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CONDITIONAL EXPONENTIAL MOMENTS FOR ITERATED
WIENER INTEGRALS

By Terry Lyons and Ofer Zeitouni

Imperial College and Technion–Israel Institute of Technology

We provide sharp exponential moment bounds for (Stratonovich) it-
erated stochastic integrals under conditioning by certain small balls, in-
cluding balls in certain Hölder-like norms of exponent greater than 1/3.
The proof uses a control of the variation of the Lévy area, under condition-
ing. The results are applied to the computation of the Onsager–Machlup
functional of diffusion processes with constant diffusion matrix.

1. Introduction. Throughout this paper, �X� denotes a canonical, R
d-

valued Brownian motion on C0��0�1��Rd� and P denotes Wiener measure. The
rth (Stratonovich) iterated integral of X at time s ∈ �0�1� is given by

Ir�s� =
∫
0<u1<···<ur<s

dXu1
· · ·dXur

∈ R
�dr��(1.1)

where all integrals are understood in the Stratonovich sense. We denote also
Ir �= Ir�1�. Our goal in this paper is to consider various limits of exponential
moments of Ir, under the conditioning that X possesses small norm.

To state our results precisely, we need to introduce some notations. Let
�φn�k�n=0�1�2� ����k=0�1�2� ����2n−1 denote the Haar system, namely the set of func-
tions

φ0�0�t� = 1�

φk�n�t� =




√
2n� t ∈

[
2k

2n+1
�
2k + 1
2n+1

)
�

−
√

2n� t ∈
[
2k + 1
2n+1

�
2k + 2
2n+1

)
�

0� otherwise,

(1.2)

and let

χk�n =
∫ 1

0
φk�n�t�dXt�(1.3)

Then �χk�n� are i.i.d., standard N�0� Id� random vectors, and furthermore,

X�2k+1�/2n+1 = Xk/2n + X�k+1�/2n

2
+ 2−�n+2�/2χk�n�(1.4)
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Equation (1.4) is the Lévy–Ciesielski construction of Brownian motion; see [8]
for sharp results concerning the convergence of interpolation based on (1.4)
to the Brownian motion Xt. We let �n denote the σ-algebra generated by the
random variables �Xj/2n�2n

j=0.
In what follows, � · �p denotes the usual Lp norms on R

d, with � · � �= � · �2.
Then �·� ·� denotes the standard inner product in R

d. For any f ∈ C0��0�1��Rd�,
let

χ
f
k�n =

∫ 1

0
φk�n�t�df�t�� �

f
k�n = f

(
k + 1

2n

)
− f

(
k

2n

)
�

We say that a measurable, separable norm � · � on C0��0�1��Rd� belongs to
�p, p ∈ �2�∞� if it satisfies the following properties:

(P1) There exists a constant Cp such that

�f� ≤ 1 ⇒ sup
n

max
k=0�1� ����2n−1

∣∣�f
k�n

∣∣2n/p ≤ Cp�(1.5)

(P2) There exists a constant C such that ���X� < ∞� = 1 and

�
(�X� < ε

) �= Cε ≥ exp
(−Cε−�2p/�p−2��)�(1.6)

The assumptions (P1) and (P2) are quite different in nature: (P1) is a regular-
ity assumption on the norm, while the assumption (P2) is a lower bound on
small ball probabilities and in particular allows one to condition on the event
��X� < ε�. It is easy to check that the standard Hölder norm of exponent
1/p, as well as the variants described in [1], belong to �p. Note also that
another formulation of (P1) is that �f�1/p ≤ Cp�f� for all f ∈ C0��0�1��Rd�,
where � · �1/p denotes the standard Hölder norm of exponent 1/p.

Our main result is the following.

Theorem 1.1. Assume �·� ∈ �p with 3 > p > 2. Let r < 4�p − 1�/�p − 2�.
Then, for any C ∈ R

�dr� and M < ∞,

sup
ε<M

Ɛ
(
exp��C�Ir�� � �X� < ε

)
< ∞�(1.7)

In fact, for any C�M as above, any α < 4�p − 1�/�p − 2�r and any integer r,

sup
ε<M

Ɛ
(
exp���C�Ir��α� � �X� < ε

)
< ∞�(1.8)

If r = 4�p− 1�/�p− 2� then for any C ∈ IR�dr� there exists an M = M�C� such
that (1.7) remains valid.

Remark 1.1. Note that for r ≥ 2, there exists a C such that Ɛ�exp��C�Ir���
= ∞, hence the conditioning plays a definitive role in (1.7) and (1.8).
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Remark 1.2. It is obvious from the proof that the estimates in Theo-
rem 1.1 hold also for Ir�s�, uniformly in 0 ≤ s ≤ 1. That is, under the hy-
potheses and notation of Theorem 1.1,

sup
ε<M

sup
s∈�0�1�

Ɛ
(
exp

(�C�Ir�s��
) ∣∣ ∥∥X� < ε

)
< ∞�

sup
ε<M

sup
s∈�0�1�

Ɛ
(
exp

(��C�Ir�s���α
) ∣∣ �X� < ε

)
< ∞�

(1.9)

An application, which served as our motivation for deriving Theorem 1.1,
is as follows. Let b� R

d → R
d be smooth, and denote by �Yt� the solution of

the Itô stochastic differential equation,

dYt = b�Yt�dt + dXt� Y0 = 0�(1.10)

For a deterministic ψ ∈ L2��0�1��Rd�, let ψI�t� = ∫ t
0 ψ�s�ds, and define the

Onsager–Machlup functional of Y at ψI as

J�·��ψI� = − log lim
ε→0

���Y − ψI� < ε�
���X� < ε�(1.11)

if the limit exists. J�·��·� can serve as a “prior” on path space and was intro-
duced in the context of Gaussian diffusions by Onsager and Machlup [9]. For
the supremum norm �f�∞ = sup0≤t≤1 �f�t��, and smooth ψ, Stratonovich (cf.
the proof in [5]) has shown that

J�·�∞�ψI� = 1
2

∫ 1

0

∣∣ψ�t� − b�ψI�t��∣∣2 dt + 1
2

∫ 1

0
div b�ψI�t��dt�(1.12)

This result was extended to general ψ ∈ L2��0�1��Rd� in [11], to more general
norms, including Hölder norm up to exponent 1/3 in [12], and to a wider class
of norms (including the Hölder norm up to exponent 1/2) by [2]. The latter
paper imposed on the norm the restriction that it must be invariant w.r.t.
rotations in R

d. We show below how this restriction can be avoided by relying
on Theorem 1.1.

Recall that a norm is completely convex if for every i = 1�2� � � � � d, every
ε > 0 and every fixed component,(

φ̃i�·�� � � � � φ̃i−1�·�� φ̃i+1�·�� � � � � φ̃d�·�
) ∈ C0

(�0�1��Rd−1)�
the set

Bi =
{
φ�·� ∈ C0��0�1��R��

∥∥∥(φ̃1�·�� � � � � φ̃i−1�·�� φ�·�� φ̃i+1�·�� � � � � φ̃d�·�
)∥∥∥ < ε

}
is symmetric (due to the properties of the norm, it is always convex). Using
Theorem 1.1 and a weak convexity requirement, one obtains the following
corollary.

Corollary 1.1. Assume � · � ∈ �p, p ∈ �2�3�. Further assume that � · � is
completely convex. Then, J�·��ψI� exists and equals J�·�∞�ψI�.
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Extension to diffusions on manifolds (cf. the recent preprint [3]) require
different techniques and we do not pursue this direction here.

Our proof of Theorem 1.1 avoids the use of correlation inequalities (these
are used however in the proof of Corollary 1.1). Rather, our proof relies on the
pathwise analysis on rough paths described in [7]. The key idea is to bound
the rth iterated integral by estimates on the Lévy area at different scales
(cf. Lemma 2.1). While correlation inequalities can be used at each scale to
obtain uniform bounds on the Lévy area, they are not sharp enough, and a
multiscale analysis is required. This analysis is reduced to estimates on dyadic
partitions by a technique borrowed from [4], and the key estimate is obtained
by separately dealing with the “coarse” elements (in which the conditioning
is dominant) and the “fine” elements (where conditioning has little effect and
unconditional bounds on the Lévy area are tight enough).

Notations. Throughout the paper, C1�C2� � � � denote various determinis-
tic constants (which may vary from line to line) and which are independent
of ε or n�m�k. Constants Ca�Cb� � � � denote constants whose value is inde-
pendent of ε or n�m�k and is kept fixed throughout the paper. For a matrix
A�i� j�, �A� = maxi� j �A�i� j��.

2. Proofs of Theorem 1.1 and Corollary 1.1. In order to provide the
proof of Theorem 1.1, we need to consider conditional estimates for the Lévy
area. Define the matrix

As� t =
︷ ︸︸ ︷∫
t<u<v<s

dXu dXv

where ︷︸︸︷ denotes the antisymmetric part of the integral.
The key to the proof of Theorem 1.1 is the following lemma.

Lemma 2.1. For any r and 3 > p′ > 2� there exist constants CK =
CK �p′� r�, Cγ = Cγ �p′� r� > 1 such that

∣∣Ir

∣∣ ≤ CK

( ∞∑
n=1

nCγ

2n−1∑
k=0

∣∣Ak/2n� �k+1�/2n

∣∣p′/2

)r/p′

+CK

( ∞∑
n=1

nCγ

2n−1∑
k=0

∣∣Xk/2n − X�k+1�/2n

∣∣p′
)r/p′

= CKĪr/p′ + CKÎr/p′
�

(2.1)

Proof. Rewrite, in the obvious way, Ir = Ir�0�1�, and more generally
Ir�s� t� is the rth iterated integral over the interval �s� t�. Let �s� t denote
all partitions of the interval �s� t�; that is if D ∈ �s� t then D = ��tj−1� tj���D�

j=1�
with t0 = s� t�D� = t and tj < tj+1. Define

ω�s� t� = sup
D∈�s� t

∑
D

(∣∣Xtj
− Xtj−1

∣∣p′ + ∣∣Atj−1� tj

∣∣p′/2)
�
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Recall the definitions for Ir given in (1.1) defined for almost every path
via Stratonovich integrals. Then, almost surely, the sequence �Ir�nr=0 forms
a geometric multiplicative functional in the sense of [7]. Moment estimates
(e.g., see [10]) can be used to show that for every n and almost surely, this
functional has finite p-variation in the sense of [7] for p > 2; that is,

sup
D∈�0�1

∑
D

�Ir�tj� tj−1��p < ∞ a.s.

Now, by Theorem 2.2.1 in [7], for p′ < 3, and for any multiplicative func-
tional �Ir�2

r=0 of finite p′-variation, there is a unique multiplicative func-
tional �Ir�nr=0 of finite p′-variation extending �Ir�2

r=0. By the above remarks, in
the Brownian case, this extension technique can be applied almost surely to
�Ir�2

r=0 and by the uniqueness statement coincides with the integral defined
via Stratonovich integrals for almost all paths.

In fact, and crucially for us, Theorem 2.2.1 in [7] gives an explicit control
over �Ir�s� t�� in terms of the p′-variation of �Ir�2

r=0. To apply this result to
our setting, observe first that the symmetric part of the Stratonovich I2�s� t�
is given by the square of I1�s� t� and the antisymmetric part is As� t so the
p′-variation of �Ir�2

r=0 is controlled by ω defined above. In this case and for
some universal constant Cr,

∣∣Ir�s� t�
∣∣ ≤ Crω�s� t�r/p′

�(2.2)

(Note that this is where we use the assumption p′ < 3: if p′ ≥ 3, one cannot
control the higher iterated integrals by means of the p′-variation of the path
and the Lévy area only.) Lemma 2.1 hence follows if we prove that for some
universal constant Crr.

ω�0�1� ≤ Crr

( ∞∑
n=1

nCγ

2n−1∑
k=0

∣∣Ak/2n� �k+1�/2n

∣∣p′/2
)

+ Crr

( ∞∑
n=1

nCγ

2n−1∑
k=0

∣∣Xk/2n − X�k+1�/2n

∣∣p′
)
�

(2.3)

Fix a partition D ∈ �0�1. For any real z, let �z� (�z ) denote the largest integer
less or equal to (respectively, the smallest integer greater or equal to) z. Every
interval �tj−1� tj� is a countable union of disjoint intervals J

i�+
j , J

i�−
j of the

form

J
i�+
j �= [�tj2�i−1��2−�i−1�� �tj2i�2−i

) �= [
τ
i�+
j �T

i�+
j

)
�

J
i�−
j �= [�tj−12

i 2−i� �tj−12
i−1 2−�i−1�) �= [

τ
i�−
j �T

i�−
j

)
�



CONDITIONAL EXPONENTIAL MOMENTS 1743

with the convention that some of the intervals above can be empty. Denote
DX

i�±
j �= XT

i�±
j

− Xτ
i�±
j

. Then,

∑
D

(�Xtj
− Xtj−1

�p′) =∑
j

( ∞∑
i=1

�DX
i�+
j + DX

i�−
j �

)p′

≤ C1
∑
j

∞∑
i=1

iCγ
(∣∣DX

i�+
j

∣∣p′ + ∣∣DX
i�−
j

∣∣p′)
(2.4)

≤ C2

∞∑
i=1

iCγ

2i−1∑
k=0

∣∣Xk/2i − X�k+1�/2i

∣∣p′
�

where the first inequality is due to the reverse Hölder inequality: for any ai

nonnegative and Cγ > 0,( ∞∑
i=1

ai

)p′

≤
( ∞∑

i=1

i−Cγ/�p′−1�
)p′−1 ∞∑

i=1

iCγ�ai�p
′
�

A similar decomposition holds for the area term: recall that for any s < t < u,

As� t + At�u = As�u − ��Xt − Xs� ∧ �Xu − Xt��
2

�

where for vectors a� b in R
d, �a ∧ b� denotes the antisymmetric matrix with

entries �a ∧ b�i� j = aibj − ajbi. Hence, with the obvious notation for AJ
i�±
j

, by
a computation similar to (2.4),

∑
D

∣∣Atj−1�tj

∣∣p′/2 ≤∑
j

( ∞∑
i=1

�AJ
i�+
j

� + �AJ
i�−
j

� + (�DX
i�+
j � + �DX

i�−
j �)2)p′/2

≤ C1

∞∑
i=1

iCγ

2i−1∑
k=0

(∣∣Ak/2i� �k+1�/2i

∣∣p′/2 + ∣∣Xk/2i − X�k+1�/2i

∣∣p′
)
�

(2.5)

The lemma follows by combining (2.4) and (2.5). ✷

Proof of Theorem 1.1. Choose a fixed p′ > p and fix M < ∞ (in the case
r = 4�p−1�/�p−2� we reduce below the initial choice of M when necessary).
Note that under the conditioning,

Î ≤ C1

∞∑
n=1

nCγ

2n−1∑
k=0

εp′
2−np′/p = C1

∞∑
n=1

nCγεp′
2−n�p′/p−1��

and so, again under the conditioning, supε≤M Î < C2 < ∞� Therefore, Theorem
1.1 will follow if we show that for any p′ > p, any M, any c, and any r <
4�p − 1�/�p − 2� one has

sup
ε≤M

Ɛε
(
exp�c�Īr/p′ ��) < ∞�(2.6)
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whereas for any p′ > p, any c, and r = 4�p − 1�/�p − 2�, there exists an
M = M�c�p�p′� such that (2.6) still holds.

Let X̃ = �X1�X2� ∈ C0��0�1��R2� and

Ãs� t = As� t�1�2�

�= 1
2

{∫ t

s

(
X1�θ� − X1�s�

)
dX2�θ� −

∫ t

s

(
X2�θ� − X2�s�

)
dX1�θ�

}
�

We let χ̃k� n = ∫ 1
0 φk�n�t�dX̃t.

Fix Cδ > Cγ > 1 and note that for some Cg depending on d only, and for
all x > 0 (we will take below x > x0 for some x0 large enough),

�ε
(�Ī� > Cgx

) ≤ ∞∑
n′=1

C1�
ε

(2n′ −1∑
j=0

∣∣Ãj/2n′ � �j+1�/2n′
∣∣p′/2

>
x

�n′�Cδ

)

≤ C1

∞∑
n′=1

2n′ 2n′ −1
max
j=0

P
ε

(∣∣Ãj/2n′ � �j+1�/2n′
∣∣p′/2

>
x

2n′n′Cδ

)
�

(2.7)

Define xn′ = �x/n′Cδ�2/p′
2−2n′/p′

, �x
j�n′

k�n = �X̃j/2n′ +�k+1�/2n+n′ − X̃j/2n′ +k/2n+n′ � and

�h
j�n′

k�n = 2−�n+n′+2�/2χ̃2nj+k�n+n′ . Then,

Âj�n′
= Ãj/2n′ � �j+1�/2n′ = lim

m→∞A
�m�
j�n′�

where

A
�m�
j�n′

= 1
2

m∑
n=0

2n−1∑
k=0

(
�x

j�n′

k�n ∧ �h
j�n′

k�n

)
1�2�

One easily checks that

Âj�n′ = A
�m−1�
j�n′ +

2m−1∑
k=0

Ãj/2n′ +k/2m+n′ � j/2n′ +��k+1�/�2m+n′ ���(2.8)

On the event �X� ≤ ε one has that for some Ce,∣∣A�m−1�
j�n′

∣∣ ≤ Ceε
22−2n′/p2m�1−2/p��(2.9)

We can next express the Brownian path

�X̃s�s∈�j/2n′ +k/2m+n′ �j/2n′ +�k+1�/2m+n′ �

as the sum of a linear motion and a Brownian loop l�·� independent of the
field �m+n′ ; that is, for

s ∈ [
j/2n′ + k/2m+n′

� j/2n′ + �k + 1�/2m+n′]
�

X̃s = X̃j2−n′ +k2−�n′+m� + 2m+n′
�x

j�n′

k�m�s − j2−n′ − k2−m−n′ � + l�s��
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Denoting

x̃
j� n′

k�m = 2m+n′
(
−
∫ j/2n′ +�k+1�/2m+n′

j/2n′ +k/2m+n′
l2�s�ds�

∫ j/2n′ +�k+1�/2m+n′

j/2n′ +k/2m+n′
l1�s�ds

)
�

and denoting the area of the loop by Ā
j�n′

k�m, we may rewrite the above expres-
sion as

Âj�n′ = A
�m−1�
j�n′ +

2m−1∑
k=0

〈
�x

j�n′

k�m� x̃
j�n′

k�m

〉+ 2m−1∑
k=0

Ā
j�n′

k�m�

Then,

�ε
(∣∣Âj�n′

∣∣ > xn′
)
< �ε

(∣∣A�m−1�
j�n′

∣∣ > xn′/3
)

+ �ε

(∣∣∣∣2
m−1∑
k=0

〈
�x

j�n′

k�m� x̃
j�n′

k�m

〉∣∣∣∣ > xn′/3
)

(2.10)

+ �ε

(∣∣∣∣2
m−1∑
k=0

Ā
j�n′

k�m

∣∣∣∣ > xn′/3
)
�

Recalling that p′ > p > 2, fix next x0 such that, for all n′,

( �x0/n
′Cδ�2/p′

22n′�1/p−1/p′�

3CeM
2

)p/�p−2�
≥2�

(
x0

n′Cδ

)2/p′
2n′�1−2/p′�

3
≥1�(2.11)

For x ≥ x0, fix

m =
[

p

�p − 2� log 2
log

(
x2/p′

22n′�1/p−1/p′�

3Ceε
2n′2Cδ/p

′

)]
�

(Hence, 2m ≤�xn′22n′/p/3Ceε
2�p/�p−2�.) Therefore [cf. (2.9)], P

ε��A�m−1�
j�n′ �>xn′/3�

= 0� Next,

�ε

(∣∣∣∣2
m−1∑
k=0

〈
�x

j�n′

k�m� x̃
j�n′

k�m

〉∣∣∣∣ > xn′/3
)

≤ Ɛ
(
���∑2m−1

k=0 ��x
j�n′

k�m� x̃
j�n′

k�m�� > xn′/3� �X� < ε��m+n′ �)
Cε

�

On the event �X� < ε, using (P1) we have that

2m−1∑
k=0

∣∣�x
j�n′

k�m

∣∣2 < C1ε
22m2−2�m+n′�/p = C2xn′�
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while the components of x̃k�m are independent of �m+n′ and i.i.d., Normal zero
mean with variance C12−�m+n′� and so

�ε

(∣∣∣∣2
m−1∑
k=0

〈
�x

j�n′

k�m� x̃
j�n′

k�m

〉∣∣∣∣ > xn′

3

)

≤ exp�−C12n′p/�p−2�x2�p−1�/�p−2�
n′ ε−2p/�p−2��
Cε

(2.12)

≤ exp
(
−Ch

2n′�pp′−4�p−1��/�p′�p−2��

�n′�4Cδ�p−1�/p′�p−2�
x4�p−1�/p′�p−2�

ε2p/�p−2�

)
C−1

ε �

for some constant Ch independent of ε, j�n′�m. Hence, for x > Ci, some Ci

large enough,

∞∑
n′=1

2n′ 2n′ −1
max
j=0

�ε

(∣∣∣∣2
m−1∑
k=0

〈
�x

j�n′

k�m� x̃
j�n′

k�m

〉∣∣∣∣ > xn′/3
)

< exp
(−Cjx

4�p−1�/p′�p−2�ε−2p/�p−2�)�
(2.13)

where we used the fact that pp′ − 4�p − 1� > 0 and the bound (1.6).
Finally, it remains to treat the term

�ε

(∣∣∣∣2
m−1∑
k=0

Ā
j�n′

k�m

∣∣∣∣ > xn′/3

)
�

For this we may use standard Laplace transform methods. The Laplace trans-
form of Ā

j�n′

k�m is (cf. [6], page 172)

φm�n′ �z� = Ɛ
(
exp�−zĀ

j�n′

k�m�)
= Ɛ

(
exp

(−zÃ0�2−m−n′
) ∣∣ ∣∣X̃2−m−n′ − X̃0

∣∣ = 0
)

= 2−�1+m+n′�z
sin 2−�1+m+n′�z

for π2m+n′+1 > �z�� Let ζ be the Legendre transform

ζ �x� = sup
z∈�0�2π�

{
zx − log

z

2 sin z/2

}
�

then, by Chebychev’s inequality,

�

(
2−m

∣∣∣∣2
m−1∑
k=0

2mĀ
j�n′

k�m

∣∣∣∣ > xn′/3
)

≤ 2 exp
(−2mζ

(
2n′

xn′/3
))
�
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Since at the very least ζ �x� > C1x > 0 for x > 1, one concludes that

�

(
2−m

∣∣∣∣2
m−1∑
k=0

2mĀ
j�n′

k�m

∣∣∣∣ > xn′

3

)

≤ 2 exp

(
−C1

x
2�p−1�/�p−2�
n′ 2n′p/�p−2�

ε2p/�p−2�

)

≤ 2 exp

(
−C1

x4�p−1�/p′�p−2�2n′�pp′−4�p−1��/p′�p−2�

ε2p/�p−2��n′�4Cδ�p−1�/p′�p−2�

)
�

(2.14)

Hence,

�ε

(∣∣∣∣2
m−1∑
k=0

Ā
j�n′

k�m

∣∣∣∣ > xn′

3

)

≤ 2C−1
ε exp

(
−C1

x4�p−1�/p′�p−2�2n′�pp′−4�p−1��/p′�p−2�

ε2p/�p−2��n′�4Cδ�p−1�/p′�p−2�

)
�

(2.15)

Combining (2.10), (2.7), (2.13), (2.15) and (1.6), one concludes that for x >
Ck, some constant Ck,

�ε��Ī� > Cgx� ≤ exp
(−C2x

4�p−1�/p′�p−2�ε−2p/�p−2�)�
from which (2.6) follows in the case r < 4�p − 1�/�p − 2�. To handle the
case r = 4�p − 1�/�p − 2�, fix c > 0 and reduce M if necessary such that
C2/M

2p/�p−2� > cC
r/p′
g . ✷

Proof of Corollary 1.1. We follow the notation and proof of [2], where
the general argument leading to the computation of the Onsager–Machlup
functional is presented. A norm satisfying the assumption of Corollary 1.1
satisfies also (P1), (P2) of [2]. Following the proof there, it is clear that with
ψ ∈ L2��0�1�� IRd�, all that one needs to show is property (i) in [2], page 196,
namely that for any monomial Mt of order 2 ≤ k ≤ �p/�p − 2� = kp in Xt, any
c ∈ R and any deterministic function 7�t� with 7̇�t� ∈ L2��0�1�; R�, it holds
that

lim sup
ε→0

Ɛε

(
exp

(
c
∫ 1

0
7�s�Ms dX1�s�

))
≤ 1�(2.16)

(Strictly speaking, property (i) in [2] is stated in terms of Itô integrals; however,
since k ≥ 2, the Itô to Stratonovich correction terms are all bounded uniformly
on the set �X� < ε and converge uniformly to 0 as ε → 0.)
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Integrating by parts, we have that∫ 1

0
7�s�Ms dX1�s� = 7�1�V1 −

∫ 1

0
7̇�s�Vs ds�

where Vt =
∫ t
0 Ms dX1�s�. Therefore,

Ɛε

(
exp

(
c
∫ 1

0
7�s�MsdX1�s�

))

≤
(
Ɛε

(
exp 2c7�1�V1

))1/2(
Ɛε

(
exp

(
−2c

∫ 1

0
7̇�s�Vs ds

)))1/2

≤
(
Ɛε

(
exp 2c7�1�V1

))1/2(
Ɛε

(
expC1

(∫ 1

0
V2

s ds

)1/2))1/2

�

where C1 depends on c and on the L2 norm of 7̇. Note that Vt can be written
as a (finite) linear combination of iterated (Stratonovich) integrals of order
bounded by kp + 1. Further [cf. (2.2), (2.3) and Lemma 2.1], for all s ∈ �0�1�,

Ir�s� ≤ Crω�0�1�r/p′ ≤ CK

(
Īr/p′ + Îr/p′)

�

Therefore, using Lemma 1 in [2], and the uniform convergence to 0 with ε of
Î on the set �X� < ε (cf. the first line in the proof of Theorem 1.1) it follows
that it is enough to show that for all r ≤ kp + 1, 3 > p′ > p > 2 and all C1,

lim sup
ε→0

Ɛε
(
expC1�Īr/p′ �) < ∞�(2.17)

and that for all K > 0,

lim sup
ε→0

�ε�Ī > K� = 0�(2.18)

Equation (2.17) is an immediate consequence of (2.6) because �kp+1� ≤ 2�p−
1�/�p−2� < 4�p−1�/�p−2�. To see (2.18), it is enough [cf. (2.1)] to show that

∞∑
n=1

nCγ

2n−1∑
k=0

Ɛε
(∣∣Ak/2n� �k+1�/2n

∣∣2)p′/4 → 0 as ε → 0�(2.19)

Using the complete convexity of the norm in the first inequality and (P1) in
the second (see [12] for a similar argument), one obtains

Ɛε
(∣∣Ak/2n� �k+1�/2n

∣∣2) ≤ CqƐ
ε

(∫ �k+1�/2n

k/2n
�X1�s� − X1�k/2n��2 ds

)
≤ CqC

2
pε

22−n2−2n/p�

which, because 3 > p′ > p > 2, implies (2.19). ✷

Remark 2.1. Note that in order to prove Corollary 1.1, one needs much
less than the conclusion of Theorem 1.1. In particular, one needs to consider
only certain special functionals of the iterated Stratonovich integrals Ik.
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Birkhäuser, Boston.

Department of Mathematics
Imperial College
180 Queen’s Gate
London SW7 2BZ
England
E-mail: t.lyons@ic.ac.uk

Department of Electrical Engineering
Technion–Israel Institute of Technology
Haifa 32000
Israel
E-mail: zeitouni@ee.technion.ac.il


