ž .Ž .Ht s s

0

It is not difficult to prove that, for all fixed T � 0 and �, the function
� � 2 Ž . xŽ . 20, T � � � t, x � X � � � is uniformly Lipschitz continuous in x.t

xŽ .Since, by definition, for all x and �, the map t � X � is continuous, wet
Ž . xŽ .conclude that for all � the map t, x � X � is continuous. We underlinet

Ž .that for a fixed BM we have built a continuous solution which solves 4.4 for
all fixed � and x.

� � xŽ . xŽ .Fixing t � 0, T and � � �, we see that X � � Y � � constantt t
� Ž .�where the constant is �W � , so it is enough to check that for � t � 0 fort
P-almost all �, the function

�2 � x � Y x � � �2Ž .t

is a diffeomorphism and its Jacobian is equal to the constant 1.
2 � � xŽ . 2Fix �. For all x � � , the function 0, �� � t � Y � � � is the solu-t

tion of the Cauchy problem
v� t � u t , v t � �W � � t � 0,Ž . Ž . Ž .Ž .t

v 0 � x .Ž .
Since u is continuous, bounded and uniformly Lipschitz in x, for every given
s � 0 and x � �2, the problem

v� t � u t , v t � �W � � t � 0,Ž . Ž . Ž .Ž .t

v s � x ,Ž .
� � 2 xŽ . 2has a unique solution in 0, �� . It follows that � � x � Y � � � ist

bijective. As u has partial derivatives with respect to x in C , the functionb
2 xŽ . 2 Ž .Ž .� � x � Y � � � is differentiable and � Y t, x � � x solves thet i

Cauchy problem
v� t � D u t , Y x � � �W � v t ,Ž . Ž . Ž . Ž .Ž .x t t

v 0 � e .Ž . i

� �In view of the fact that div u � 0, we have Tr d u � 0 andx x

� Y x � � Y x �Ž . Ž .t t
det , � 1 � x , � t .ž /� x � x1 2

xŽ .Therefore, for all fixed t and �, the map x � X � is a diffeomorphism witht
Jacobian everywhere equal to 1. We conclude by noting that, if Z x is at

Ž . Ž x x .continuous solution of 4.1 , then P Z � X , � t, � x � 1. �t t

We are now able to prove the following theorem.

Ž . Ž . xTHEOREM 4.1.2. Suppose that u satisfies hypotheses A1 � A3 . Let X bet
Ž .a continuous solution of 4.1 and fix t � 0. Then, for P-almost all �, we have

f X x � dx � f x dx � f � L1 .Ž . Ž .Ž .H Ht
2 2� �
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Therefore, the operators P can be extended to contractions on L1.t

xŽ .PROOF. Choosing � so that x � X � is a diffeomorphism with Jacobiant
everywhere equal to 1, by changing the variable in the integral, we obtain

f X x � dx � f x dx .Ž . Ž .Ž .H Ht
2 2� �

Ž .Since the preceding inequality holds for P � a.a. �, and the function x, �
Ž xŽ ..� f X � is measurable, by changing the integration order, we obtaint

x x� � � � � �4.5 E f X dx � E f X dx � f x dx .Ž . Ž .Ž . Ž .H H Ht t
2 2 2� � �

� Ž x .�Therefore, the integral E f X converges for almost all x and the functiont
� Ž x .� 1 1x � E f X belongs to L . Hence operators P can be extended to L , and,t t

Ž . 1 Žby 4.5 those extensions do not increase the L norm. We cannot conclude
1 � � Ž x .� �that they preserve the L norm, since in general E f X does not coincidet

� � Ž x . �� .with E f X . �t

We can extend the result for p � 1.

Ž . Ž . pTHEOREM 4.1.3. Suppose that u satisfies hypotheses A1 � A3 . Let f � L
� � Ž � .for some p � 1, � f � L and is Borel measurable , and fix t � 0. Then the

� Ž x .� 2integral E f X converges for almost all x � � and the function x �t
� Ž x .� p Ž � .E f X belongs to L belongs to L and is Borel measurable . Moreover,t

x x� � � � � � � �E f X 	 f , E f X 	 f .Ž . Ž .Ž .p p � �t t

� �PROOF. The case p � � is trivial. Let p � 1, � . By the Jensen inequality
we have

1p 1p
p px x� � � � � �4.6 E f X dx 	 E f X dx � fŽ . Ž . Ž .H H pt tž / ž /2 2� �

� � Ž x . �� 2 � Ž x .�So E f X � �� for almost all x � � , and the integral E f X con-t t
2 Ž . � Ž x .�verges for almost all x � � . Finally, by 4.6 , the map x � E f X belongst

to L p, and
x� � � �E f X 	 f . �Ž . p pt

Ž� � . Ž .4.2. When the drift is in BC 0, � , C . We refer again to the SDE 4.1b
and suppose that u satisfies weaker hypotheses.

Ž� � .A1*. u belongs to BC 0, �� , C .b
A2*. div u � 0 in the distributional sense.x

Ž� � p q.We remark that, if 
 � BC 0, �� , L � L for some p and q such that
1 	 p � 2 � q, the function

�1 1
�u t , x � � E 
 t , x � W W dsŽ . Ž .H s s2 s0

satisfies hypotheses A1* and A2*.
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Ž .Fix a two-dimensional BM �, F, F , W , P . We will approach u witht t
	 4 � � 1. Ž .a suitable sequence u in C 0, � , C and obtain inequality 4.2 for an b

fixed function f � L1 by passing to the limit as n � � in the sequence
� Ž . x, un �E f x � W Z .t t

	 4 2 Ž . Ž Ž .Let  be a sequence of mollifiers in � and set u t, x � u t, � �n n
Ž ..Ž . Ž� � 1. � � � x � n. One can easily check that, for all n, u � BC 0, � , C , u 	�n n b n

� � � � 2u and div u � 0. Moreover, for all t � 0, u � u uniformly in 0, t � � .� x n n
1 �Ž 2 .Fix f � L � L � such that f � 0. Then

x , u x , unE f x � �W Z � E f x � �W Z uniformly in x .Ž . Ž .t t t t

In fact, by Lemma 3.0.2,
x , u x , unE f x � �W Z � ZŽ . Ž .t t t

1qqx , u x , un� � � �	 f E Z � Z� t t

1qq q� � � �u � u 2 u� , t �n q2 q2� �	 f c t exp c t � 0.� qž / ž /ž /� �

Therefore, in view of Fatou’s lemma, we have

x , u x , un � �E f x � �W Z dx 	 lim inf E f x � �W Z dx � f ,Ž . Ž .H H 1t t t t
2 2n��� �

which implies

x , u 1 �� �E f x � �W Z dx 	 f � f � L � L , f � 0.Ž .H 1t t
2�

1Ž 2 .Using once more Fatou’s lemma we conclude that, for each positive f � L � ,

x , u � �E f x � �W Z dx 	 f .Ž .H 1t t
2�

Ž � Ž ŽWe have just to apply Fatou’s lemma to the sequence E min f x �
. . x, u � .�W , n Z .t t

1 � � � �We extend this inequality to all f � L by noting that f � f � f . Hence,
1Ž 2 . � � Ž . � x, u �2for all f � L � , the integral H E f x � �W Z dx converges, and� t t

2 � � Ž . � x, u �therefore for almost all x � � , E f x � �W Z converges. It turns outt t
that we can extend the operators P to L1 and the extensions are contractionst
on L1.

We have thus proved the following result.

THEOREM 4.2.1. Let u satisfy hypotheses A1* and A2* and let f belong
1 2 � Ž . x, u �to L . Then, for a.a. x � � , the integral E f x � �W Z converges.t t

� Ž . x, u � 1Ž 2 .Moreover, the function x � E f x � �W Z belongs to L � andt t

x , u � �E f x � �W Z dx 	 f .Ž .H 1t t
2�

As in the regular case, we can generalize the result for p � 1.
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p � � Ž �THEOREM 4.2.2. Let f � L for some p � 1, � f � L and Borel measur-
. � � 2 � Ž x .�able and t � 0, � . Then, for almost all x � � , the integral E f Xt

converges. Moreover, the function
xx � E f XŽ .t

p Ž � .belongs to L belongs to L and is Borel measurable and
x x� � � � � �E f X 	 f , E f X 	 f .Ž . Ž .Ž .p � �t tp

� �5. Existence and uniqueness of the solution. Fix p, q in 1, � , such
that 1 	 p � 2 � q. In this section we prove that, if the initial vorticity is in

p q Ž . Ž� � p q.L � L , then 1.4 has a unique solution in BC 0, � , C � L � L . The0
section is organized as follows. In Section 5.1 we build two maps between the

Ž� � . Ž� � p q.sets BC 0, � , C and BC 0, � , L � L and write our system in terms of0
those maps. Then, in Section 5.2, we prove the existence and uniqueness of a

Ž . Ž� � p q.local solution u, 
 in BC 0, � , C � L � L using Banach’s fixed point0
theorem. Finally, in Section 5.3 we extend the local solution by the Markov
property and the a priori estimate provided by Theorem 4.2.2.

Ž� � .5.1. The operators S and T. The space BC 0, � , C endowed with the0
� � � Ž .� Ž� � p q.norm u � sup u t, � and the space BC 0, � , L � L with the� �t

� � � Ž .�norm 
 � sup 
 t, � are two Banach spaces. In the following wep, q p, qt
will always refer to these norms.

We now construct the map which will represent the last equation in
Ž .system 1.4 .

Ž� � .Denote by A the closed subspace of BC 0, � , C ,0

�A � u � BC 0, � , C � div u � 0 in the distributional sense .	 4Ž .0 x

Recall the map defined in Section 2:

�1 1
p q �s : L � L � f � � E f x � W W ds � C .Ž .H s s 02 s0

As we showed, this map is well defined, linear and bounded and, for all
p q Ž .f � L � L , div s f � 0 in the distributional sense. Hence the operatorx

p q�S : BC 0, � , L � L � A ,Ž .
defined by

�1 1
�S
 t , x � s 
 t , � x � � E 
 t , x � W W ds,Ž . Ž . Ž . Ž .Ž . H s s2 s0

is well defined, linear and bounded.
Ž .Next we build a map in order to represent the first equation in 1.4 . For

each 
 in L p � Lq, we define0


 � p q0 �T : A � L 0, � , L � LŽ .
by

T 
 0 u t , x � P t , u 
 x ,Ž . Ž .t 0
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Ž t, u.where P are the operators corresponding to the SDE,s s��0, t �

x , t , u x , t , u 'dX � �u t � s, X ds � 2� dW ,Ž .s s s
5.1Ž .

X x , t , u � x .0

By Theorem 4.2.2, the operators T 
 0 are well defined and

� 
 0 � � �5.2 T u 	 
 � u � A.Ž . p , q p , q

We would like the operators T 
 0 to take values in the domain of S, namely in
Ž� � p q.BC 0, � , L � L , and this actually occurs.


 0Ž . Ž� � p q.THEOREM 5.1.1. T A 
 BC 0, � , L � L .

� �PROOF. We can suppose that p � 1. Take s and t in 0, � . We have to
p q � t, u Ž . s, u Ž . � � �check that the norm in L � L of P 
 x � P 
 x goes to 0 as t � st 0 s 0

Ž .tends to 0. Fix a two-dimensional BM �, F, F , W , P . By Girsanov’s for-t t
mula,

t , u s , uP 
 x � P 
 xŽ . Ž .t 0 s 0

x , t , u x , s , u' '� E 
 x � 2� W Z � 
 x � 2� W Z ,Ž . Ž .0 t t 0 s s

Ž x, t, u. Ž x, s, u.where Z and Z are the Girsanov densities corre-r r ��0, t � r r ��0, s �
Ž . Ž .sponding, respectively, to the drifts u t � r, x and u s � r, x .

x, t, u'� Ž . �Adding and subtracting E 
 x � 2� W Z we find0 s t

x , t , u x , s , uE 
 X � 
 XŽ .Ž .0 t 0 s

x , t , u' '	 E 
 x � 2� W � 
 x � 2� W ZŽ . Ž .Ž .0 t 0 s t5.3Ž .
x , t , u x , s , u'� E 
 x � 2� W Z � ZŽ .Ž .0 s t s

We show that the L p norm and the Lq norm of this sum go to 0 as s tends
to t. Concerning the L p norm of the first addendum, we have

x , t , u' 'E 
 x � 2� W � 
 x � 2� W ZŽ . Ž .Ž .0 t 0 s t p

1p�1pp p�x , t , u' '� � � �	 E 
 x � 2� W � 
 x � 2� W E ZŽ . Ž .0 t 0 s t p

1p
p' '� �	 E 
 x � 2� W � 
 x � 2� W dxŽ . Ž .H 0 t 0 sž /2�

� � p�1 u �12 p�2�ct exp c t � 0,p�2½ 5p� 2�Ž .

where the convergence is due to the continuity of the shift in L p. In the same
way one can check that

x , t , u' 'E 
 x � 2� W � 
 x � 2� W Z � 0.Ž . Ž .Ž .0 t 0 s t q
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p Ž .Consider now the L norm of the second addendum in 5.3 . Suppose that
s � t. We have

x , t , u x , s , u'E 
 x � 2� W Z � ZŽ .Ž .0 s t s p

1p�1pp p�x , t , u x , s , u'� � � �	 E 
 x � 2� W E Z � ZŽ .0 s t s p

1p�p�x , t , u x , s , u� � � �	 
 sup E Z � Zp0 t s
x

1p� 1p�p� p�x , t , u x , t , u x , t , u x , s , u� � � � � �	 
 sup E Z � Z � E Z � Z .p0 t s s sž /
x

In view of Lemma 3.0.2, we get
1p�p�x , t , u x , s , u� �sup E Z � Zs s

x

� � p�c 2 u �12 p�2	 sup u t � r , � � u s � r , � s exp csŽ . Ž . � p�2½ 5'2� 2�Ž .� �r� 0, s

� 0,
and, by Lemma 3.0.1,

1p�p�x , t , u x , t , u� �E Z � Zt s

1p�p�1t x , t , u'� E u t � r , x � 2� W Z dWŽ .H r r r'2�s

1p�p�1tŽ .p�2 �1 p�x , t , u' �	 cE t � s u t � r , x � 2� W Z drŽ . Ž .H r r'2�s

p�� � � �u c u� �12 p�2	 c t � s exp t � 0.Ž . ½ 5ž /' p� �2�

Therefore,
1p�p�x , t , u x , s , u� �sup E Z � Z � 0.s s

x

It turns out that

x , t , u x , s , u'E 
 x � 2� W Z � Z � 0.Ž .Ž .0 s t s p

The proof that
x , t , u x , s , u'E 
 x � 2� W Z � Z � 0Ž .Ž .0 s t s q

can be carried out the same way. We have so proved the continuity of the map

x , t , u p q'0, � � t � E 
 x � 2� W Z � L � L . �Ž .0 t t
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Ž . 
 0Due to the above theorem and to inequality 5.2 , the operator T maps A
	 Ž� � p q .� � � � 4into the set B � 
 � BC 0, � , L � L 
 	 
 . More-p, q p, q� 
 � 00 p, q

over, by Proposition 2.2.1, S maps B into the closed subset of A,� 
 � p, q0

� � � � �A � u � A u 	 a 
 ,	 4� p , qa� 
 � p , q 00

1 
 0where a � c . Therefore, by the definition of T and S and by thep, q2
Ž . Ž� �characterizations of their images, we see that a pair 
 , u in BC 0, � , C �0

p q. Ž .L � L solves system 1.4 if and only if it is a solution of

u , 
 � A � B ,Ž . a� 
 � � 
 �0 p , q 0 p , q

u � S
 ,5.4Ž .

 � T 
 0 u.

Ž .5.2. Existence and uniqueness of a local solution. A solution of 5.4 is a
Ž . 
 0 
 0pair u, 
 in A � B such that u � ST u and 
 � T u. Sincea� 
 � � 
 � p, q0 p, q 0

A is a Banach space, if S � T 
 0 is a contraction, it follows from thea� 
 �0 p, q

Ž .Banach fixed point theorem that system 5.4 has a unique solution. So far we
know that S is linear and continuous and therefore Lipschitz. What about
T 
 0? According to Lemma 3.0.2,

� �sup Tu t , � � Tv t , �Ž . Ž . p , q
� �t� 0, �

1qqx , t , u x , t , v� � � �	 
 sup E Z � Zp , q0 t t
2�

� � q � � qc c u � v� �12 q2� � � �	 
 � u � v exp �p , q �0 q2' ž /ž /q2� 2�Ž .
� � qc c 2 a 
 p , q012 q2� � � �	 
 � u � v exp � .p , q �0 q2' ž /ž /q2� 2�Ž .

That is,
� �sup Tu t , � � Tv t , �Ž . Ž . p , q

� �t� 0, �

� � qc c 2 a 
 p , q012 q2� � � �	 
 � exp � u � v .p , q �0 q2' ž /ž /ž /q2� 2�Ž .
So the map T 
 0 : A � B is continuous. Moreover, if we fix � sucha� 
 � p, q � 
 � p, q0 0

that
� � qc c 2 a 
 p , q012 q2� �5.5 a 
 � exp � 	 1,Ž . p , q0 q2' ž /ž /q2� 2�Ž .

and consider the Banach spaces

� �A � u � BC 0, � , C � div u � 0 in distribution,	 Ž .� , a� 
 � 0 x0 p , q

� � � � � �u t , � 	 a 
 � t � 0, �Ž . 4� p , q0
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and
p q � � � � �� �B � u � BC 0, � , L � L 
 t , . 	 a 
	 Ž .Ž . p , q p , q� , � 
 � 00 p , q

� �� t � 0, � ,4
the map S � T 
 0 : A � A is a contraction. Hence, if � satisfies� , a� 
 � � , a� 
 �0 p, q 0 p, q
Ž . Ž . � �5.5 , then 5.4 has one and only one solution in 0, � , and the sequence
Ž .u , 
 in A � B defined byn n � , a� 
 � � , 
0 p, q 0

u � 0,0

u � ST 
 0 u ,n�1 n5.6Ž .

 � T 
 0 un n�1

converges to the solution.

5.3. Existence and uniqueness of a global solution. Let u � A and 0 	
s 	 t and consider the map

P u : L p � Lq � L p � Lq ,s , t

defined by
u s , x , u p qP � x � E � X � � � L � L ,Ž . Ž .s , t t

Ž s, x, u.where X is a solution of the SDE,r r � s

dX s , x , u � u r , X s , x , u dr � � dW ,Ž .r r r

X s , x , u � x .s

u � u � p qThe maps P are linear and bounded, and, for all 0 	 s � t, P �LŽL � L .s, t t, s
1. We prove that these operators satisfy a Markov property.

	 4 Ž� � 1.Let u be a sequence in BC 0, � , C � A that converges to u inn b
Ž� � .BC 0, T , C for each T � 0. Using Girsanov’s formula and Lemma 3.0.2, web

obtain that, for all 0 	 s � t,

P un � P u in L L p � Lq .Ž .s , t s , t

	 un 4For each n � �, the family P � 0 	 s 	 t satisfies the Kolmogorov�Chap-s, t
man condition, namely,

P un � P un P un � 0 	 s � r � t .s , t s , r r , t

By passing to the limits as n � �, we find that this condition holds even for
	 u 4the operators P � 0 	 s 	 t . In fact, we haves, t

� un un u u �P P � P Ps , r r , t s , r r , t

� un un u � � un u u �	 P P � P � P � P PŽ . Ž .s , r r , t r , t s , r s , r r , t

� un � � un u � � un u � � u �	 P � P � P � P � P � Ps , r r , t r , t s , r s , r r , t

� un u � � un u �	 P � P � P � P � 0.r , t r , t s , r s , r

In the last inequality above we have used the fact that all the operators P un
r , s

and P u are contractions. We can conclude that, for all u � A,r , s

P u � P u P u � 0 	 s � r � t .s , t s , r r , t
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Applying this property we will prove inductively the existence and unique-
ness of a long-time solution.

THEOREM 5.3.1. Let 
 � L p � Lq, for some 1 	 p � 2 � 2. Then the0
system

u � S
 ,


 � T 
 0 u
5.7Ž .

has a unique global solution.

Ž . Ž .PROOF. Choose � so that 5.5 is verified. We already know that 5.7
� �admits one and only one solution in 0, � .

Consider now the system

� � 2u t , x � S
 t , x � t , x � 0, 2� � � ,Ž . Ž . Ž .5.8Ž .

 20 � �
 t , x � T u t , x � t , x � 0, 2� � � .Ž . Ž . Ž .

� �For all t � � , 2� we have


 x , t , u0Tu t , x � E 
 XŽ . Ž .0 t

� P uŽ t��, �.
 xŽ .0, t 0

� P uŽ t��, �.P uŽ t��, �.
 xŽ .0, t�� t�� , t 0

� P uŽ t��, �.
 � , � xŽ . Ž .Ž .0, t��

ũŽ t����, �.� P 
 � , � x ,Ž . Ž .Ž .0, t��

uŽ t��, �. uŽ���, �. Ž .where we used the equivalence P � P and the notation u s, � �˜t�� , t 0, �

Ž . � �u s � � , � �s � 0, � . That yields

T 
 0 u t , x � T 
 Ž� , �.u t � � , x .Ž . Ž .˜

Ž̃ . Ž . � � Ž . Ž .2Set 
 s, � � 
 s � � , � � s � 0, � . Clearly u, 
 satisfies 5.8 if��0, 2� ���

˜Ž . Ž . � � Ž .2 2and only if u, 
 satisfies 5.7 in 0, � and u, 
 solves˜� �0, � ��� � �0, 2� ���

˜ 2� �u t , x � S
 t , x � t , x � 0, � � � ,Ž . Ž . Ž .˜
5.9Ž .

˜ 
 0 2� �
 t , x � T u t , x � t , x � 0, � � � .Ž . Ž . Ž .˜

� Ž .� � �Since we have the a priori estimate 
 � , � 	 
 , this system admitsp, q p, q0
Ž . � �a unique solution. Therefore 5.7 has exactly one solution in 0, � . So one can

prove that it has one and only one global solution. �

6. Invariance of Lebesgue measure with respect to certain SDE.
p � � �Let 
 belong to L � L for some p � 1, 2 . Then the fluid velocity is0

‘‘quasi-Lipschitz’’ continuous in x. That result relies on the following proposi-
tion.
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PROPOSITION 6.0.1. If f � L p � L� with 1 	 p � 2, then the function
�1 1

�u x � � E f x � W W dsŽ . Ž .H s s2 s0

satisfies the ‘‘quasi-Lipschitz’’ estimate,

� � � � � � 2u x � u y 	 b f � x � y � x , y � � ,Ž . Ž . Ž .p , �

where
r , if r � 1,

� r � ,Ž . ½ r 1 � log r , if r 	 1Ž .
and b is a constant which does not depend on f.

Ž � �.For the proof see 2 .
Since 
 belongs to L p � L�, by Theorem 4.2.2, the vorticity is in0

�Ž� � p �.L 0, � , L � L . Hence, in view of the preceding proposition, the velocity u
satisfies the following ‘‘quasi-Lipschitz’’ estimate:

2� �6.1 u t , x � u t , y 	 c� x � y � x , y � � ,Ž . Ž . Ž . Ž .
� �where c � b sup 
 .p, �t

Now consider the SDE,

dX x � u t , X x dt � � dW ,Ž .t t t

X x � x ,0

6.2Ž .

Ž� � .where � is a positive constant and the drift u belongs to BC 0, � , C andb
Ž .satisfies 6.1 . In this section we show that, for each given two-dimensional

Ž . Ž . xBrownian motion �, F, F , W , P , 6.2 has a continuous solution X , and, ift t t
u is divergence free in the distributional sense, then for P-almost all fixed �,

xŽ .the maps x � X � preserve Lebesgue measure; that is, for all fixed t,t

f X x � dx � f x dx � f � L1 .Ž . Ž .Ž .H Ht
2 2� �

We first prove it for small t and then for all times.

Ž� � .THEOREM 6.0.2. Suppose that u belongs to BC 0, � , C and satisfiesb
Ž .6.1 ; choose � such that

1
6.3 � 	 .Ž .

� �2 sup u � cŽ .�r r

Consider the SDE,

dX s , x � u t , X s , x dt � � dW , t � s,Ž .t t t

X s , x � x .s

6.4Ž .

Ž . Ž .For all fixed two-dimensional Brownian motion �, F, F , W , P , 6.4 has at t
Ž s, x .local solution X such that, for P-almost all �, the mapr s	 r 	 s��

� � 2 x 2s, s � � � � � t , x � X � � �Ž . Ž .t

is continuous.
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	 4PROOF. Let  be a sequence of mollifiers and set u � u�  � n. Then n n
	 4 Ž� � �. � � � �sequence u belongs to BC 0, �� , C and, for all n in �, u 	 u .� �n 0 n

Ž .Furthermore, the functions u satisfy estimate 6.1 ,n

u t , x � u t , y � u t , x � z � u t , y � z  z dzŽ . Ž . Ž . Ž . Ž .Hn n n
2�

� � � �	 c� x � y  z dz � c� x � y .Ž .Ž . Ž .H n
2�

	 � �4Moreover, since u � t � s, s � � is uniformly equicontinuous,t

� �u � u in C s, s � � , C .Ž .n b

For simplicity, throughout this proof we use the notation

� � � � �v � sup v t , � � v � BC 0, �� , C .Ž . Ž .� , � � b
� �t� s , s��

Ž Ž . Ž . .Fix a two-dimensional Brownian motion �, F, F W , P and con-t t � 0 t t � 0
sider the SDEs,

dX s , x , n � u r , X s , x , n dt � � dW , r � s,Ž .r n r r

X s , x , n � x .s

6.5Ž .

Since the noise is additive and the drifts u are uniformly Lipschitz in x, wen
can choose a version W of our fixed BM such that all the paths aret

Ž s, x, n.continuous, and then construct, for all n, a continuous solution Xr r � s
such that, for all �,

r
s , x , n s , x , nX � � x � u l , X � dl � � W � � W �Ž . Ž . Ž . Ž .Ž . Ž .Hr n l r s6.6Ž . s

� r � s � 0, � x � �2

Ž .we can use the same technique applied in the proof of Theorem 4.1.1 .
Ž s, x, nŽ ..Fix � � �. In order to prove that the sequence X � convergest n

2 � � � �uniformly in � � s, s � � , we show now that, for t � s, s � � , we can
� s, x, nŽ . s, x, mŽ . � � �control the distance X � � X � with u � u . For all t � s,�, �t t n m

set

x , t � � s , x , n s , x , m � � �� �S � � sup l � s, t X � � X � 	 u � u .	 4Ž . Ž . Ž . � , �n , m l l n m

Note that S x, t is not a stopping time: it depends on the future. Nevertheless,n, m
Ž .in view of 6.6 , we have

X s , x , n � � X s , x , m � � X s , x , n � � X s , x , m �Ž . Ž . Ž . Ž .t t S Sn , m n , m

t s , x , n s , x , m� u l , X � � u l , X � dl.Ž . Ž .Ž . Ž .H n l m l
Sn , m
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That yields

s , x , n s , x , mX � � X �Ž . Ž .t t

s , x , n s , x , m	 X � � X �Ž . Ž .S Sn , m n , m

t s , x , n s , x , m� u l , X � � u l , X � dlŽ . Ž .Ž . Ž .H n l m l
Sn , m

t s , x , n s , x , m� �	 u � u � u l , X � � u l , X � dlŽ . Ž .Ž . Ž .� , � Hn m n l n l
Sn , m

t
� �� u � u dlH �n m

Sn , m

� �	 u � u t � s � 1Ž .� , �n m

t s , x , n s , x , m� �� c� X � � X � dl.Ž . Ž .Ž .H l l
Sn , m

Noting that

s , x , n s , x , m � � � �X � � X � 	 2 u � � 1 � l � s, s � � ,Ž . Ž . �l l

we get

s , x , n s , x , mX � � X �Ž . Ž .t t

� �	 u � u t � s � 1Ž .� , �n m

t s , x , n s , x , m� �� c X � � X �Ž . Ž .H l l
Sn , m

� s , x , n s , x , m �� 1 � log X � � X � dlŽ . Ž .Ž .l l

� �	 u � u t � s � 1Ž .� , �n m

t s , x , n s , x , m� � � �� c X � � X � 1 � log u � u dl.Ž . Ž . Ž .H � , �l l n m
Sn , m

2	 4 � �Since the sequence u converges uniformly in s, s � � � � , there exists nn
such that

� �� n , n � n , u � u � 1.� , �1 2 n n1 2

� � � �We take n, m � n. So we have u � u � 1 and 1 � log u � u � 1.�, � �, �n m n m
� �Hence, for all t � s, s � � , the inequality

s , x , n s , x , mX � � X �Ž . Ž .t t

� �	 u � u t � s � 1Ž .� , �n m

t s , x , n s , x , m� � � �� c X � � X � 1 � log u � u dlŽ . Ž . Ž .H � , �l l n m
s



PROBABILISTIC APPROACH TO NAVIER�STOKES EQUATIONS 1777

holds and, applying Gronwall’s lemma, we get
s , x , n s , x , mX � � X �Ž . Ž .t t

� � � �	 u � u t � s � 1 exp c 1 � log u � u t � sŽ . Ž .Ž .Ž� , � � , �n m n m

c�
1

c�� �	 u � u � � 1 eŽ .� , �n m ž /� �u � u � , �n m

� �1�c� c�� u � u � � 1 e .Ž .� , �n m

That is,
1�c�s , x , n s , x , m c� � �X � � X � 	 � � 1 e u � u .Ž . Ž . Ž . � , �t t n m

Ž . 	 s, x, nŽ .4By 6.3 , 1 � c� � 0, and therefore X � converges uniformly int
� � 2s, s � � � � . Denote

s , x s , x , n 2 � �X � � lim X � � x � � , � t � s, s � � , � � � � .Ž . Ž .t t
n��

That process is clearly continuous. Moreover, according to the dominated
convergence theorem,

t ts , x , n s , x � �u l , X � dl � u l , X � ds � t � s, s � � ,Ž . Ž .Ž . Ž .H Hn l l
s s

s, x Ž . � �so that X solves 6.4 in s, s � � . �t

THEOREM 6.0.3. Suppose that u and � satisfy the hypotheses of the above
theorem and that u is divergence free in the distributional sense. Fix a

Ž . Ž s, x .two-dimensional Brownian motion �, F, F , W , P . Let X be at t r s	 r 	 s��

Ž .continuous solution of SDE 6.4 with respect to this Brownian motion. Then,
Ž s, xŽ .. 1for P-almost all �, x � f X � is in L andt

s , x 1 2 �f X � dx � f x dx � f � L � , � t � s, s � � .Ž . Ž . Ž .Ž .H Ht
2 2� �

	 4PROOF. To prove the theorem we define a sequence u and construct then
	 s, x, n4 s, xcorresponding solutions X and the limit process X as in the preced-t t

ing proof. Note that, since u is divergence free in the distributional sense, for
�Ž 2 . 12 1all n, div u � 0. Let � � C � . Since � � L , by Theorem 4.1.2 we getx n K

12 s , x , n � 12 �� X � dx � � � n.Ž .Ž .H 1t
2�

So, by Holder’s inequality,¨

s , x , n s , x , m� X � � X dxŽ . Ž .H t t
2�

12 12 s , x , n 12 s , x , m� �	 2 � sup � X � � X ,Ž . Ž .1 t t
2x��

	 Ž s, x, n.4 1and, by consequence, � X converges in L .t
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On the other hand, in view of the continuity of �,
� X s , x , n � � X s , x in L� .Ž . Ž .t t

Ž s, x . 1 	 Ž s, x, nŽ ..4Therefore, � X belongs to L , the sequence � X � converges tot t
Ž s, xŽ .. 1� X � in L andt

� X s , x dx � � x dx .Ž .Ž .H Ht
2 2� �

Ž Ž s, x ..� �Ž s, x .We extend the result for � � C , by noting that � X � � X andK t t
Ž Ž s, x ..� �Ž s, x .� X � � X . Finally, using a theorem about monotone classes, wet t
obtain that the preceding equality holds for each f � L1. �

Ž� � . Ž .THEOREM 6.0.4. Suppose that u is in BC 0, � , C and satisfies 6.1 . Fixb
Ž .a two-dimensional Brownian motion �, F, F , W , P and consider the SDE,t t

dX x � u t , X x dt � � dW ,Ž .t t t

X x � x .0

6.7Ž .

Ž . xThen 6.7 has a continuous solution X . Moreover, if u is divergence free int
the distributional sense, then, for P-almost all �, we have

f X x � dx � f x dx � f � L1 � t � 0.Ž . Ž .Ž .H Ht
2 2� �

In the proof we need the next lemma.

Ž� � . Ž . 2Ž .LEMMA 6.0.1. Let u � BC 0, � , C and satisfy 6.1 , s � 0, � � L �, Fb s
Ž� � .and 0 	 � 	 12 u � c . Fix a two-dimensional Brownian motion�

Ž .�, F, F , W , P and consider the SDE,t t

dX s , � � u r , X s , � dr � � dW ,Ž .r r r

X s , � � � .s

6.8Ž .

Ž . � � 2Ž .Then 6.8 has a solution in s, s � � . Moreover, for all � , � � L �, F ,1 2 s
we have

s , � s , �1 2X � � X �Ž . Ž .t t

� �1�cŽ t�s. cŽ t�s. � �� � � � � e , if � � � � � � 1,Ž . Ž . Ž . Ž .1 2 1 2	
cŽ t�s.½ � �� � � � � e , otherwise,Ž . Ž .1 2

� �for all t � s, s � � .

Ž .PROOF. We proved that, when � is constant, system 6.8 has a continuous
� � Žsolution in s, s � � . Using exactly the same technique approaching u by
. 2Ž . Ž .suitable u , one can check that, for all � � L �, F , 6.8 has a continuousn s
� � 2Ž .solution in s, s � � . If we fix � and � in L �, F , then we have1 2 s
s , � s , �1 2X � � X �Ž . Ž .t t

	 � � � � �Ž . Ž .1 2

t s , � s , �1 2� u r , X � � u r , X � dr P-a.e.,Ž . Ž .Ž . Ž .H r r
Ž .S �

Ž . 	 � � � � s, �1Ž . s, �2Ž . � � Ž . Ž . �4where S � � sup r � s, t X � � X � 	 � � � � � .r r 1 2
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Therefore, for P-almost all �,
s , � s , �1 2X � � X �Ž . Ž .t t

t s , � s , �1 2� �	 � � � � � � c � X � � X � drŽ . Ž . Ž . Ž .Ž .H1 2 r r
Ž .S �

	 � � � � �Ž . Ž .1 2

t s , � s , �1 2 � �� c X � � X � drmax 1 � log � � � � � , 1Ž . Ž . Ž . Ž .Ž .Ž .H r r 1 2
s

and, in view of Gronwall’s lemma, we get the result. �

Ž� � .PROOF OF THEOREM 6.0.4. Fix � 	 12 u � c . We prove, by induc-�

Ž . � � Ž x .tion, the following claim: 6.7 has in 0, n� a continuous solution X .t t ��0, n� �
Ž x .This holds for n � 1 by Theorem 6.0.3. Let X be a processr r ��0, n� �

satisfying the claim for n and consider the SDE,

dX n� , X x
n� � u r , X n� , X x

n� dr � � dW ,Ž .r r r
6.9Ž .

X n� , X x
n� � X x .n� n�

� Ž . �By the preceding lemma, for all x, there exists in n� , n � 1 � a continuous
Ž n� , X x

n� .solution X , andr r �� n� , Žn�1.� �
x y 1�ctn� , X n� , X x y x y ctn� n� � � � �X � X 	 max X � X , X � X e .Ž .n��t n��t n� n� n� n�

It follows that the process
x � �X , r � 0, n� ,rxY � xr n� , X n�½ � �X , r� n� , n � 1 � ,Ž .r

Ž . � Ž . �is a continuous solution of 6.7 in 0, n � 1 � . Suppose now that u is
xŽ .divergence free in the distributional sense. By the continuity of X � int

Ž .t, x , we get

X x � � X n� , X x
n� Ž� . � P-a.e.Ž . Ž .n��t n��t

1 � Ž . �Therefore, if f � L and t � 0, n � 1 � , we have

f X x � dx � f X n� , X x
n� Ž� . � dxŽ . Ž .Ž . Ž .H Hn��t n��t

2 2� �

� f X n� , y � dy � f z dz �Ž . Ž .Ž .H Hn��t
2 2� �
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