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EXPONENTIAL STABILITY FOR NONLINEAR FILTERING OF
DIFFUSION PROCESSES IN A NONCOMPACT DOMAIN1

By Rami Atar

Technion–Israel Institute of Technology

The optimal nonlinear filtering problem for a diffusion process in a
noncompact domain, observed in white noise, is considered. It is assumed
that the process is ergodic, the diffusion coefficient is constant and the
observation is linear. Using known bounds on the conditional density, it
is shown that when the observation noise is sufficiently small, the filter is
exponentially stable, and that the decay rate of the total variation distance
between differently initialized filtering processes tends to infinity as the
noise intensity approaches zero.

1. Introduction. For a pair of stochastic processes, �xt�0 ≤ t < ∞�
termed a state process, and �yt�0 ≤ t < ∞� termed an observation pro-
cess, with a given joint law, the filtering problem consists of the recursive
computation of the conditional law of xt given the observations in the past,
�ys�0 ≤ s ≤ t�. The solution to the problem is called the optimal filter, and
the conditional law, considered as a measure-valued process, is called the fil-
tering process. In many cases the time-evolution of the filtering process can
be described by equations such as the Kushner equation or the Zakai equa-
tion, and in some simple cases it can be recovered from the finite-dimensional
Kalman–Bucy or Beneš equations. All these equations are driven by the ob-
servation process and are initialized in accordance with the prior law at time
zero. In this article we study the sensitivity of the filter to perturbations in its
initialization, in a certain class of problems where ��xt� yt�� forms a diffusion
process. Several works in the past have been devoted to related questions.
Kunita [11] and Stettner �18�19� have studied the ergodic properties of the
filtering process and the convergence of the filter to its ergodic behavior. The
stability of the filter to perturbations in its initial conditions has been stud-
ied by Delyon and Zeitonni [10] and by Ocone and Pardoux [16]. Bounds on
the decay rate of the variation distance between the responses of the filter
to different initializations have been provided by Atar and Zeitonni [1], [2].
Recently, Budhiraja and Ocone [7] proved exponential stability for models in
which the state process may even be nonergodic. Le Gland and Mevel [13]
proved exponential stability of the filter with respect to its initial condition
under misspecification of the assumed model. Cérou [8] studied the asymp-
totic consistency of the filter for a noise-free state process. Some more recent
related results appear in [3], [5], [6], [9], [14], [15].
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As for diffusion processes, it has been shown [2] that for a strictly elliptic
diffusion on a compact manifold observed by a smooth R

d-valued function with
additive white noise, the filter is stable for all noise-level values. The technique
used there, which involves Birkhoff ’s contraction coefficient, does not seem to
be applicable when noncompact domains are considered. Intuitively, however,
we expect that compactness of the domain is not essential for stability. The
goal of this paper is to show that at least in the one-dimensional noncompact
case, where the diffusion coefficient is constant and the observation function is
linear, the filter is indeed stable. The reason that we pick out this model is that
this is the only nontrivial case, where explicit upper and lower bounds on the
conditional density are known [21], which are also tight when the observation
noise-level is low. Using these bounds, we can show that the nonlinear filter is
stable when the noise is sufficiently small, and moreover, that the decay rate
tends to infinity as the noise-level approaches zero. An analogue of the latter
result is yet unknown for the filtering of a diffusion process on a compact state
space.

To control the variation distance between the responses of the filter to two
given initializations p

�i�
0 , i = 1�2, we use an inequality (2.20), involving the

two associated unnormalized conditional densities, ρ�i�
t (see definition in Sec-

tion 2) and their exterior product, ρ�1�
t ∧ ρ

�2�
t . This approach has formerly been

taken in [2], Section 5. With this inequality, the problem of controlling the
decay rate is translated into that of estimating the evolution rates of ρ�i�

t and
of ρ�1�

t ∧ ρ
�2�
t that are both governed by linear flows. Both estimates are es-

tablished by looking at the subsequences at times n = 1�2� � � � � An upper
bound on �ρ�1�

t ∧ ρ
�2�
t �1 is obtained by bounding the norms of the operators

ρ
�1�
n−1 ∧ ρ

�2�
n−1 → ρ

�1�
n ∧ ρ

�2�
n , while a lower bound on �ρn�1 is obtained by writing

it as an n-fold integral and using the positivity of ρn. However, since explicit
expressions for ρt are not available, we use instead Zeitouni’s bounds on the
densities ρt, which have explicit form. Ergodic considerations are then invoked
to obtain an a.s. result.

In Section 2 we state our main result, quote Zeitouni’s density bounds and
sketch the proof. Section 3 is devoted to estimates on the evolution rates of
the unnormalized densities and of their exterior product. In Section 4 we
study the small noise asymptotics of the density bounds under some ergodic
assumptions. Finally, all parts are combined in Section 5 to obtain the proof
of the main result.

2. Setting and main result. Our model for the state and observation
processes is as follows:

dxt = f�xt�dt+ dwt� xt ∈ R�(2.1)

dyt = xt dt+N
1/2
0 dνt� yt ∈ R� y0 = 0�(2.2)

Here �wt�0 ≤ t < ∞� and �νt�0 ≤ t < ∞� are independent standard Brownian
motions, and x0 has density p0, with respect to the Lebesgue measure on R.
We make the following assumption on f.
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Assumption 1. The function V�x� = f′�x� + f2�x� is twice continuously
differentiable with a bounded second derivative.

We denote by P the measure induced by the pair (2.1), (2.2) and the initial
density p0 and by E expectation with respect to it. The next assumption in-
dicates stationarity and ergodicity of �xt� in an asymptotic sense. To state it,
we define also Pq to be the measure induced by (2.1), (2.2) where the density
of x0 is q instead of p0. Obviously, we have P = Pp0 .

Assumption 2(a). There exists an initial density p̃, such that under Pp̃,
�xt� is stationary and ergodic.

We denote P̃ = Pp̃ for one such p̃; Ẽ denotes expectation with respect to it.

Assumption 2(b). For some t ≥ 0, the marginal law of xt under P is abso-
lutely continuous with respect to that under P̃.

Furthermore, we shall assume the following.

Assumption 3. One has that Ẽx2
t < ∞.

Remarks. (a) We treat only the case where the diffusion coefficient is con-
stant (2.1) and the observation function is linear (2.2), because there exist
explicit upper and lower bounds on the conditional density (Theorem 2), ap-
plying only under these assumptions, that make it possible to control the decay
rate. Under Assumption 1, these bounds are also tight as N0 → 0, in a sense
explained below [see the remark after (2.12)].

(b) It is useful to note that Assumption 1 implies that f grows at most
linearly that is, there exists a constant C0 such that

�f�x�� ≤ C0 +C0�x��(2.3)

(c) Assumption 2 implies that P is absolutely continuous with respect to P̃
on the tail σ-field.

Let us denote by P0 the measure induced by

dxt = f�xt�dt+ dwt�

dyt = N
1/2
0 dνt� y0 = 0�

where �wt� and �νt� are as above, and the density of x0 is again p0. Let
also P�t� (P�t�

0 ) denote the restriction of P (P0, respectively) to the sigma-field
generated by the trajectories up to time t, namely, to σ��xs� ys��0 ≤ s≤ t�.
Then it is known that P�t� and P

�t�
0 are mutually absolutely continuous. More-

over, let us denote by �s� t the sigma-field generated by �yθ� s ≤ θ ≤ t� and by
pt the conditional density of xt given �0� t. Then if we define

ρt�z� = E0

(
dP�t�

dP
�t�
0

∣∣∣∣�0� t� xt = z

)
pxt

�z��
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where pxt
�·� is the density of xt under P0, we have that P-a.s. ρt�z�/

∫
R
ρt�r�dr

= pt�z� . We call ρt the unnormalized density, and under regularity conditions
on p0 (see, e.g., [17]), it is known to satisfy the Zakai equation [20].

By the smoothing property for the conditional expectation, one can show
(see, e.g., [2]) that there is a linear relation between ρs and ρt, in the sense that
if s < t� then there exists an integral kernel, namely, a real-valued measurable
function T�s� ξ� t� z�, for which

ρt�z� =
∫

R

T�s� ξ� t� z�ρs�ξ�dξ�

This kernel is given by

T�s� ξ� t� z� = E0

[
dP

dP0

∣∣∣∣�s� t� xs = ξ� xt = z

]
pxt �xs�z � ξ��(2.4)

where pxt �xs�· � ξ� is the density of xt conditioned on xs = ξ under P0 (equiva-
lently, under P).

In order to deal with perturbed initial conditions, it is necessary first to
define the response p

p
t of the filter to an arbitrary initial condition p. A def-

inition in that spirit appears already in [11], and later also, for example, in
[16] and [2], and in the present context it can be described as follows. Let the
density p be an arbitrary nonnegative element of L1�R� whose L1 norm is
�p�1 = 1. Then we let

p
p
t �z� = ρ

p
t �z�∫

R
ρ
p
t �r�dr�

where

ρ
p
t �z� =

∫
R

T�0� ξ� t� z�p�ξ�dξ�

Note that T�s� ξ� t� z� is also the fundamental solution to the Zakai equation
and that ρpt �z� (pp

t �z�) agrees with the solution to the Zakai equation (respec-
tively, the Kushner equation) initialized with p, under further conditions that
guarantee existence and uniqueness of solutions.

Let now p
�i�
0 , i = 1�2 be two nonnegative elements of L1�R� with �p�i�

0 �1 = 1

and define ρ
�i�
t = ρ

p
�i�
0

t and p
�i�
t = p

p
�i�
0

t . Our main result is the following.

Theorem 1. Under Assumptions 1, 2 and 3 there exists a nonrandom con-

stant C1, independent of N0 and of p
�i�
0 , such that P-a.s.,

lim sup
t→∞

1
t

log
∣∣p�1�

t − p
�2�
t

∣∣
1 ≤ 1

4
logN0 +C1�

Remarks. (a) Definitely, in order that the filter may produce the correct
result, namely, have its solution p

p
t equal to the conditional density pt, its

initial condition must be set to p0. However, one should not confuse the initial
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condition of the filter, which is perturbed in the above discussion, with the
initial density p0 of �xt�, which is kept fixed throughout.

(b) We know that the bound in Theorem 1 is not tight as N0 → 0. In fact, in
the special case of the Kalman–Bucy filter, where one has explicit expressions
for pp

t , the decay rate can be precisely computed, and the result is of the order
of N−1/2

0 , rather than of logarithmic order. Some recent results that exhibit
behavior of the order of N−1/2

0 in cases where the dynamics is nonlinear appear
in [3]. Also, see [15] for a related study of the Beneš filter.

Bounds on the conditional density. For the model (2.1) and (2.2), bounds
on the conditional density are provided in [21], Corollary 1. We repeat these
bounds in what follows. Let

��z� = exp
∫ z

0
f�θ�dθ�

Throughout, the presence of the sign ◦ in a stochastic integral denotes a
Stratonovitch integral, while its absence denotes an Itô integral.

Theorem 2 (Zeitouni). Let there exist Pi� t, Qi� t and ki� t �i = 1�2� t ≥ 0�
that are �0� t-adapted processes, satisfying

1
2P1� tx

2 +Q1� tx+ k1� t ≤ 1
2V�x� ≤ 1

2P2� tx
2 +Q2� tx+ k2� t�(2.5)

Assume

p0�z� ∝ ��z� exp
(−�z− ξ�2/2γ

)
for some ξ ∈ R and γ > 0. Then the following bounds hold P-a.s.:

��z�
��ξ�u2�t� z� ≤ ρt�z� ≤ ��z�

��ξ�u1�t� z��(2.6)

Above,

ui�t� z� = Ki�t� exp
−(z− µi�t�

)2
2%i�t�

�

and %i�t�, µi�t� and Ki�t� are the solutions of

− d

dt
%−1
i �t� = %−2

i �t� − α2
i � %−1

i �0� = γ−1�(2.7)

%−1
i �t�dµi�t� = −α2

iµi�t�dt−Qi� t dt+N−1
0 ◦ dyt� µi�0� = ξ�(2.8)

K−1
i �t� ◦ dKi�t� = %−1

i �t�µi�t� ◦ dµi�t� + 1
2α

2
iµ

2
i �t�dt

− 1
2%

−1
i �t�dt− ki�t dt� Ki�0� = κ�

(2.9)

with

αi =
√
N−1

0 +Pi

κ = ��ξ�∫
��z� exp�−�z− ξ�2/2γ�dz�
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Under Assumption 1, let V denote a constant such that �V′′�z�/2� ≤ V for
all z. In Theorem 3 of [21], the choice for the coefficients Pi, Qi and ki is taken
to be compatible with the expansion of V�z� around z = µ1�t�; namely, they
are chosen as follows:

2ki� t = V
(
µ1�t�

)− µ1�t�V′(µ1�t�
)+ �−1�iVµ2

1�t��(2.10)

Qi� t = 1
2V

′�µ1�t�� − �−1�iVµ1�t��(2.11)

Pi = Pi� t = �−1�iV�(2.12)

The existence of coefficients Pi, Qi and ki satisfying (2.5) follows from As-
sumption 1. Furthermore, it is shown in Theorems 2 and 3 of [21] that under
Assumption 1, with the above choice for the coefficients, the bounds (2.6) are
tight. In particular, as N0 → 0, one has %i�t� → 0, %1�t�/%2�t� → 1 and P-a.s.
(conditioned on �0� t), K1�t�/K2�t� → 1 and �µi�t� − x̂t�/%1/2

1 �t� → 0, where
x̂t = E�xt��0� t�. Although we do not use this result here directly, we adopt
this choice for the coefficients in what follows, in a way to be explained below.

For our purpose, it is desired to have bounds on the kernel T�s� ξ� t� z�,
rather than on the density ρt�z� = ∫ T�0� ξ� t� z�p0�ξ�dξ. This may be obtained
by a slight modification of Theorem 2 as follows. We associate the initial con-
ditions of (2.7), (2.8) and (2.9) with time s (rather than 0), take γ = 0, and
look at the bounds as functions of s� ξ� t and z. More precisely, let us write
the solutions to (2.7) and (2.8) with initial conditions %i�s� = 0 and µi�s� = ξ,
respectively:

%i�s� t� = 1
αi

tanh
(
αi�t− s�)�

µi�t� = µi�s� ξ� t�
= 1

cosh�αi�t− s��
{
ξ +

∫ t

s
cosh�αi�θ − s��(−Qi�θ%i�s� θ�dθ

+ %i�s� θ�N−1
0 ◦ dyθ

)}
�

(2.13)

Next, let us define

(i�s� ξ� t� = 1

��ξ�√2π sinh�αi�t− s��
× exp

{
−
∫ t

s

(
ki� θ + α2

i

2
µ2
i �θ� +Qi�θµi�θ�

)
dθ

+
∫ t

s
N−1

0 µi�θ� ◦ dyθ

}
�

(2.14)

Then as a consequence of Theorem 2 we have the following.
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Corollary 1. Let Pi� t�Qi� t and ki� t be any �s� t-adapted processes satis-
fying (2.5), and let %i�s� t�, µi�s� ξ� t� and (i�s� ξ� t� be as above. Define

Ti�s� ξ� t� z� = (i�s� ξ� t���z� exp
−�z− µi�s� ξ� t��2

2%i�s� t�
�

Then for all t > s we have P-a.s.,

T2�s� ξ� t� z� ≤ T�s� ξ� t� z� ≤ T1�s� ξ� t� z��(2.15)

The proof in [21] of Theorem 2 above is based on the stochastic Feynman–
Kac formula [22]. To prove the corollary along the same lines, one needs to
consider a degenerate case, where ρt is initialized with a Dirac measure at ξ,
and then to explore the dependence on ξ. In relation to this approach, see [12].
We choose an alternative method, using uniqueness of weak solutions to the
associated filtering equation (based on a result of [17]).

For the proof of Corollary 1, see the Appendix.
To make the bounds explicit, it is left to determine the choice of the co-

efficients Pi� t, Qi� t and ki� t for each value of ξ. Therefore, we let ξ0 be a
nonrandom constant and for t ≥ s denote

µ0
i �s� t� = µi�s� ξ0� t��

Then, for s fixed, we choose the coefficients to be those that are defined in
(2.10), (2.11) and (2.12) with µ0

1�s� t� substituted instead of µ1�t�, for all values
of ξ.

It is important to observe that by this definition, the coefficients Qi� t and
ki� t depend upon the value of s that we have fixed. To denote this dependence,

we introduce the notation Q
�s�
i� t, k

�s�
i� t to be used when s to which the coefficients

correspond is not clear and discarded otherwise.

Remark. There is no circularity in the definition of Qi and µi, as one
may suspect at a first glance. In fact, once s is fixed, Q1� t and µ0

1�s� t� are
just the solution to the set of equations (2.8) and (2.11) for t > s, with the
initial condition µ0

1�s� s� = ξ0. Occasionally, Q2� t is determined by (2.11) and
µi�s� ξ� t� by (2.8) with µi�s� ξ� s� = ξ [alternatively, by (2.13)].

A useful representation of (2.14) is obtained if one writes (2.13) as

µi�s� ξ� t� = µ0
i �s� t� + ξ − ξ0

cosh�αi�t− s��(2.16)

and concludes that the exponent in (2.14) is quadratic in ξ, namely

(i�s� ξ� t� = 1
��ξ� exp

(−(ξ − ai�s� t�
)2

2bi�s� t�
+ ci�s� t�

)
�(2.17)
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Solving for a� b and c, one gets

bi�s� t� = (αi tanh�αi�t− s��)−1
�

ai�s� t� = ξ0 + bi�s� t�
(

−
∫ t

s

(
α2
iµ

0
i �s� θ� +Qi�θ

)
dθ

cosh
(
αi�θ − s�)(2.18)

+
∫ t

s

dyθ

N0 cosh
(
αi�θ − s�)

)
�

ci�s� t� = log
(
(i�s� ξ0� t���ξ0�

)+
(
ai�s� t� − ξ0

)2
2bi�s� t�

�(2.19)

Notation. The following notation will be used throughout. For an Lp�R�
function φ�·� we denote by �φ�p its Lp norm (p = 1 or p = ∞). Let � be
an operator on L1�R�, that possesses an integral kernel T�·� ·�, namely, it is
given by

� φ�y� =
∫

R

T�x�y�φ�x�dx�

Then we denote by �T�op its operator norm on L1�R�. For D ⊂ R, φ�D is the
restriction of φ to D, and T�D is the restriction of T to D with respect to
the first argument (i.e., T�D�x�y� = T�x�y�� x ∈ D�y ∈ R). For r > 0, �r�x�
denotes the interval �x − r� x + r�. For two real-valued measurable functions
u and v, we let the exterior product u ∧ v be the R

2 → R mapping defined by
�x�y� → u�x�v�y� − u�y�v�x�, and let �u ∧ v�1 denote its L1�R2� norm (see,
e.g., [4], page 61 for the usual definition). Now, ∧2L1�R� will be the subspace
�u ∧ v� �u ∧ v�1 < ∞� of L1�R2�. For a linear operator � on ∧2L1�R� that
possesses an integral kernel A�·� ·�, �A�op will denote the operator norm with
respect to �·�1. By T∧T we denote the integral kernel of the ∧2L1�R� operator
� ∧ � defined by �� ∧ � ��u ∧ v� = � u ∧ � v. We write h�x� = O�x� as
x → l, if h is a deterministic function of x and lim supx→l �h�x��/x < ∞. By C
we denote a nonrandom constant, independent of N0 and of the spatial and
temporal variables (ξ� z� s and t), whose value may change from one line to
another.

Sketch of the proof of Theorem 1. The naive approach of using the
asymptotics as t → ∞ of the bounds on the kernel to control the contraction is
useless, since the bounds are not tight for large values of t. To take advantage
of the tightness for fixed t and small N0, we rather look at the bounds Ti�n−
1� ξ�n� z�, i = 1�2, n = 1�2� � � � derived in Corollary 1, on each of the kernels
T�n− 1� ξ�n� z�.

For s = n − 1 and t ≥ s (usually, we shall have t ∈ �n − 1� n�), k
�s�
i� t

and Q
�s�
i� t are used in conjunction with µ0

i �s� t� to define, as explained above,
µi�s� ξ� t��(i�s� ξ� t� and, in turn, also ai�s� t� and ci�s� t�. The following abbre-
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viations are used:

Tn�ξ� z� = T�n−1� ξ�n� z�� Ti�n�ξ� z� = Ti�n−1� ξ�n� z��
µi�n�ξ� = µi�n− 1� ξ�n�� µ0

i�n=µ0
i �n−1�n�� (i�n�ξ�=(i�n−1� ξ�n��

ai�n = ai�n−1�n�� ci� n = ci�n−1�n��
%i� t = %i�0� t�� %i = %i�1�� bi� t = bi�0� t�� bi = bi�1��

Our estimate is based on the following lemma whose proof is straightfor-
ward.

Lemma 1.

∣∣p�1�
t − p

�2�
t

∣∣
1 ≤

∥∥ρ�1�
t ∧ ρ

�2�
t

∥∥
1∣∣ρ�1�

t

∣∣
1

∣∣ρ�2�
t

∣∣
1

�(2.20)

We use the above inequality to bound the exponential decay rate of �p�1�
t −

p
�2�
t �1 by upper bounding �ρ�1�

t ∧ρ�2�
t �1 and lower bounding �ρ�i�

t �1, using the fact
that both ρ

�1�
t ∧ρ�2�

t and ρ
�i�
t are governed by linear flows. To bound �ρ�1�

t ∧ρ�2�
t �1

we write

∥∥ρ�1�
n ∧ ρ

�2�
n

∥∥
1 ≤ ∥∥ρ�1�

0 ∧ ρ
�2�
0

∥∥
1

n∏
j=1

∥∥Tj ∧ Tj

∥∥
op�(2.21)

and develop bounds on �Tn∧Tn�op. To this end, we write Tn as a perturbation
of a rank-1 operator. The following lemma shows how to control its norm by
controlling the perturbation.

Lemma 2. Let � be a linear operator with integral kernel given by

T�ξ� z� = ψ�ξ�φ�z� + e�ξ� z��
Then the following bound holds

�T ∧T�op ≤ 2�ψ�∞�φ�1�e�op + �e�2op�

Proof. This is an immediate consequence of the following identity

�� u ∧ � v��z� z′�

=
∫ ∫ [

ψ�ξ�φ�z�e�ξ′� z′� + ψ�ξ′�φ�z′�e�ξ� z� + e�ξ� z�e�ξ′� z′�]
× �u ∧ v��ξ� ξ′�dξdξ′� ✷

We therefore write

Tn�ξ� z� = (1� n�ξ���z� exp
{−(z− µ1� n�ξ�

)2
/2%1

}− εn�ξ� z�
= (1� n�ξ���z� exp

{−�z− βn�2/2%1
}+ δn�ξ� z� − εn�ξ� z��
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where βn are constants that do not depend on ξ and z (whose values we
determine later) and the above equalities define δn and εn. Corollary 1 asserts
that

0 ≤ εn�ξ� z� ≤ T1� n�ξ� z� −T2� n�ξ� z��
while by definition,

δn�ξ� z� = (1� n�ξ���z�{exp
{−�z− µ1� n�ξ��2/2%1

}

− exp
{−�z− βn�2/2%1

}}
�

We define

�̃%�u� =
∫

R

��z� exp�−�z− u�2/2%�dz�
Using Lemma 2 with en = δn − εn, we therefore obtain

�Tn ∧Tn�op ≤ 2�(1� n�∞�̃%1
�βn��en�op + �en�2op�(2.22)

Now, it follows from (2.3) and (2.17) that for all ξ�

log(1� n�ξ� ≤ −�ξ − a1� n�2/2b1 + c1� n + 1
2C0 +C0ξ

2

≤ −�ξ − a1� n�2/2b1 + c1� n + 1
2C0 + �C0 + 1�ξ2�

(2.23)

While the first inequality will be used below to bound (1� n�ξ�, we define γn to
be the value of ξ maximizing the RHS of the second inequality. The reason for
the definition with the extra term ξ2 is that it makes it possible to conclude
later the inequality (5.3). One checks that as N0 → 0,

γn = a1� n
(
1 +O�N1/2

0 �)+O
(
N

1/2
0

)
�(2.24)

We now set

βn = µ1� n�γn��
The considerations behind our technique to control �en�op (in Lemma 3 be-

low) are as follows. First, in view of Lemma 5(iii), a1� n can be interpreted as
a good estimate for xn−1 (for small values of N0), and in turn, by (2.24), so
can γn. Also, by Lemma 5(i), one expects that βn is a good estimate for xn. We
notice, moreover, that because of the nearly Gaussian “shape” of the bounds
Ti, both in z (see Corollary 1) and in ξ [see (2.17)], en�ξ� z� has the prop-
erty that most of its mass is concentrated around z = xn, while the value
of ξ that maximizes that mass is in the vicinity of xn−1. We therefore es-
timate �εn�op = supξ

∫ �εn�ξ� z��dz by integrating separately on �1�βn� and
on its complement, where that mass is negligible, and taking the supremum
separately on �1�γn� and on its complement, where the maximum is rarely
achieved. In a similar way we estimate �δn�op.

In Lemma 4, a lower bound on �ρn�1 is obtained by writing it as an n-fold
integral and using the positivity of ρn. The ergodic assumptions are exploited
in Lemma 5 to obtain tightness of the coefficients appearing in the expressions
for the bounds Ti, in an Lp sense, as N0 → 0.
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3. Auxiliary bounds. The purpose of this section is to introduce bounds
on the numerator and the denominator of the RHS of (2.20).

Lemma 3. Under Assumption 1, one has �en�op ≤ B
�1�
n +B

�2�
n +B

�3�
n � where

B
�1�
n = qn

∣∣(1� n

∣∣
∞O

(
exp

−N−1/2
0

2

)
�

B
�2�
n = 2 sup

{
(1� n�ξ�

(
�̃%1

�βn� + �̃%1
�µ1� n�ξ��

)� ξ �∈ �1�γn�
}
�

B
�3�
n = C����2�βn��∞

inf
{
��ξ�� ξ ∈ �1�γn�

} exp�c1� n�N1/4
0 rn�

qn = ∣∣���2�βn�
∣∣
∞ + sup

{
�̃%1

�µ1� n�ξ� + j�� ξ ∈ �1�γn�� j = ±1
}
�

rn = N
−1/4
0

∣∣a1� n − a2� n

∣∣+ ∣∣c1� n − c2� n

∣∣+O�N0��

Proof. Let us write

�δn�op = max
{∣∣δn��1�γn�

∣∣
op�
∣∣δn�Bc

1�γn�
∣∣
op

}
�

Note that �βn − µ1� n�ξ�� ≤ 1 for all ξ ∈ �1�γn�. Let us denote the indicator
function by 1�·�. We then have

exp
(−z2

2%

)
1
{�z� > 1

} ≤ exp
(−1

2%

){
exp

−�z− 1�2

2%
+ exp

−�z+ 1�2

2%

}
�

Therefore we have

∣∣δn��1�γn�
∣∣
op

≤ �(1� n�∞
∣∣���2�βn�

∣∣
∞ A

�1�
n + �(1� n�∞ exp

( −1
2%1

)
A

�2�
n �

where

A
�1�
n = sup

ξ∈�1�γn�

∫ ∣∣∣∣exp
−�z− µ1� n�ξ��2

2%1
− exp

−�z− βn�2

2%1

∣∣∣∣dz

and

A
�2�
n = 2 sup

{
�̃%1

�µ1�n�ξ� + j�� ξ ∈ �1�γn�� j = ±1
}
�

Denoting by F the standard normal distribution on R, and using the fact
that µ1� n�ξ� is a nondecreasing function of ξ, we have

A
�1�
n =

√
2π%1 max

j=±1

{
−2 + 4F

( �µ1� n�γn + j� − βn�
2
√
%1

)}
≤ 2

cosh�α1�
�
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We have therefore shown that
∣∣δn��1�γn�

∣∣
op

≤ B
�1�
n /2. On the other hand, it is

straightforward to show that
∣∣δn�Bc

1�γn�
∣∣
op

≤ B
�2�
n /2. Similarly,

∣∣εn��1�γn�
∣∣
op ≤ ∣∣���2�βn�

∣∣
∞A

�3�
n + �(1� n�∞ exp

( −1
2%1

)
A

�2�
n

2
�

where

A
�3�
n = sup

{√
2π%1(1� n�ξ� −

√
2π%2(2� n�ξ�� ξ ∈ �1�γn�

}
�

One has by (2.17) that

A
�3�
n ≤ C

inf
{
��ξ�� ξ ∈ �1�γn�

} sup
ξ∈R

{√
%1 exp

(−�ξ − a1� n�2

2b1
+ c1� n

)

−
√
%2 exp

(−�ξ − a2� n�2

2b2
+ c2� n

)}
�

Now, bounding the partial derivatives of exp�−�ξ − a�2/2b+ c� with respect
to a� b and c, and using the fact that both bi and %i are O�N1/2

0 �, one obtains
that for all N0 small enough,

A
�3�
n ≤ C

inf���ξ�� ξ ∈ �1�γn�
}
{∣∣a1� n − a2� n

∣∣ exp�c1� n� + b1 − b2√
b2

exp�c1� n�

+
√
%1 exp�c1� n�

∣∣∣∣c1� n − c2� n + 1
2

log
%1

%2

∣∣∣∣
}

and hence
∣∣εn��1�γn�

∣∣
op ≤ B

�3�
n +B

�1�
n /2�

Finally, one has that
∣∣εn�Bc

1�γn�
∣∣
op

≤ B
�2�
n /2, and the lemma follows. ✷

We proceed with a lower bound on �ρ�i�
n �1. Fix i (either i = 1 or i = 2) and

let Di be any fixed compact set on which ρ
�i�
0 = p

�i�
0 is positive and such that

�Di� > 0. For z0 ∈ Di let m0�z0� = z0 and for n = 1�2� � � � let

mn�z0� = µ2� n�mn−1�z0���
Then we have the following.

Lemma 4. Let Assumption 1 hold and let there exist some constant C2 >
−∞ independent of N0 and of z0, such that the following holds:

lim inf
n→∞

1
n

log inf
{
��z�� ∣∣z−mn�z0�

∣∣ < √%2

}
≥ C2�(3.1)
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Then

lim inf
n→∞

1
n

log
∣∣ρ�i�

n

∣∣
1

≥ C+ 1
2

log%2

+ lim inf
n→∞

1
n

n−1∑
j=1

{
c2� j+1 −N

−1/2
0

(∣∣∣∣
j−1∑
k=2

coshk−j�α2�
(
µ2� k�ξ0� − ξ0

)∣∣∣∣

+ ∣∣µ2� j�ξ0� − a2� j+1

∣∣)2}
�

where by convention,
∑n

m = 0 if n < m.

Proof. By repeated application of the lower bound we have

∣∣ρ�i�
n

∣∣
1 =

∫
· · ·
∫
ρ

�i�
0 �z0�

n∏
j=1

Tn�zj−1� zj�dz0 · · ·dzn

≥
∫

· · ·
∫
ρ

�i�
0 �z0�1�z0 ∈ Di�

n∏
j=1

(2� j�zj−1���zj�

× exp
(−�zj − µ2�j�zj−1��2/2%2

)

× 1
{�zj −mj�z0�� <

√
%2
}
dz0 · · ·dzn

≥ inf
z0∈Di

ρ
�i�
0 �z0� inf

z0∈Di

(2�1�z0� inf
{
��z�� ∣∣z−mn�z0�

∣∣ < √%2
}

(3.2)

× inf
z0∈Di

n∏
j=2

inf
{
(2� j�z���z�� �z−mj−1�z0�� <

√
%2
}

×
∫

· · ·
∫

1�z0 ∈ Di�
n∏

j=1

1
{�zj −mj�z0�� <

√
%2
}

× exp
(−�zj − µ2� j�zj−1��2/2%2

)
dz0 · · ·dzn�

Now by (2.13) we know that 0 ≤ dµ2� j�ξ�/dξ ≤ 1. Therefore, within the
integration region, the following holds:

∣∣zj − µ2� j�zj−1�
∣∣ ≤ ∣∣zj −mj�z0�

∣∣+ ∣∣mj�z0� − µ2� j�mj−1�z0��
∣∣

+ ∣∣µ2� j
(
mj−1�z0�

)− µ2� j
(
zj−1

)∣∣ ≤ 2
√
%2�

(3.3)
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Hence the multiple integral in (3.2) is greater than or equal to �Di��2
√
%e−2�n,

and we obtain

1
n

log �ρ�i�
n �1 ≥ 1

n
log inf

Di

ρ
�i�
0 �z0� + 1

n
log inf

Di

(1�z0�

+ 1
n

log inf
{
��z�� �z−mn�z0�� <

√
%2
}

+ 1
n

log �Di� + log 2 − 2 + 1
2

log%2 + 1
n

n∑
j=2

(
A

�4�
j + c2� j

)
�

where

A
�4�
n = inf

z0∈Di

inf
{
log(2� n�z���z�� �z−mn−1�z0�� <

√
%2
}− c2� n�

The lemma now follows from the fact that

A
�4�
n ≥ − sup

z0∈Di

(
1 +N

−1/2
0

(
mn−1�z0� − a2� n

)2)

and ∣∣mn−1�z0� − a2� n

∣∣ ≤ ∣∣mn−1�z0� − µ0
2� n−1

∣∣+ ∣∣µ0
2� n−1 − a2� n

∣∣�
while

mn−1�z0� − µ0
2� n−1 =

n−2∑
k=1

coshk−n+1�α2�
(
µ0

2� k − ξ0
)

+ cosh1−n�α2��z0 − ξ0�� ✷

(3.4)

4. Ergodic behavior. Stationarity and ergodicity of the discrete-time
processes µ0

i� n� n = 1�2� � � � under P̃ are implied by Assumption 2, since µ0
i� n

is determined by the paths ��xt� νt − νn−1�� n − 1 ≤ t ≤ n� alone. The same is
true for the processes ai�n, ci� n, Ki�n and �(i�n�∞.

Some of the consequences of Assumptions 2 and 3 are summarized below.

Lemma 5. For 0 < ε < 1/2 fixed, as N0 → 0+ one has

(i) Ẽ
(
µ0
i �n�n+ t� − xn+t

)2 =


O�1�� uniformly in t ∈ �0�N1/2−ε

0 ��
O�N1/2

0 �� uniformly in t ∈ �N1/2−ε
0 �1��

(ii)

Ẽ
(
µ0

1�n�n+ t� − µ0
2�n�n+ t�)2

=


O�N2

0�� uniformly in t ∈ �0�N1/2−ε
0 ��

O�N5/2
0 �� uniformly in t ∈ �N1/2−ε

0 �1��
(iii) Ẽ�ai�n − xn−1�2 = O

(
N

1/2
0

)
�

(iv) Ẽ�a1� n − a2� n�2 = O�N2
0��
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(v) Ẽ log
K1� n

K2� n
= O�N1/4

0 ��

(vi) Ẽ
∣∣c1� n − c2� n

∣∣ = O�N1/4
0 ��

(vii) Ẽ�log �(1� n�∞ − c1� n� = O�1��

Remark. In [21], analogues of (i), (ii) and (v) of the lemma have been
shown for convergence in an a.s. sense.

Proof. (i) Substituting (2.2) in (2.13), we can write

µ0
i �0� t� − xt = 1

cosh�αit�
(
ξ0 −

∫ t

0

sinh�αis�
αi

Qi� s ds

+
∫ t

0

sinh�αis�
N0αi

�xs − uxt�ds
)

+Vi� t�

where

u = N0αi cosh�αit�∫ t
0 sinh�αis�ds

= 1 +O�N0�

uniformly in t ∈ �N1/2−ε
0 �1� and

Vi� t = 1
cosh�αit�

∫ t

0

sinh�αis�
N

1/2
0 αi

dνs�

We have EV2
i� t=O�N1/2

0 � uniformly in t∈�0�1�. Therefore, using Minkowski’s
inequality and the inequality E�∫ t0 Zs ds�2 ≤ �∫ t0

√
EZ2

s ds�2, we have

Ẽ
(
µ0
i �0� t� − xt

)2
≤ CN0

(∫ t

0

√
ẼQ2

i� s ds

)2

+CN−1
0



∫ t

0 sinh�αis�
√
Ẽ�xt − xs�2 ds

cosh�αit�




2

+O
(
N

1/2
0

)
(4.1)

uniformly in t ∈ �N1/2−ε
0 �1�. Now, since f grows at most linearly [cf. (2.3)], it

follows from (2.1) that Ẽ�xt − xs�2 ≤ C�t− s�. Since we also have∫ t
0 sinh�αis��t− s�1/2 ds

cosh�αit�
= O

(
N

3/4
0

)

uniformly in t ∈ �0�1�, it follows that the second term on the RHS of (4.1)
is O�N1/2

0 � uniformly in t ∈ �0�1�. As for the first term on the RHS, recall
first, that xt has finite second moment and that Qi� t is at most linear in
µ0
i �0� t�. Denoting µ̄i� t = Ẽ�µ0

i �0� t��2, we have just shown that µ̄i� t ≤ C +
CN0�

∫ t
0 µ̄

1/2
i� s ds�2 ≤ C+CN0t

∫ t
0 µ̄i� s ds. By Gronwall’s lemma, µ̄i� t is therefore
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finite, and in fact, bounded uniformly in t ∈ �0�1� and N0 ∈ �0�1�. Therefore,
(i) is deduced from (4.1).

(ii) In [21], equation (3.7), an expression for µ0
1�0� t� − µ0

2�0� t� is obtained.
Namely, let

λt = %1�t�
N0

+V%2�t�

and ξ̃t = %1�t� − %2�t�. Then

µ0
1�0� t� − µ0

2�0� t�

=
∫ t

0
exp

(
−
∫ t

s
λθ dθ

)(
V′(µ0

1�0� s�) ξ̃s

N
1/2
0

+ (xs − µ0
2�0� s�) ξ̃s

N0

)
ds

+
∫ t

0
exp

(
−
∫ t

s
λθ dθ

)
ξ̃sdνs

N
1/2
0

�

One checks that ξ̃t = O�N3/2
0 � uniformly in t ∈ �0�1� (note that we have

%i�0� = 0 rather than > 0 as in [21]) and that

∫ t

0
exp

(
−
∫ t

s
λθ dθ

)
ds = O�N1/2

0 �

uniformly in t ∈ �0�1�, as well as

∫ t

0
exp

(
−2
∫ t

s
λθ dθ

)
ds = O�N1/2

0 �

uniformly in t ∈ �0�1�. We obtain

Ẽ
(
µ0

1�0� t� − µ0
2�0� t�)2 = O�N0�

(∫ t

0
exp

(
−
∫ t

s
λθ dθ

)√
Ẽ
(
xs − µ0

2�0� s�)2 ds
)2

+O
(
N

5/2
0

)
�

Noting also that for s < N
1/2−ε/2
0 and t > N

1/2−ε
0 � one has

∫ t
s λθ dθ > N−ε

0 /2,
the result follows from (i).

(iii) By (2.18) and (2.2) we have

ai�1 − x0 = ξ0 − x0 + bi

∫ 1

0

N−1
0 xs − α2

iµ
0
i �0� s� −Qi� s

cosh�αis�
ds

+ bi

N
1/2
0

∫ 1

0

dνs
cosh�αis�

= W1 +W2�

(4.2)
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where

W1 = bi
N0

∫ 1

0

xs
cosh�αis�

ds− biα
2
i

∫ 1

0

µ0
i �0� s� − ξ0/ cosh�αis�

cosh�αis�
ds− x0�

W2 = −bi
∫ 1

0

Qi� s

cosh�αis�
ds+ bi

N
1/2
0

∫ 1

0

dνs
cosh�αis�

�

We have ẼW2
2 = O�N1/2

0 �. On the other hand, by (2.13) we have

W1 = bi
N0

∫ 1

0

xs − x0

cosh�αis�
ds− biαi

N0

∫ 1

0

∫ s
0 sinh�αiθ��xθ − x0�dθ

cosh�αis�2
ds+W3�

where

W3 = Pi

α2
i

x0 − 1
tanh�αi�

∫ 1

0

∫ s
0 sinh�αiθ�

(−Qi�θ dθ +N
−1/2
0 dνθ

)
cosh�αis�2

ds�

and one checks that ẼW2
3 = O�N0�. By considerations similar to those in the

proof of (i) we then obtain ẼW2
1 = O�N1/2

0 �, which proves (iii).
(iv) In order to use (4.2) let us first write

a1�1 − a2�1 = �b1 − b2�
a1�1 − ξ0

b1
+ b2

(
a1�1 − ξ0

b1
− a2�1 − ξ0

b2

)
�

Noting that b1−b2 = O�N3/2
0 � and using (iii), we have that the second moment

of the first term is O�N2
0�. The second term is equal to b2�W4+W5+W6� where

W4 =
∫ 1

0

(
1

cosh�α2s�
− 1

cosh�α1s�
)

×
(
N−1

0

(
xs − µ0

1�0� s�)− 1
2
V′(µ0

1�0� s�)
)
ds�

W5 =
∫ 1

0

1
cosh�α2s�

�N−1
0 −V�(µ0

2�0� s� − µ0
1�0� s��)ds�

W6 = N
−1/2
0

∫ 1

0

(
1

cosh�α2s�
− 1

cosh�α1s�
)
dνs�

One checks that ∫ 1

0

(
1

cosh�α2s�
− 1

cosh�α1s�
)
ds = O�N3/2

0 ��

while
∫ 1

0

(
1

cosh�α2s�
− 1

cosh�α1s�
)2

ds = O
(
N

5/2
0

)
�

Hence it follows from (i) that ẼW2
4 = O�N0�, from (ii) that ẼW2

5 = O�N0� and
directly that ẼW2

6 = O�N3/2
0 �. As a result, (iv) follows.
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(v) Note that by definition, Ki�n = (i�n�ξ0���ξ0�. Therefore, by (2.14),

log
K1�1

K2�1
= −1

2
log

sinh�α1�
sinh�α2�

+
∫ 1

0

(
N−1

0 +V

2

(
µ0

2�0� s� − µ0
1�0� s�)2

+ 1
2
V′(µ0

1�0� s�)(µ0
2�0� s� − µ0

1�0� s�)
)
ds+W7�

(4.3)

where

W7 =
∫ 1

0
N−1

0

(
µ0

1�0� s� − µ0
2�0� s�) ◦ dys

= 1
N0

∫ 1

0

((
µ0

1�0� s� − µ0
2�0� s�)xs + 1

2

(
%1�s� − %2�s�

))
ds

+ 1√
N0

∫ 1

0

(
µ0

1�0� s� − µ0
2�0� s�)dνs�

The first term in (4.3) is O�N1/2
0 �. From (ii), expectation of the second term is

O�N5/4
0 �, while ẼW7 = O�N1/4

0 �. Therefore (v) follows.
(vi) Note that Ki�n = exp�−�ξ0 − ai�n�2/2bi + ci� n�. Therefore

c1� n − c2� n = log
K1� n

K2� n
+ �ξ0 − a1� n�2

2b1
− �ξ0 − a2� n�2

2b2
�

By (v) and since b1 > b2� we have

Ẽ
∣∣c1� n − c2� n

∣∣ ≤ O�N1/4
0 � + 1

2b2
Ẽ1/2(2ξ0 − a1� n − a2� n

)2
Ẽ1/2(a1� n − a2� n

)2
�

and (vi) follows from (iv).
(vii) This is directly implied by (2.23) and (2.24). ✷

5. Proof of Theorem 1. Let us return to Lemma 3 and denote

�̄n = max
{
qn� �̃%1

�βn� + exp
(�µ0

1� n�2)}�
With this notation we have that

B
�1�
n ≤ �(1� n�∞�̄nO

(
exp�−N−1/2

0 /2���
Moreover, using the bound

� log��x�� ≤ C0��x� + 1
2x

2� ≤ C0� 1
2 + x2��(5.1)

implied by (2.3), we have that

�̃%�x� ≤ %1/2 exp�C+C%x2��(5.2)

and as a consequence,

B
�2�
n ≤ C sup

ξ �∈�1�γn�
(1� n�ξ�

{
�̃%1

�βn� + exp�C%1�µ1�n�ξ��2�}�
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From (2.16), one has that C%1�µ1� n�ξ��2 ≤ �µ0
1� n�2 + ξ2 + ξ2

0 if N0 is small
enough. Hence, from the definition of γn, based on (2.23), we obtain

(1� n�ξ� exp�ξ2� ≤ exp�−α̃1� n�ξ − γn�2 + α̃2� n��(5.3)

where α̃1� n, α̃2� n are defined by the identity −α̃1� n�ξ − γn�2 + α̃2� n = −�ξ −
µ1� n�2/2b1 + c1� n + C0/2 + �C0 + 1�ξ2. Solving for α̃1� n� α̃2� n, and using also
(2.24) and the fact that b1 > �1 − ε�N1/2

0 , one obtains

B
�2�
n ≤ exp

(
Cγ2

n + c1� n
)
�̄nO

(
exp�−N−1/2

0 /2�)�
Since �(1� n�∞ ≥ (1� n�γn� we have exp�c1� n� ≤ exp��a1� n − γn�2/2b1 + C +
Cγ2

n��(1� n�∞, and using again (2.24) we have

B
�2�
n ≤ exp�Cγ2

n��(1� n�∞�̄nO
(
exp�−N−1/2

0 /2�)�
Similarly,

B
�3�
n ≤ C exp�Cγ2

n��(1� n�∞�̄nN
1/4
0 rn�

hence

�en�op ≤ CN
1/4
0 exp�Cγ2

n��(1� n�∞�̄nrn�

From the inequalities (2.20), (2.21) and (2.22) we therefore conclude that∣∣p�1�
n − p

�2�
n

∣∣
1

≤
∏n

j=1 CN
1/2
0 �(1� j�2∞

(
�̄j + �̄2

j

)
exp

(
C�β2

j + γ2
j�
)�rj + r2

j�
�ρ�1�

n �1�ρ�2�
n �1

× ∥∥ρ�1�
0 ∧ ρ

�2�
0

∥∥
1�

(5.4)

Now, condition (3.1) of Lemma 4 holds P-a.s. by the following argument. By
(5.1), and since %2 < 1 for N0 small enough, it suffices to show that

lim sup
n→∞

n−1m2
n�z0� ≤ C�(5.5)

where C > 0 is some constant independent of N0 and of z0. It follows from
(3.4) that for n large enough,

m2
n�z0� ≤ 2�µ0

2�n�2 + 2s2
n + 1�

where

sn =
n−1∑
k=1

coshk−n�α2�
∣∣µ0

2� k − ξ0

∣∣�
Note that �µ0

2� n� n = 1�2� � � �� is a square integrable stationary process, and
therefore, by the last display, P�2�µ0

2� n�2+2s2
n+1 > Cn� ≤ limk→∞ P�2�µ0

2� k�2+
2s2

k + 1 > Cn� is summable. It follows that P�m2
n�z0� > Cn� is summable, and

(5.5) follows from the Borel–Cantelli lemma.
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We now refer to the conclusion of Lemma 4 and note that the means can
be replaced by the expectations, using Birkhoff ’s ergodic theorem. The second
moment of the expression

j−1∑
k=2

coshk−j�α2�
(
µ2� k�ξ0� − ξ0

)

is O�exp�−N−1/2
0 �� for j = 1�2� � � � (in fact it is zero for j = 1�2). Also, by

Lemma 5(i), (iii), the second moment of �µ2� j −xj� + �xj −a2� j+1� is O�N1/2
0 �.

It follows that for N0 small enough, one has P-a.s.,

lim inf
n→∞

1
n

log
{�ρ�1�

n �1�ρ�2�
n �1

} ≥ log%2 + 2Ẽc2�1 +C�(5.6)

Let us now return to the inequality (5.4). Note that the factor N
1/2
0 cancels

out with the term log%2 in the lower bound of the denominator (up to a con-
stant); moreover, we show below that the factor �(1� j�2 balances with the
term 2Ẽc2�1, the terms �̄j, β2

j and γ2
j have no effect, while the terms rj decay

rapidly enough to cause stability. Indeed, by Lemma 5 (vi), (vii) we have that
Ẽ�2 log �(1�1�∞ − 2c2�1� = O�1�. Combining the expressions in (5.4) and (5.6)
we have that P-a.s.,

lim sup
n→∞

1
n

log
∣∣p�1�

n − p
�2�
n

∣∣
1 ≤ 1

2
logN0 − log%2 +CẼ�β2

1 + γ2
1�

+ Ẽ log+(�̄1 + �̄2
j

)+ Ẽ log
(
r1 + r2

1

)+C�

Furthermore, Ẽ log+��̄1 + �̄2
1� is bounded as N0 → 0 by the following argu-

ment. If Z is a random variable satisfying ẼZ2 < ∞, then by (5.1),
Ẽ log+∣∣���2�Z�

∣∣
∞ < ∞. Moreover, by (5.2), sup0<%<%0

Ẽ log+ ∣∣�̃%��2�Z�
∣∣
∞ < ∞

for %0 small enough. Indeed, by Lemma 5(iii), βn is square integrable. Next,
since we have by Jensen’s inequality and Lemma 5(iv), (vi) that Ẽ log�1 + rn�
is bounded while Ẽ log rn ≤ logCN1/4

0 , we have shown that P-a.s.,

lim sup
n→∞

1
n

log
∣∣p�1�

n − p
�2�
n

∣∣
1 ≤ 1

4
logN0 +C�

To carry on with the proof for continuous parameter, note first that the law of

sup
{
log �T�s� · � t� ·��op� s and t for which n ≤ s < s+ 1 ≤ t ≤ n+ 2

}

under P̃ does not depend on n = 0�1� � � � � We next prove the following.

Lemma 6. One has

Ẽ sup
{
log �T�s� · � t� ·��op� 0 ≤ s < s+ 1 ≤ t ≤ 2

}
< ∞�
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Proof. Using the upper bound we have
∣∣T�s� · � t� ·�∣∣op ≤ sup

ξ
(1�s� ξ� t� sup

ξ
�̃%1�s� t��µ1�s� ξ� t���

Square integrability of µ0
1�s� t�, uniformly in 0 ≤ s < s+ 1 ≤ t ≤ 2, is obtained

by an argument similar to that in the proof of Lemma 5(i). From this, using
(2.17), (2.18) and (2.19), it follows that Ẽ log supξ (1�s� ξ� t� < ∞, and from
(5.2), that Ẽ log supξ �̃%1�s� t��µ1�s� ξ� t�� < ∞. ✷

Let now n = n�t� = �t�. Since for any L1�R� operator with kernel T�·� ·� we
have �T ∧ T�op ≤ �T�2op, it follows from (2.20) that �p�1�

t − p
�2�
t �1 ≤ znτn� where

zn =
∥∥ρ�1�

n−1 ∧ ρ
�2�
n−1

∥∥
1∣∣ρ�1�

n+2

∣∣
1

∣∣ρ�2�
n+2

∣∣
1

and

τn = sup
t∈�n−1� n�

∣∣T�n− 1� · � t� ·�∣∣2op

∣∣T�t� · �n+ 2� ·�∣∣2op�

It follows from the proof above that P-a.s., lim supn→∞�1/n� log zn ≤ 1
4 logN0+

C (e.g., by replacing the LHS in (5.6) with lim infn→∞�1/n� log��ρ�1�
n+3�1�ρ�2�

n+3�1�).
Since it follows from Lemma 6 that lim supt→∞�1/t� log τn = 0 P-a.s., the
theorem follows. ✷

APPENDIX

Proof of Corollary 1. As is the case in [21], looking at the expression
(2.4), using the Girsanov theorem to write dP�t�/dP�t�

0 explicitly and then using
(2.5), one obtains that the inequalities (2.15) hold true with Ti replaced by T̃i,
that are defined by

T̃i�s� ξ� t� z� = ��z�
��ξ�E0

(
Li� s� t

∣∣�s� t� xs = ξ� xt = z
)
pxt �xs�z � ξ�

and

Li� s� t = exp
{∫ t

s

(
−Pi�θx

2
θ

2
−Qi�θxθ − ki� θ − x2

θ

2N0

)
dθ +

∫ t

s

xθ dyθ

N0

}
�

Consider now the weak solutions to the corresponding backward filtering equa-
tion (see, e.g., [17], Section 6.3), that is, functions vt�z�, satisfying for every
ϕ ∈ C∞

0 �R�, P-a.s. [denoting ′ = ∂/∂z and I�z� ≡ z],

�vt� ϕ� = ϕ�ξ� −
∫ t

s

( 1
2�v′

θ� ϕ
′� + �fv′

θ + f′vθ� ϕ�)dθ +
∫ t

s
�N−1

0 Ivθ� ϕ�dyθ�
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Then Theorem 1 of [17], Section 4.1, states that such a solution is unique,
provided that it exists. However, applying Itô’s formula to the identity

(
T̃i�s� ξ� t� ·�� ϕ

) = 1
��ξ�E0

(
ϕ�xt���xt�Li� s� t ��s� t� xs = ξ

)
�

it is easy to verify that T̃i is a weak solution to the backward equation and
directly that so is Ti. Therefore T̃i = Ti P-a.s. and (2.15) follows. ✷
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