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LOGARITHMIC SOBOLEV INEQUALITY FOR SOME
MODELS OF RANDOM WALKS1

BY TZONG-YOW LEE AND HORNG-TZER YAU

University of Maryland and New York University

We determine the logarithmic Sobolev constant for the Bernoulli�
Laplace model and the time to stationarity for the symmetric simple
exclusion model up to the leading order. Our method for proving the
logarithmic Sobolev inequality is based on a martingale approach and is
applied to the random transposition model as well. The proof for the time
to stationarity is based on a general observation relating the time to
stationarity to the hydrodynamical limit.

1. Introduction. Let SS denote a space of configurations and � � SS

denote a configuration. We shall assume that SS is a finite set. Define on SS a
dynamics given by a generator

Lf � � C � , � f � � f � .Ž . Ž . Ž . Ž .Ý
��SS

Assume that the dynamics leaves a probability measure � invariant. Define
the associated Dirichlet form of f by

� � �D f � �E fLf .Ž .

For any probability measure � on SS , define the entropy by

d�
�H ��� � E log .Ž . ž /d�

Ž . Ž . Ž p.By convention, H g � H g��� . Define the V norm

1�ppd�
Ž p. �V ��� � E � 1 .Ž .

d�

Only p � 1, 2 are used in this paper. Notice that V Ž1. is twice the total
variational norm. We are interested in the logarithmic Sobolev constant and
the time needed to approach the stationary distribution � .
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The logarithmic Sobolev constant. Define � , the logarithmic Sobolev con-
stant, by

�' � �1.1 � � sup H g �D g : g � 0, E g � 1 .Ž . Ž .� 4Ž .

The time of stationarity. Let � be the distribution at time t when thet
initial distribution is � . Define � , the time to stationarity, to be0

1.2 � � inf t : t � 0, sup V Ž2. � �� � e�1 .Ž . Ž .t½ 5
�0

The choice of the constant e�1 is only for convenience; any constant less than
1 can be used and there is no canonical choice. Notice that we can use the V Ž1.

norm instead of V Ž2.. Since most results in this paper concern upper bounds
of � , we choose V Ž2. to have stronger results in the definition of � .

The logarithmic Sobolev inequality was initiated in the work of Federbush
� � � �8 and Gross 9 . Its connection to the rate of relaxation to equilibrium was

� � � �studied by, for example, 4, 5, 10, 12, 15 . See 1�3, 14 for a review. In
Ž� �.particular, in our context, one has the general relation 5

1 1 1
1.3 � � � � 1 	 log log � .Ž . ž /2 4 min � �Ž .�

Our goal in this paper is to determine � and � asymptotically as the size of
the configuration space tends to infinity for the three models of random
walks. Another relevant quantity is the spectral gap. As it has been exten-
sively studied, we shall not discuss it in this paper.

We first fix some notation for these models. For the random transposition
Ž .RT model, the state space is the permutation group S of n objects. Wen
think of S as the n! number of ways to place n distinct particles on nn
distinct sites. Both particles and sites are numbered from 1 to n. After a
mean 1 exponential waiting time, a particle will select one of the n sites with
equal probability and exchange the position with the particle at that site. All
the exponential waiting times are assumed to be independent. For � � S , wen
write � , 1 � � � n, for the particle in site i and write � i j for the resultingi i

Ž i j. Ž i j. Ž i j.configurations after the switch, that is, � � � , � � � and � � �i j j i k k
for k � i, j. With these notations, the RT model is uniquely characterized by
an initial distribution on S and the Markov generator K given byn n

n1
i jK g � � g � � g � ,Ž . Ž . Ž . Ž .Ýn n i , j�1

where g is a function on S .n
Ž .The Bernoulli�Laplace BL model has two parameters n and r, 1 � r � n,

the number of distinct sites and the number of identical particles. A site can
be occupied by at most one particle. So the state space, denoted by C , is then, r
space of all subsets of the n sites with r elements. For � � C , denote by �n, r i
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the number of particles at the site i. So, � � 0 or 1 and Ýn � � r. Eachi i�1 i
particle waits a mean 1 exponential time to jump to one of the n sites with
equal probability 1�n. The jump is suppressed if the chosen site is occupied.
Again, all the exponential waiting times are independent. This Markovian
evolution is uniquely characterized by the generator K :n, r

n1
i jK f � � � 1 � � f � � f �Ž . Ž . Ž .Ž .Ž .Ýn , r i jn i , j�1

n1
i j� f � � f � ,Ž .Ž .Ýn i , j : i�j

where f is a function on C andn, r

� , if k � i ,
 j

i j �� , if k � j,� �Ž . ik �� , otherwise.k

Ž .The symmetric simple exclusion SE model has the same two parameters
n and r and the same state space C as in the BL model. The difference isn, r
that the n sites are connected using a lattice structure and a particle jumps
to one of its nearest neighbors with equal probability. For this article, the n
sites are identified as ��n�. So, each site has two nearest-neighbor sites.
Using the same notation �, � i j � C and f : C � �, the generator is L :n, r n, r n, r

n1
i , i	1L f � � f � � f � .Ž . Ž . Ž .Ž .Ýn , r 2 i�1

This model can be considered in any dimension with � replaced by �d.
Since these generators are symmetric and irreducible, all three models

have the uniform distribution � as the unique stationary distribution. Note
n� � � � Ž . Ž .the cardinality: S � n!, C � � n!�r! n � r !. The associated expecta-n n, r r

tions will be denoted E RT, E BL and ESE for the RT, BL and SE models,n n, r n, r
Ž . Ž .respectively. Let g f , resp. be the probability mass function pmf relative to

Ž .the uniform distribution � on S C , resp. . The relative entropies aren n, r
given explicitly by

1
RT RT � �H g � E g log g � g � log g � ,Ž . Ž . Ž .Ýn n n! ��Sn

BL � �H f � E f log fŽ .n , r n , r

�1
nSE � �� E f log f � f � log f � .Ž . Ž .Ýn , r ž /r

��Cn , r
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The Dirichlet forms are explicitly given by
n1 2RT RT i jD g � E g � � g � ,Ž . Ž . Ž .Ýn n ½ 52n i , j�1

1 2BL BL i jD f � E f � � f � ,Ž . Ž .Ž .Ýn , r n , r ½ 52n i , j : i�j

n1 2SE SE i , i	1D f � E f � � f � .Ž . Ž .Ž .Ýn , r n , r ½ 54 i�1

ŽDenote the logarithmic Sobolev constants for these models RT, BL and
.SE by a , a and b . Denote the times to stationarity of these modelsn n, r n, r

Ž . RT BL SERT, BL and SE by � , � and � , respectively. Due to the particle�holen n, r n, r
symmetry, it suffices to treat the case 1 � r � n�2. For simplicity of presen-
tation, the number of sites n is an even number. The logarithmic Sobolev
constant for the random transposition model and its time to stationarity have

� � � �been determined completely by 6 and 5 .

Ž . Ž .THEOREM 1 The RT model Diaconis�Saloff�Coste . There exists a con-
stant c independent of n, such that c�1 log n � a � c log n, n � 2.n

� Ž .��1 � � Ž .One has for the RT model with n sites min � � � S � n! and 1.3� n
means

1 1
RT1.4 a � � � 1 	 log log n! a .Ž . Ž .n n n2 4

Ž .Since log log n! is the order of log n, the last inequality and the knowledge
Ž .for a Theorem 1 determine the time to stationarity up to a factor of log n inn

Ž .the RT model. It turns out that the lower bound in 1.4 captures the correct
� �order of the time to stationarity in the RT model 6 .

Ž .THEOREM 2 Diaconis�Shahshahani . For the random transposition model,
we have

0 � lim � RT�log nn�	 n

RT� lim � �log n � 	.n� 	 n

The basic known results concerning the BL and SE models are the
following two theorems.

Ž . Ž .THEOREM 3 The BL model Diaconis�Shahshahani .
1

BLi � � log n.Ž . n , n �2 2
Ž .ii There exists 
 � 0, independent of n, r, 1 � r � n�2, such that

2r r
BL � �� � 1 � log n 	 
 .n , r ž /n n
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Ž .THEOREM 4 The SE model . There exists a positive constant c, indepen-
dent of n and r, 1 � r � n � 1, such that

c�1 n2 � b � cn2 , n � 2, 1 � r � n � 1.n , r

� � � �The first theorem is proved in 7 using Fourier analysis; the second in 17
using a martingale approach in the general framework of lattice gas dynam-

� � � �ics and in 7 and 5 with a logarithmic correction. See the remark after
� � � �Theorem 6 for the methods used in 7 and 5 .

Ž . � � SEWe can now use 1.3 to determine a from Theorem 3 5 and � fromn, r n, r
Theorem 4. Notice that the upper and lower bounds differ by a factor of order

nŽ . Ž . Ž .log log which ranges from log n if r � n�2 to log log n if r � 1 . Ther

correct answers in the region 0 � log r�log n � 1 for some fixed constant C
are given by the following two theorems, which are our main results.

Ž .THEOREM 5 The BL model . There exists a positive constant � , indepen-
dent of n, 1 � r � n � 1, such that

n2 2 n2

� log � a � log , n � 2.n , rr n � r log 2 r n � rŽ . Ž .

Ž . Ž .THEOREM 6 The SE model . i There exists a constant 
 � 0, indepen-
dent of n, r, 1 � r � n�2, such that

� SE � 
 n2 1 	 log r .Ž .n , r

Ž .ii Furthermore, there exists a constant K, independent of n, r, 1 � r �
n�2, such that

� SE � Kn2 log n.n , r

Ž . Ž . Ž . 2iii Combining i and ii , the time to stationarity is the order of n log n
Ž . Ž .for the SE model provided 0 � lim inf log r�log n � lim sup log r�log n �

1.

Ž .From Theorem 5 and 1.3 , for all n, r, 1 � r � n � 1, we have
22 n 1 nBL� � log 1 	 log log .n , r ž /rlog 2 r n � r 4Ž .

Ž .This gives the same order as Theorem 3 when r � n r is of order n . Notice
that while the correct order of the time to stationarity for the RT model is

Ž . � Ž . �captured by the lower bound of 1.3 see 1.4 , Theorems 1 and 2 , it is the
Ž .upper bound of 1.3 which provides the correct order for the SE and BL

models when, for example, r is of order n.
� �There is a general inequality 11, 13

D BL f � 2n2DSE f .Ž . Ž .n , r n , r

From this inequality, we have

b � 2n2a .n , r n , r
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� �This relation follows also from a general graph comparison method 5 .
Together with Theorem 5, this gives an independent proof of the upper bound

� �of Theorem 4 in case r � n. Notice that Theorem 5 was known 5 only up to a
Ž .log n factor in case r � n and thus Theorem 4 was proved only up to a log n

� �factor in 5 .
We now remark on the methods used in this note. The lower bounds of the

logarithmic Sobolev constants are easy to derive by using test functions, as
will be shown briefly in Sections 3 and 4. The upper bound of Theorem 5 will

� �be proved in Section 4 using the martingale method of 17 . For completeness,
we shall also prove in Section 3 the upper bound of Theorem 1 using the same
method. Therefore, all upper bounds of the logarithmic Sobolev constants can
now be proved by the same approach.

Theorem 6 is proved in Section 5. The upper bound for the time to
Ž .stationarity in Theorem 6 follows from 1.3 and the estimate in Theorem 4

for the logarithmic Sobolev constant. It should be pointed out that the lower
bound will actually be proved for the total variational norm, or, equivalently,
the V Ž1. norm. Our proof of the lower bound is based on an observation
relating the time to stationarity to the hydrodynamical limit. Section 2 gives
a brief account of this connection.

2. Time to stationarity and hydrodynamical limit. We now explain
the connection between the time to stationarity and the hydrodynamic limit.
We shall take as an example the symmetric simple exclusion process. The
method described in this section is technically not needed for this paper since
the hydrodynamical limit of the symmetric simple exclusion process is the
trivial heat equation and explicit computation can be performed. This method,
however, is important to determine the correct lower bound for the time to
stationarity for many particle systems and is very general in natural. We first
review some basic definitions from hydrodynamic limits.

Let f be an initial density relative to � , the uniform distribution on the
space C , and P f the corresponding probability measure. We call m then, r
macroscopic density of the profile determined by f if, for any 
 and J,

n
f �1� �P A � 1, C � n J i�n m i�nŽ . Ž .Ýn , J , 
 , C

i�0

as n � 	, where

n
�1A � � : n J i�n � � C � 
 .Ž .Ýn , J , 
 , C i½ 5

i�0

Let f denote the density relative to � at time s given f � f. The hydrody-s 0
namic limit states that for any t, J, 
 fixed,

f 2n tP A � 1n , J , 
 , Ct
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provided that
n

�1C � n J i�n m i�n, tŽ . Ž .Ýt
i�0

and m is the solution of the hydrodynamical equation

� m x , t � 
m x , t �2.Ž . Ž .t

Here 
 is the Laplacian operator for the circle and the hydrodynamical
equation is the simple heat equation. For general reversible dynamics, it will

Ž .be a nonlinear diffusion equation. Note that the space integral of m x, t is
Ž .conserved and Hm x, t dx � r�n for all t. Since the heat equation ap-

proaches equilibrium as t � 	, we have
n

�1C � C � n J i�n r�nŽ . Ž .Ýt 	
i�0

as t � 	. Indeed, let � � 0 denote the speed of the hydrodynamical equation
to approach the constant function. Then

n
�1� � � �C � C � n J i�n m i�n, t � C � exp �� t .Ž . Ž .Ýt 	 	

i�0

Suppose we have proved the following stronger estimate

2.1 P fn2t A � 9�10Ž . Ž .n , J , 
 , Ct

for t � � log n and

 � n��

for some small constants � , � , such that

�� 	 � � 1�2.
Then we have

A �1 �2 
 A �1 �2 � �.n , J , � n , C n , J , � n , Ct 	

Hence,
P fn2t A �1 �2 � 1�10Ž .n , J , � n , C	

for any � fixed. Here and throughout the section, the statements apply to
sufficiently large n. From the central limit theorem,

P� A �1 �2 � 9�10Ž .n , J , � n , C	

if � is large enough. We have thus proved that
Ž1. � f 2n t2 �1�2 �1�2V f � P A � P A � 4�5.Ž . Ž . Ž .n t n , J , � n , C n , J , � n , C	 	

This proves that � � � n2 log n.
Ž .The estimate 2.1 is a stronger statement of the law of large numbers than

one typically proves in the hydrodynamical limit. In the special case of
symmetric simple exclusion processes, it is an explicit computation, as will be
done in Section 5. In general, more sophisticated methods will be needed.
There are several methods available. A simple and reasonably general one is
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� �the relative entropy method from 16 . We first introduce the notion of local
Gibbs states.

Let � be a smooth function. Define the local Gibbs state � � by
n

�2.2 � � exp � � � �M � , � � � � � � x�n ,Ž . Ž . Ž . Ž .Ý x
x�1

Ž . � � �where M � is the normalization constant E exp � � � . The density is well
defined by the formula

2.3 m x�n � dp�d� � x�n ,Ž . Ž . Ž . Ž .Ž .
where the pressure p is defined by

� � �2.4 p � � log E exp � � � .Ž . Ž .
We shall choose � depending on t in such a way that the corresponding
Ž .m x�n, t is the solution of the hydrodynamical equation. Denote the corre-

sponding local Gibbs state by � . The standard result of local limit theoremt
states that

�1	� � t ��2.5 lim n log P A � �CŽ . Ž .n� 	 n , J , n , Ct

for some positive constant C for any small positive constant � . Recall the
following inequality concerning relative entropy:

log 2 	 H f�gŽ .
f2.6 P A � .Ž . Ž . glog 1 	 1�P AŽ .Ž .

Applying this inequality with f � f 2 and g � � 2 , we haven t n t

P fn2t A �1 �2 � n�1	�H f 2 �� 2 �C.Ž .Ž .n , J , � n , C n t n t	

�1 Ž . Ž . Ž �� .2 2Let h � n H f �� . Hence 2.1 follows if we have h � o n .t n t n t t
� �A typical method to estimate the relative entropy is 16 , where the

following estimate is established: there exist 
 � 0 such that

d
2.7 h t � 
 h t 	 � ,Ž . Ž . Ž . ndt

Ž .where � denote the error. Assuming that h 0 � 0, we haven

h t � e
 t� .Ž . n

For the hydrodynamical limit, we need only � � 0 as n � 	. This is provedn
� �in 16 for Ginzburg�Landau models and can be generalized to many gradient

Ž �� .models. Since our goal is to prove h � o n for t � � log n, we needt

n�	� � � 0 as n � 0.n

In other words, we need a precise error estimate for the hydrodynamical
� �limit. Notice that the error terms in 16 appear in eigenvalue estimates.

Hence we obtain better error estimates if some spectral gap or logarithmic
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Sobolev inequality estimates are given. We will not carry out this approach
because for the models considered in this paper, the hydrodynamical limit is
trivially given by, for example, the heat equation. In this case, the error
terms come from some martingale and can be estimated directly. But the
connection with the relative entropy will be needed for more general models
with nontrivial hydrodynamical equations.

3. Proof of Theorem 1. Since the present section concerns only the RT
model, all the superscripts RT will be omitted. The lower bound of a isn
easier and is proved using a test function g. Since the relaxation to stationar-
ity is the slowest when the initial distribution is deterministic, we use the
test function

g � n!
 ,id

where 
 is the indicator function of the identity permutation. From theid
definition of a , we haven

RT 'a � H g �D gŽ . Ž .n n n

1
� log n! � id n n � 1 n! 	 � i , j n!Ž . Ž . Ž . Ž . Ž . Ž .Ž .Ý½ 52ni , j , i�j

� log n! � n � 1 ,Ž . Ž .

which, by Stirling’s formula, has the desired lower bound c�1 log n.
To prove the upper bound for a , we shall perform conditioning on � andn s

averaging over 1 � s � n 	 1 to establish an inequality involving a andn	1
� Ž . 4a . Note that, fixing s, X � � t , t � 0 is itself a continuous-time Markovn t s

� 4chain. It is a 1, 2, . . . , n 	 1 -valued jump process of rate 2 and it jumps to
Ž .state 1, 2, . . . , n 	 1 with equal probability 1� n 	 1 . The corresponding

� �logarithmic Sobolev inequality is known 5 .

Ž .LEMMA 1. For the above-mentioned continuous-time, n 	 1 -state Markov
chain X , there exists a constant K, independent of n, such thatt

n	11
h x log h xŽ . Ž .Ýn 	 1 x�1

n	1log n 21�2 1�2� K h y � h x , n � 1,Ž . Ž .Ýn � 1 n 	 1Ž . Ž . x , y�1

3.1Ž .

� 4for all pmf h, relative to the uniform distribution on 1, . . . , n 	 1 . In fact,
1the best constant is K � .2
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To prove an inequality involving a and a , let g be a pmf relative ton	1 n
Ž .the uniform distribution � on S and define 1 � s � n 	 1n	1

g � the marginal pmf of � , relative to � ,s s

�g � � � the conditional pmf of � , given � , relative to � ,Ž .s s

I g � E g � EŽ . Ž .1, s n	1 s s n	1½
21�2 1�2i j � � �� g � � � g � � �Ž .Ž .Ý s s s 5

i , j : i�s , j�s

21�2 1�2i j� E g � � g � ,Ž . Ž .Ýn	1 ½ 5
i , j�s

3.2Ž .

I g � E g � log g � ,Ž . Ž . Ž .2, s n	1 s s s s

n	11
I g � I g , i � 1, 2.Ž . Ž .Ýi i , sn 	 1 s�1

By an elementary calculation of conditional expectations,

� � �H g � E g � E g � � log g � � � 	 I .Ž . Ž .� 4Ž . Ž .n	1 n	1 s s n	1 s s s 2, s

Since the uniform distribution on S , given � , is the uniform distributionn	1 s
on S , the definition of a then implies thatn n

an
H g � I 	 I ,Ž .n	1 1, s 2, s2n

thus
an

3.3 H g � I 	 I .Ž . Ž .n	1 1 22n

It follows from a simple combinatorial calculation that

n	1 21�2 1�2i jI � n � 1 E g � � g � ,Ž . Ž . Ž .Ý Ý1, s n	1 ½ 5
s�1 i , j

and therefore

'3.4 I � 2 n � 1 D g .Ž . Ž . Ž .1 n	1

Ž . Ž .To estimate I , we apply 3.1 Lemma 1 to h � g to get2, s s

n	1 n	1log n 21�2 1�23.5 I � K g y � g x .Ž . Ž . Ž .Ý Ý2, s s sn � 1 n 	 1Ž . Ž . x�1 y�1

�1 �1 x y ab Ž . � Ž . � �Let a � � , b � � , � � � . Since g x � E g � � � x and the˜x y s n	1 s
Ž . Ž 1�2 1�2 .2function a, b � a � b is convex for a, b � 0, Jensen’s inequality
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implies

21�2 1�2g y � g xŽ . Ž .s s

21�2 1�2� �� E g � � � y � E g � � � xŽ . Ž .n	1 s n	1 s
3.6Ž .

21�2 1�2x y � �� E g � � � x � E g � � � xŽ . Ž .˜n	1 s n	1 s

21�2 1�2x y� n 	 1 E g � � g � ; � � x .Ž . Ž . Ž .˜½ 5n	1 s

Ž . Ž .Combining 3.5 and 3.6 , we have

n	1log n 21�2 1�2x yI � K E g � � g � .Ž . Ž .˜Ý2, s n	1 ½ 5n � 1 x , y�1

Ž . � 4'Recall the definition of D g . Averaging the E part of the right-handn	1 n	1
Ž .'side gives 2 D g . Thus,n	1

log n '3.7 I � 2 K D g .Ž . Ž .2 n	1n � 1

By the definition of the logarithmic Sobolev constant a , the threen	1
Ž . Ž . Ž .inequalities 3.3 , 3.4 and 3.7 now imply

a log nn
a � n � 1 	 2 K .Ž .n	1 n n � 1

It remains to prove the desired upper bound by an induction on n � 2. The
initial check for n � 2 follows from the n � 1 case of Lemma 1. Assuming
that a � c log n, the last inequality yieldsn

log n log n
a � c n � 1 	 2 KŽ .n	1 n n � 1

n � 1 1
� c 	 2 K log nž /n n � 1

� c log n 	 1 ,Ž .

provided c � 4K � 2 or larger. The proof is complete. �

4. The proof of Theorem 5. The proof resembles, in its structure, that
of Theorem 1. Note that we have one more parameter r, the number
of particles. Thus, a will be treated as a function of r, 1 � r � n � 1, forn, r
each n.

Since any probability distribution on C is a mixture of distributionsn, r
associated with deterministic configurations, it is conceivable that the BL
model will approach the uniform distribution the slowest when the initial is
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deterministic. We therefore choose the test function

nf � 
�,ž /r

where 
� is the indicator function of a fixed configuration. However, it should
be pointed out that a deterministic distribution in general does not produce
the logarithmic Sobolev constant.

We then have

nH f � log ,Ž .n , r ž /r
�11 r n � rŽ .n n'D f � r n � r � ,Ž .Ž .n , r ž / ž /r r2n 2n

n2n logH fŽ . ž /rn , r
a � � .n , r r n � r' Ž .D fŽ .n , r

The superscript BL in D is omitted here and throughout Section 4. Onen, r
needs to show the existence of c such that

n 2n log nž /r �1� c log .
r n � r r n � rŽ . Ž .

It suffices to show that a positive number � exists such that

1 n nn4.1 log � � log , 1 � r � .Ž . ž /rr r 2

There are two simple lower bounds. The first is

r1 1 n � r n nnlog � log � log � 1 , 1 � r � .ž / ž / ž /rr r r r 3

The second one is that, if n�2 � r � n�3, then

n1 2 2 nn nlog � log � log 3,ž /rr n n 3� 03

� � Ž .where x is the integer part of x. These two bounds yield 4.1 , thus, the
desired lower bound of the theorem.

We will derive an upper bound of a in terms of a and a . Ton	1, r n, r n, r�1
Ž � .this end, let us write f for the marginal pmf of � , and f � � for thes s s

conditional pmf given � , 1 � s � n 	 1, both relative to � .s
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Similar to the proof of Theorem 1, define

I � E f � a EŽ .1, s n	1, r s s n , r�� n	1, rs½
21�2 1�2i j � � �� f � � � f � � �Ž .Ž .Ý s s s 5ž /

i , j : i�s , j�s

21�2 1�2i j� E a f � � f � ,Ž .Ž .Ýn	1, r n , r��s½ 5
i , j�s

4.2Ž .

I � E f � log f � ,� 4Ž . Ž .2, s n	1, r s s s s

n	11
I � I , i � 1, 2.Ýi i , sn 	 1 s�1

Simple calculation of conditional expectations gives

� � �H f � E f � E f � � log f � � � 	 I .� 4Ž . Ž .� 4Ž . Ž .n	1, r n	1, r s s n	1, r s s s 2, s

Ž .Observe that, if � � 0 1, respectively , then the inner expectation concerns as
Ž .BL model with parameters n, r r � 1, respectively . By the definition of

a , a and I , we now haven, r n, r�1 1, s

1
H f � I 	 I ,Ž .n	1, r 1, s 2, s2n

thus

1
4.3 H f � I 	 I , 2 � r � n � 1.Ž . Ž .n	1, r 1 22n

A simple combinatorial calculation shows that

n	1

'I � a n � r 	 a r � 1 2 n 	 1 D f ,Ž . Ž . Ž . Ž .Ý 1, s n , r n , r�1 n	1, r
s�1

Ž . Ž .where the two factors, n � r and r � 1 , are simply the number of times
� Ž i j.1�2 Ž .1�2 �2that each term f � � f � appears. Therefore,

'4.4 I � 2 a n � r 	 a r � 1 D f .Ž . Ž . Ž . Ž .1 n , r n , r�1 n	1, r

� Ž . 4Note that, for each 1 � s � n 	 1, the process � t ; t � 0 is itself as
� 4continuous-time Markov chain on the state space 0, 1 . The jump rates Ai j

Ž . Ž . Ž . Ž .from state i to j are A � r� n 	 1 and A � n 	 1 � r � n 	 1 . In0, 1 1, 0
order to estimate I , we need a logarithmic Sobolev inequality for this2, s

� �simple Markov chain. This inequality is proved in 9, 5 and we stated it as
Lemma 2.
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� 4 Ž .LEMMA 2. Let h be a pmf on 0, 1 , relative to the distribution 1 � �, � ,
0 � � � 1. There exists a constant B, independent of � and h, such that

1 � � h 0 log h 0 	 �h 1 log h 1Ž . Ž . Ž . Ž . Ž .
log 1 � � � log �Ž . 21�2 1�2� � 1 � � h 0 � h 1Ž . Ž . Ž .

1 � � � �Ž .
1 21�2 1�2� B log � 1 � � h 0 � h 1 .Ž . Ž . Ž .ž /� 1 � �Ž .

In fact, the best constant is B � 1�log 2.

Ž .Applying Lemma 2, with � � r� n 	 1 , to h � f , we gets

2r n 	 1 � r n 	 1Ž . Ž . 21�2 1�24.5 I � B log f 0 � f 1 .Ž . Ž . Ž .2, s s s2 r n 	 1 � rŽ .n 	 1Ž .

For � with � � 1, let � s* be the random configuration obtained from � bys
moving the particle in s to an unoccupied site at random. Write M for thes
corresponding expectation. Then

s� �f 0 � E f � � 0 � M E f � * � � 1 ,Ž . Ž .s n	1, r s s n	1, r s

2 1�21�2 1�2 s �f 0 � f 1 � M E f � * � � 1Ž . Ž . Ž .½Ž .s s s n	1, r s

21�2��E f � � � 1Ž . 5n	1, r s

21�2 1�2s �� M E f � * � f � � � 1 ,Ž . Ž .½ 5s n	1, r s

Ž .where the last inequality follows from the convexity of the function a, b �
Ž 1�2 1�2 .2a � b , a, b � 0, and Jensen’s inequality. Carrying out the M expec-s
tation and summing over s, we get

n	1 21�2 1�2f 0 � f 1Ž . Ž .Ý s s
s�1

n	1�11 r
� EÝ n	1, rž /n 	 1 � r n 	 1 s�1

21�2 1�2s� f � * � f � ; � � 1Ž . Ž .Ý s½ 5
s� *

4.6Ž .

�11 r '� 2 n 	 1 D fŽ . Ž .n	1, rž /n 	 1 � r n 	 1
22 n 	 1Ž . '� D f .Ž .n	1, rr n 	 1 � rŽ .Ž
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Ž . Ž . Ž .It follows from 4.2 , 4.5 and 4.6 that
22 B n 	 1Ž . '4.7 I � log D f .Ž . Ž .2 n	1, rn 	 1 r n 	 1 � rŽ .

Ž . Ž . Ž .Therefore, by 4.3 , 4.4 and 4.7 ,

'H f �D fŽ . Ž .n	1, r n	1, r

21 2 B n 	 1Ž .
� a n � r 	 a r � 1 	 log .Ž . Ž .n , r n , r�1n n 	 1 r n 	 1 � rŽ .

By the definition of a , we have obtainedn	1, r

1
a � a n � r 	 a r � 1Ž . Ž .n	1, r n , r n , r�1n

22 B n 	 1Ž .
	 log , 2 � r � n � 1.

n 	 1 r n 	 1 � rŽ . Ž .

4.8Ž .

Ž .It remains to prove, by 4.8 and an induction on n, the upper bound in the
theorem. The initial case n � 2, r � 1 follows from Lemma 2. Now, suppose

� 2 Ž .�a � 2 B log n �k n � k , 1 � k � n � 1, B � 1�log 2. Then, for 2 � r � nn, k
Ž .� 1, 4.8 implies

2 22 B n n
a � n � r log 	 r � 1 logŽ . Ž .n	1, r n r n � r r � 1 n 	 1 � rŽ . Ž . Ž .

22 B n 	 1Ž .
	 log .

n 	 1 r n 	 1 � rŽ .
Since the log function is concave, Jensen’s inequality implies

222 B n � 1 n n 	 1 2 B n 	 1Ž . Ž . Ž .
a � log 	 logn	1, r n n � 1 r n 	 1 � r n 	 1 r n 	 1 � rŽ . Ž . Ž .

2n 	 1Ž .
� 2 B log

r n 	 1 � rŽ .
22
 �1 n n 	 1 1Ž .� �� 1 � 1 	 log log 	2ž / ž /� �ž /n r n 	 1 � r n 	 1n � 1 Ž .

2n 	 1 1 1Ž . �12� 2 B log 1 � 1 	 n � 1 log 4 	 .Ž .ž /½ 5ž /r n 	 1 � r n n 	 1Ž .
� Ž .�ŽA simple calculation shows that the last bracket equals 1 � 1�n n 	 1 1

Ž ..� 1� 2 log 2 , and hence is less than 1.
The upper bound is proved except for the case r � 1 or n. Due to the

particle�hole symmetry, two cases are identical. Take r � 1, which means
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Ž .that there is only one particle and there are n 	 1 sites. It follows from 3.1
and the Dirichlet form of the BL model that the logarithmic Sobolev constant

�Ž . Ž .� �Ž .2 �is bounded by n 	 1 �2 n � 1 log n, hence less than 2 B log n 	 1 �1 � n .
The proof is completed.

Ž .5. Proof of Theorem 6. The upper bound ii is a consequence of
Ž . Ž n.Theorem 3 and 1.3 since log log 2 � log n 	 log log 2.

For � � C , we will write P for the probability measure associated withn, r �

the SE model with � initially and E , V for the corresponding expectation� �

and variance. The subscript � is used if the SE system is in equilibrium.
For the lower bound, we need the following.

Ž . Ž .LEMMA 3. Let N � Ý J i�n � T . Then, there exist a function J, aT i i
configuration � � C and three positive constants � , �, c, independent ofn, r
n, r, such that

E N � E N � � re��T � n2
,Ž . Ž .� T � T

V N � c2 r ,Ž .� T

V N � c2 r ,Ž .� T

for all T � 0. A possible value for � is � � 2� 2.

The proof of this lemma will be given at the end. We will use this lemma to
prove the lower bound and, indeed, a stronger statement in which the V Ž1.

Ž2. Ž .norm replaces the V norm in defining the time to stationarity in 1.2 .
In view of the fact that Lemma 3 gives the variances and the difference of

the mean values of N , it is clear that Chebyshev’s inequality can be appliedT
to yield a lower bound. The next paragraph contains the details.

Let � be the law of the position at time T under P . If m � 0, T �T �
2 'Ž . Ž .n �� log � r �m � 0, we next show that the initial � of Lemma 3 gives

5.1 V Ž1. � �� � 2 � 16c2 m�2 .Ž . Ž .T

2 'Ž . Ž .Note that Lemma 3 and T � n �� log � r �m imply that

�2 'E N � E N � � r exp ��n T � m rŽ . Ž . Ž .� T � T

1�2 1�2� m� 2c V N 	 m� 2c V N .Ž . Ž . Ž . Ž .� T � T

� � Ž . � Ž . Ž .1�24Therefore the two events F � N � E N � m� 2c V N and F �� T � T � T �

� � Ž . � Ž . Ž .1�24N � E N � m� 2c V N are disjoint. Chebyshev’s inequality im-T � T � T
plies

Ž1.V � �� � P F � P F 	 P F � P FŽ . Ž . Ž .Ž . Ž .T � � � � � � � �

2 �2 2 �2 2 �2 2 2� 1 � 4c m � 4c m 	 1 � 4c m � 4c mŽ . Ž .
� 2 � 16c2 m�2 .
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Ž . Ž �1 .�1�2 2 �2This is 5.1 . If one then chooses m � 4c 2 � e , then 2 � 16c m �
e�1 and

V Ž2. � �� � V Ž1. � �� � e�1 .Ž . Ž .T T

SE Ž 2 . � Ž �1 .1�2 1�2 �Thus, � � T � n �� log � 2 � e r �4c . The desired lower boundn, r
SE 2 2Ž �1 .of � then follows, except for small r, say r � 64c �� 2 � e . Thisn, r

Ž .missing case is easy since � does not depend on n, and by 1.3 and Theorem
4, the time to stationarity is at least the order of n2 for a fixed number of
particles.

PROOF OF LEMMA 3. We point out that if r is the order of n, then Lemma
Ž .3 verifies 2.1 for the SE model and the above proof of Theorem 6 uses the

Ž .idea following 2.1 .
Lemma 3 is, in fact, valid for nearly all functions J. One such function

suffices for our purpose of the lower bound. Note that, for a simple random
Ž Ž ..walk on ��n�, the first two eigenvalues are 0 and �� � � 1 � cos 2��nn

Ž .and the corresponding eigenfunctions are the constant function and f k �n
Ž .sin 2k��n , k � ��n�. The function

J k�n, s � exp �� s f k , J k�n � J k�n, 0 � f kŽ . Ž . Ž . Ž . Ž . Ž .n n n

is particularly amenable to our end.
Ž .Note that J i�n, s satisfies

� � 
 �2 J i�n, s � 0,Ž . Ž .s n

where


 J i�n, s � J i 	 1 �n, s � 2 J i�n, s 	 J i � 1 �n, s .Ž . Ž . Ž . Ž .Ž . Ž .n

For any T � 0, Ito’s calculus for the particle system then impliesˆ
M � J i�n, 0 � T � J i�n, T � 0 ,Ž . Ž . Ž . Ž .Ý Ýn , T i i

i i

is a martingale with mean 0 and variance given by

E M 2Ž .n , T

T 2� E J i 	 1 �n, T � s � J i�n, T � s � s 1 � � sŽ . Ž . Ž . Ž .Ž .ÝH i i	1½
0 i

2	 J i � 1 �n, T � s � J i�n, T � sŽ . Ž .Ž .

�� s 1 � � s ds �2.Ž . Ž . /i i�1 5
Ž .From the definition of N and the fact E M � 0,T n, T

n

E N � exp �� T sin 2k��n � k � � r exp �� T ,Ž . Ž . Ž . Ž . Ž .ÝT n n
k�1

for some positive � if we take � with the r particles crowding in the middle of
� 4 2 2the set 1, 2, . . . , n�2 . Since �� � �2� �n , the right-hand side gives then

desired lower bound with � � 2� 2.



T.-Y. LEE AND H.-T. YAU1872

The variance of N equals that of M . HenceT n, T

V N � E M 2 � c2 r ,Ž . Ž .� T n , T

for some constant c since there are r particles and

T 2J i 	 1 �n, T � s � J i�n, T � s dsŽ . Ž .Ž .H
0

T2 2 2� 2��n exp �2� t dt � 2� � n � ,Ž . Ž . Ž .H n n
0

Ž . Ž . Ž . Ž .independent of T. Since E N � 0, E � � � r r � 1 �n n � 1 , i � j and� T � i j
r�n, i � j, it is not difficult to see that the variance of N is of order r inT
equilibrium. Thus, c can be chosen so that c2 r bounds both variances. This
completes the proof of Lemma 3. �
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