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BRANCHING PROCESSES IN LÉVY PROCESSES: LAPLACE
FUNCTIONALS OF SNAKES AND SUPERPROCESSES

By Jean-Fran
ois Le Gall and Yves Le Jan

Ecole Normale Supérieure and Université Paris 11

We use the exploration process introduced in a previous work to de-
velop a new construction of superprocesses with a general branching mech-
anism. This construction depends on a path-valued process called the Lévy
snake, which is of independent interest. Our method of proof involves a
calculation of the Laplace functional of the occupation field of the Lévy
snake. This calculation relies on an evaluation of the corresponding mo-
ment functionals, which requires precise information about the underlying
genealogical structure.

1. Introduction. The present work is a continuation of our previous pa-
per [13], where we developed a representation of the genealogy of a general
continuous-state branching process in terms of functionals of a spectrally pos-
itive Lévy process. Our main purpose here is to apply this representation to
a snake-like construction of superprocesses with a general branching mecha-
nism.

A key role in [13] was played by the so-called height process H = �Ht�
t ≥ 0�. This process is defined as a local time functional of a Lévy process
X with no negative jumps and Laplace exponent ψ. It can be interpreted
informally as describing the motion of a particle which explores the continuous
genealogical tree of a continuous-state branching process by moving up and
down along the branches. Although H is not Markovian in general, it is closely
related to a Markov process ρ = �ρt� t ≥ 0� taking values in the set Mf�R+�
of all finite measures in R+, which was also introduced in [13] as a functional
of the Lévy process X. The process ρ is called here the exploration process
(this terminology is a little different from [13]). For every t ≥ 0, the topological
support of the measure ρt is the interval �0�Ht�. Furthermore, the transition
mechanism of ρ is reminiscent of the Brownian snake in [8] and [10]: If 0 ≤
t < t′, the measure ρt′ is obtained by first restricting ρt to a smaller interval
�0�m�t� t′�� and then concatenating the restricted measure with a (random)
measure ρ�t�t′−t, independent of the past until time t and distributed as ρt′−t.

Superprocesses are obtained by combining the branching mechanism with
a spatial motion given by a general Markov process ξ. We refer to Dynkin
[5], [7] and Dawson and Perkins [3] for the general theory of superprocesses,
and to [6] for the connections with partial differential equations. Pathwise
constructions of superprocesses were given in [8] in the quadratic branching
mechanism case and via the Brownian snake, and in [14] in the stable case

Received August 1997; revised March 1998.
AMS 1991 subject classifications. Primary 60J80; secondary 60J30, 60G57.
Key words and phrases. Branching process, Lévy process, Lévy snake, superprocess, explo-
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via a projective limit. In the present work, we use the pair �ρt�Ht� to develop
a path-valued process construction of general superprocesses, similar to the
Brownian snake construction. To this end we introduce a path-valued process
�Wt� t ≥ 0�, such that the pair �ρt�Wt� is a Markov process called the Lévy
snake. For every t ≥ 0, Wt is a path of the spatial motion ξ with length Ht.
Furthermore, the evolution mechanism of Wt is easily described in terms of
that of ρt, using the previous notation: If 0 ≤ t < t′, the path Wt′ is obtained
by first restricting the path Wt to the interval �0�m�t� t′�� and then concate-
nating in a Markovian way a path of the spatial motion ξ whose length is
the supremum of the support of ρ�t�t′−t. Theorem 5.1 below associates with the
Lévy snake a superprocess with branching mechanism ψ and spatial motion
ξ, whose historical paths are precisely the paths Wt.

Let Ŵt denote the terminal point of the path Wt. Our method consists in
proving that the occupation field of the process �Ŵt� t ≥ 0� has the same
distribution as the total occupation measure of the �ξ�ψ� superprocess. To
this end, we obtain an analytic expression for the Laplace functional of the
occupation field of �Ŵt� t ≥ 0�. The derivation of this expression depends
on certain moments computations, which are of independent interest. A key
role is played by Proposition 3.2, which provides a recursive description of the
genealogical structure of the exploration process at n uniformly distributed
instants. In the special case where the underlying Lévy process X is Brownian
motion [corresponding to the quadratic branching mechanism ψ�u� = u2], this
genealogical structure already was pointed out in [9].

A forthcoming companion paper [11] develops the probabilistic study of
the Lévy snake under slightly more stringent assumptions on the branching
mechanism ψ. In particular, the strong Markov property of the Lévy snake
is obtained and local times of the height process �Ht� t ≥ 0� are constructed.
This makes it possible to give a more explicit expression for the associated
superprocess in terms of these local times and the process �Ŵt� t ≥ 0� (this
expression was announced in [12]).

The present paper is organized as follows. In Section 2, we recall the basic
facts about the height processH and the exploration process ρ, and we then in-
troduce the Lévy snake. The key Lemmas 2.1 and 2.2, which give, respectively,
the invariant measure and the potential kernel of the process ρ, are crucial
to our applications. Section 3 is devoted to the proof of the important Propo-
sition 3.2, which in a sense determines the genealogical structure associated
with the exploration process. In Section 4, we identify the Laplace functional
of the occupation field of Ŵ (Theorem 4.2). We rely on moments computations
which follow from Proposition 3.2. Theorem 4.2 can be viewed as our principal
result since the connection with superprocesses, which is developed in Section
5, then follows by standard arguments.

2. Preliminaries.

2.1. The exploration process. We consider a Lévy process X = �Xt� t ≥ 0�
on the real line started at X0 = 0 under the probability measure P. We refer
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to Bertoin’s recent book [1] (especially Chapter 7) for the basic properties of
Lévy processes that are used below. We assume that X has no negative jumps
and does not drift to +∞. Then, for every λ ≥ 0,

E�exp−λXt� = exp�tψ�λ���
with a function ψ of the form

ψ�λ� = αλ+ βλ2 +
∫
�0�∞�

π�dr� �e−rλ − 1 + rλ��

where α ≥ 0, β ≥ 0 and the Lévy measure π is a Radon measure on �0�∞�
such that ∫

�0�∞�
�r ∧ r2�π�dr� <∞�

We also assume that at least one of the following conditions holds: β > 0 or∫
�0�1� rπ�dr� = ∞. This excludes the case when the paths of X are of finite

variation. The finite variation case is treated in detail in Section 3 of [13]:
It yields analogous connections with branching processes, but the underlying
branching structure becomes discrete.

Note that the process X is recurrent or drifts to −∞ according as α = 0 or
α > 0.

Without loss of generality, we may and will assume that the processX is the
canonical process on the Skorokhod space D�R+�R� of right-continuous paths
with left limits (cadlag) in R. We also denote by ��t� the canonical filtration
on D�R+�R�, completed as usual by the collection of P-negligible sets of �∞.

Set St = sup�0� t�Xs and It = inf �0� t�Xs. It is well known that both processes
S −X and X − I are strong Markov. Under our assumptions, 0 is a regular
point for both these processes. Furthermore, the process −It is a local time at
0 for X − I. The associated excursion measure will be denoted by N. It is a
σ-finite measure on D�R+�R� such that X0 = 0, N a.e. and

σ = inf�s > 0� Xs = 0� = sup�s ≥ 0� Xs > 0� <∞� N a.e.

We also denote by L = �Lt� t ≥ 0� the local time at 0 of S −X. Here we
need to specify the normalization of L. Set L−1�t� = inf�s ≥ 0� Ls > t�, with
inf � = ∞, and make the convention that SL−1�t� = ∞ when L−1�t� = ∞. It is
well known (see, e.g., [1], Chapter 6) that both processes �L−1�t�� t ≥ 0� and
�SL−1�t�� t ≥ 0� are subordinators (killed at an independent exponential time
in the transient case), which are called, respectively, the ladder time process
and the ladder height process of X. By [2], Proposition 9, we may and will fix
the normalization of L so that, for every λ > 0,

E�exp�−λSL−1�t��� = exp
(
−tψ�λ�

λ

)

= exp
(
−t

(
α+ βλ+

∫ ∞

0
�1 − e−λr�π��r�∞��dr

))
�

(1)
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We leave it to the reader to check that this normalization is the same as the
one used in [13] in the case β = 0.

In particular, the subordinator SL−1�t� has a drift β and, if m denotes
Lebesgue measure on R, we have

m��SL−1�r�� 0 ≤ r ≤ t� L−1�r� <∞�� = β �t ∧L∞��
Thus, when β > 0, we have

Lt = β−1m��Sr� 0 ≤ r ≤ t���(2)

We now recall the definition of the height process H. Fix t > 0 and let X̂�t�

be the time-reversed process

X̂
�t�
s =Xt −X�t−s�− if 0 ≤ s < t�

X̂
�t�
t =Xt�

Then �X̂�t�
s � 0 ≤ s ≤ t� �d�=�Xs� 0 ≤ s ≤ t�. We set Ŝ�t�

s = sup�0� s� X̂
�t�
r and let

Ht = L̂
�t�
t be the local time at 0 at time t of Ŝ�t�−X̂�t�, normalized as explained

previously. We also take H0 = 0. Notice that the process H is not Markov
except in certain very special cases (when π vanishes).

Let us specify the version of H that we will use. When β > 0, we can use
formula (2) to get

Ht = β−1m��Irt � 0 ≤ r ≤ t���(3)

where Irt = inf �r� t�Xs. The right-hand side of (3) obviously gives a continuous
version of the process �Ht� t ≥ 0�. When β = 0, Proposition 4.3 of [13] provides
a lower semicontinuous version of H with values in �0�∞�. By Theorem 4.7 of
[13], this version is continuous with values in �0�∞� if and only if∫ ∞ dλ

ψ�λ� <∞�

We then turn to the exploration process ρ (our terminology is a little differ-
ent from [13], where H itself was sometimes called the exploration process).
For every t ≥ 0, we let ρt be the random measure on �0�∞� defined by

�ρt� g� =
∫
�0� t�

drI
r
t g�Hr��(4)

where the notation drI
r
t refers to integration with respect to the nondecreas-

ing function r −→ Irt . Although it looks a little different, this definition is
equivalent to the one given in [13] in the case β = 0: Using Proposition 4.3
of [13] (and its notation) one easily verifies that Hr =Hr

t , drI
r
t a.e., for every

t ≥ 0, a.s. Notice that the total mass �ρt�1� of the exploration process is the
reflected Lévy process Xt − It.

The process �ρt� t ≥ 0� is a cadlag strong Markov process with values in
the space Mf�R+� of all finite measures on R+, equipped with the topology of
weak convergence. This is proved in [13], Proposition 4.4, when β = 0. The
case β > 0 is analogous and easier. The strong Markov property follows from
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an important identity, which we now recall. We first introduce some notation.
If µ ∈Mf�R+� and a ∈ R+, we let kaµ be the unique element of Mf�R+� such
that, for every r ≥ 0,

kaµ��0� r�� = µ��0� r�� ∧ a
(kaµ is the measure µ “truncated at mass a”). By convention, we also take
kaµ = 0 when a < 0. Notice that this notation is slightly different from the
one in [13]. If µ ∈ Mf�R+�, we set H�µ� = sup�suppµ�, with H�µ� = 0 if
µ = 0 by convention. If H�µ� < ∞, we define the concatenation of µ with
another measure ν ∈Mf�R+� as the measure �µ� ν� such that∫

�µ� ν��dr�ϕ�r� =
∫
µ�dr�ϕ�r� +

∫
ν�dr�ϕ�H�µ� + r��

Then, if T be a stopping time of the filtration ��t�, and X�T� denotes the
shifted process X�T�

t =XT+t −XT, we have a.s. for every t > 0,

ρT+t =
[
k�ρT�1�+I�T�t

ρT� ρ
�T�
t

]
�(5)

with an obvious notation for I�T�t and ρ�T�t . See (4.8) in [13] for a proof in the
case β = 0, which is easily extended.

We will also use the following fact: a.s. for every t ≥ 0, either ρt = 0 (which
occurs if and only if Ht = 0) or the topological support of ρt is the whole
interval �0�Ht�. See [13], Section 4, when β = 0, and note that the case β > 0
is easy because ρt is bounded below by β times Lebesgue measure on �0�Ht�.
Because of this property, we may and will write H�ρt� instead of Ht.

The definition of the processes ρ and H also makes sense under the ex-
cursion measure N. Indeed, from our construction, both ρt and Ht depend
only on the values taken by X− I on the excursion of X− I that straddles t.
Thus, we may define the process H and then ρ via formula (4), by exactly the
same formulas that we used under P (namely, formula (3) when β > 0 and
Proposition 4.3 of [13] when β = 0). The “law” of �ρt� t ≥ 0� under N is easily
identified with the excursion measure of the Markov process ρ away from 0.

We will now state two important lemmas concerning the exploration pro-
cess. These lemmas give, respectively, the invariant measure of ρ and the
potential kernel of the same process killed when it hits 0. We let U be a
subordinator defined under a probability measure P0, with Laplace transform

E0�exp−λUt� = exp
(
−t

(
βλ+

∫ ∞

0
�1 − e−λr�π��r�∞��dr

))

= exp
(
−t

(
ψ�λ�
λ

− α

))
�

For every a ≥ 0, we let Ja be the random element of Mf�R+� defined by
Ja�dr� = 1�0� a��r�dUr.
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Lemma 2.1. For every nonnegative measurable function ) on Mf�R+�,

N

[∫ σ

0
ds)�ρs�

]
=

∫ ∞

0
dae−αa E0�)�Ja���

The measure M defined by M�)� = ∫∞
0 dae−αa E0�)�Ja�� is invariant for ρ.

Proof. It is enough to prove the first part of the lemma. Let θ > 0 and let
ζ be an independent exponential time with parameter θ (defined under P by
enlarging the probability space). From excursion theory and the fact that ρs
only depends on the excursion of X− I that straddles s, we easily get

E�)�ρζ�� =
θN�∫ σ0 ds e−θs )�ρs��

N�1 − e−θσ � �

On the other hand, define for every s ≥ 0 a random measure ηs on R+ by the
formula

�ηs� f� =
∫ s

0
dSr f�Ls −Lr��

By reversing time at ζ and using the definition of ρ, we get

E�)�ρζ�� = E�)�ηζ���
Note that ηs remains constant during each excursion of S −X away from 0.
Denote by N∗ the excursion measure of S−X away from 0 corresponding to
the local time L. Also let �aj� bj�, j ∈ J, be the excursion intervals of S−X.
We have then

E�)�ηζ�� = θE

[ ∑
j∈J

)�ηaj� exp�−θaj�
∫ bj−aj

0
dr exp�−θr�

]

= E

[∫ ∞

0
dLs exp�−θs�)�ηs�

]
N∗�1 − exp�−θσ���

By a classical formula of fluctuation theory ([2], Proposition 9), we know that,
with our normalization of L,

N�1 − e−θσ �N∗�1 − e−θσ � = θ�

Comparing with the beginning of the proof, we get

N

[∫ σ

0
ds e−θs )�ρs�

]
= E

[∫ ∞

0
dLs e

−θs )�ηs�
]
�

Letting θ go to 0 leads to

N

[∫ σ

0
ds)�ρs�

]
= E

[∫ ∞

0
dLs )�ηs�

]
= E

[∫ ∞

0
da1�a<L∞�)�ηL−1�a��

]
�

However, (1) implies that L∞ has an exponential distribution with parameter
α and that, conditionally on �L−1�a� <∞�, ηL−1�a� has the same distribution
as Ja. The desired result follows. ✷
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For µ ∈Mf�R+�, we denote by Pµ the law of the process ρ started at µ. We
abuse notation by also writing σ = inf�s > 0� ρs = 0� under Pµ.

Lemma 2.2. For any nonnegative measurable function ) on R+ ×Mf�R+�,

Eµ

[∫ σ

0
ds)

(
inf
s′≤s

H�ρs′ �� ρs
)]

=
∫ �µ�1�

0
dr

∫
M�dν�)�H�krµ�� �krµ� ν���

Proof. From [13], or by using (5), we know that Pµ is the law under P of
the process �ρµs � s ≥ 0� defined by

ρµs = �k�µ�1�+Isµ� ρs��
Thus we have to evaluate

E

[∫ σµ

0
ds)

(
inf
s′≤s

H�ρµs′ �� ρµs
)]
�

where σµ = inf�s� ρµs = 0� = inf�s� Is = −�µ�1��. Denote by �aj� bj�, j ∈ J,
the excursion intervals of X− I away from 0 before time σµ and by ej, j ∈ J,
the corresponding excursions. Then, ρs = ρs−aj�ej� for every s ∈ �aj� bj�, j ∈ J,
P a.s. Also it is clear that inf �0� s�H�ρµs′ � = H�ρµaj� = H�k�µ�1�+Iajµ� for every

s ∈ �aj� bj�, j ∈ J. It follows that

E

[∫ σµ

0
ds)

(
inf
s′≤s

H�ρµs′ �� ρµs
)]

= E

[ ∑
j∈J

∫ bj−aj

0
dr)�H�k�µ�1�+Iajµ�� �k�µ�1�+Iajµ� ρr�ej���

]
�

By excursion theory, the point measure∑
j∈J

δIaj � ej

is a Poisson point measure with intensity 1�−�µ�1��0��u�duN�de�. Hence,

E

[∫ σµ

0
ds)

(
inf
s′≤s

H�ρµs′ �� ρµs
)]

=
∫ �µ�1�

0
duN

[∫ σ

0
dr)�H�kuµ�� �kuµ� ρr��

]
and the desired result follows from Lemma 2.1. ✷

Without risk of confusion, we will abuse notation by writing N�dρ� for
the σ-finite measure on D��0�∞�� Mf�R+�� which is the excursion measure
of ρ away from 0: In other words, we identify N with its image under the
mapping �ρt� t ≥ 0�. The process X is then defined under N�dρ� by the
formula Xt = �ρt�1�.

2.2. The Lévy snake. We now consider a Borel right Markov process ξ =
�ξt� t ≥ 0� 0x� x ∈ E� with cadlag paths and values in a Polish space E. For
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every a ≥ 0, we denote by D��0� a��E� the canonical Skorokhod space of all
cadlag mappings from �0� a� into E. We then set

� =
( ⋃
a≥0

D��0� a��E�
)
∪ D��0�∞��E��

We set ζw = a if w ∈ D��0� a��E�, ζw = ∞ if w ∈ D��0�∞��E�. The subset
�w ∈ � � ζw = 0� is trivially identified with E. The set � is a Polish space for
the distance

d�w�w′� = �ζw − ζw′ � ∧ 1 + δ�w�· ∧ ζw��w′�· ∧ ζw′ ���
where δ denotes the Skorokhod distance on D��0�∞��E�, and �∞−∞� = 0 by
convention.

Let w ∈ � and a ∈ �0� ζw� ∩ �0�∞�, b ∈ �a�∞�. We construct a probability
measure Ra�b�w�dw′� on � by the following prescriptions:

1. ζw′ = b, Ra�b�w�dw′� a.s.
2. w′�t� = w�t�, for every t ∈ �0� a�, Ra�b�w�dw′� a.s.
3. The law of �w′�a + t�� 0 ≤ t ≤ b − a� under Ra�b�w�dw′� is the law of

�ξt� 0 ≤ t ≤ b− a� under 0w�a�.

This definition is extended to the case b = ∞ by obvious modifications.
When ζw = ∞, we also take R∞�∞�w�dw′� = δw�dw′�.

Let us fix a point x ∈ E and let ρ ∈ D��0�∞�� Mf�R+�� be such that ρ0 = 0.
For every t < t′, set

mρ�t� t′� = inf
t≤r≤t′

H�ρr��

The Kolmogorov extension theorem can be used to construct the unique prob-
ability measure Qρ

x on � R+ such that, if �W0
s � s ≥ 0� denotes the canonical

process on � R+ , we have for every 0 ≤ t1 < t2 < · · · < tn, and every nonnega-
tive measurable functions f1� � � � � fn on � ,

Q
ρ
x

[
f1�W0

t1
� · · ·fn�W0

tn
�]

=
∫
R0�H�ρt1 ��x�dw1�

∫
Rmρ�t1� t2��H�ρt2 ��w1� dw2�

· · ·
∫
Rmρ�tn−1� tn��H�ρtn ��wn−1� dwn�f1�w1� · · ·fn�wn��

It is easy to verify that both mappings ρ → H�ρt� and ρ → mρ�t� t′� are
measurable. Thus we can define a σ-finite measure on the product

5 = D��0�∞�� Mf�R+�� ×� R+

by the formula

Nx�dρdω� =N�dρ�Qρ
x�dω��



BRANCHING PROCESSES IN LÉVY PROCESSES 1415

From our construction, the process �ρt�W0
t � t > 0� is Markovian under Nx

with a transition kernel given by

QtF�µ�w� = Eµ

[∫
Rmρ�0� t��H�ρt∧σ ��w�dw′�F�ρt∧σ�w′�

]

and an entrance law given by

F→N

[∫
R0�H�ρt��x�dw�F�ρt�w�

]
�

Also note that ζW0
t
=Ht �=H�ρt��, Nx a.e., for every t ≥ 0.

Lemma 2.3. The process �W0
s � s > 0� is continuous in Nx measure.

Proof. From our construction of Nx, the proof reduces to checking that, for
every t > 0,H�ρt+r� →H�ρt� andmρ�t� t+r� →H�ρt� inN measure as r→ 0
(note that N�Ht = a� = 0 for every a ≥ 0). The a.s. lower semicontinuity of
the process H immediately implies that mρ�t� t+r� →H�ρt�, N a.e. as r→ 0.
Then it is enough to verify that for any fixed δ > 0 and any ε > 0,

lim
r↓0

N�Ht+r −Ht > ε� = 0�

lim
r↓0

N�Ht −Ht+r > ε� = 0

uniformly in t ∈ �2δ�∞�. By applying the Markov property under N at time δ,
we see that it suffices to prove the previous convergences when N is replaced
by Pµ for some µ ∈ Mf�R+�. The first convergence is then easy from the

subadditivity property of H (we have Ht+r ≤ Ht +H
�t�
r , where H�t� is the

height process attached to the shifted Lévy process X�t�
s =Xt+s−Xs; see [13],

Lemma 4.5). As for the second one, we first observe that, for r > 0, we have
from (5),

ρt =
[
k�ρt−δ�1�+I�t−δ�δ

ρt−δ� ρ
�t−δ�
δ

]
� ρt+r =

[
k�ρt�1�+I�t�r ρt� ρ

�t�
r

]
�(6)

where the law under Pµ of ρ�t−δ�δ does not depend on t and coincides with the

law of ρδ under P. Note that I�t� and ρ
�t−δ�
δ are independent. Furthermore,

H�ρ�t−δ�δ � > 0, P a.s., and the quantity I�t�r is small in probability when r ↓ 0,
uniformly in t. It follows that, with a probability close to 1 when r is small,
the killing operator k�ρt�1�+I�t�r in (6) acts only on the part of the measure ρt

corresponding to ρ�t−δ�δ , and

H�ρt+r� ≥H
(
k�ρt�1�+I�t�r ρt

) ≥H�ρt� − ε�

This completes the proof. ✷
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From Lemma 2.3 and standard arguments (see, e.g., [16], page 87), we get
that the process �W0

s � s ≥ 0� has a measurable modification under Nx, which
will be denoted by �Ws� s ≥ 0�. Precisely, we can choose an increasing sequence
�Dn� of discrete countable subsets of R+, with union dense in R+, such that
the process �Ws� s > 0� is defined by the formula

Ws =



lim
n→∞W

0
λn�s�� if the limit exists,

x� otherwise�

where λn�s� = inf�s′ > s� s′ ∈ Dn�.
The pair �ρs�Ws� s ≥ 0� is called the �ξ�ψ� Lévy snake with initial point x.

We will often use the notation Ŵs =Ws�ζWs
� when ζWs

<∞. When ζWs
= ∞,

we take Ŵs = x by convention. Note that Ŵs = Ws�Hs�, Nx a.e., for every
s ≥ 0.

2.3. The jump truncation procedure. Some of the subsequent results are
more easily obtained in the special case when π is supported on �0�A� for
some A <∞. We will now explain the procedure that allows us to reduce the
general case to this special situation.

For every integer k ≥ 1, we let π�k� denote the restriction of π to �0� k�, and
we set

ψ�k��λ� =
(
α+

∫
�k�∞�

rπ�dr�
)
λ+ βλ2 +

∫
π�k��dr� �e−rλ − 1 + rλ��

Notice that ψ�k� ↓ ψ as k ↑ ∞. We may replace ψ by ψ�k� in the previous
developments and introduce, in particular, the excursion measure N�k�, the
�ξ�ψ�k�� Lévy snake and its excursion measures N

�k�
x on 5. It turns out that the

�ξ�ψ�k�� Lévy snake can be embedded in the �ξ�ψ� Lévy snake via a suitable
time change.

To explain this embedding, we introduce the stopping times U�k�
j , j ≥ 0,

and T�k�
j , j ≥ 1, defined inductively as

U
�k�
0 = 0�

T
�k�
j = inf�t ≥ U

�k�
j−1� ;Xt > k�� j ≥ 1�

U
�k�
j = inf�t ≥ T

�k�
j � Xt =X

T
�k�
j −�� j ≥ 1�

We then let <�k� be the random set

<�k� =
∞⋃
j=0

[
U

�k�
j �T

�k�
j+1

)

and define η�k�
t = ∫ t

0 1<�k� �r�dr, γ�k�t = inf�r� η�k�
r > t�. Then it is very easy to

verify that the process �X
γ
�k�
t
� t ≥ 0� is distributed under P (resp. under N)
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according to the law of the Lévy process with Laplace exponent ψ�k� (resp. ac-
cording to the associated excursion measure). Informally,X�k� is obtained from
X by removing the jumps of size greater than k. Similarly, our construction
of the exploration process implies that the process ρ�k�t = ρ

γ
�k�
t

is distributed

under N according to the excursion measure N�k�.
We now want to consider the process �W

γ
�k�
t
� t ≥ 0� which is well defined

thanks to our choice of a measurable modification for W. Let 0 < ε < A <∞
and let h be a bounded nonnegative measurable function on � such that
h�x� = 0. We claim that, for every integer p ≥ 1,

Nx

[(∫ A

ε
h�W

γ
�k�
t
�dt

)p]
= N

�k�
x

[(∫ A

ε
h�Wt�dt

)p]
�(7)

Let us prove (7). Using the definition of Nx, we have

Nx

[(∫ A

ε
h�W

γ
�k�
t
�dt

)p]

= Nx

[(∫ ∞

0
dr1

<�k�∩�γ�k�ε � γ
�k�
A ��r�h�Wr�

)p]

=
∫
�0�∞�p

dr1 · · ·drp
∫
N�dρ�

p∏
i=1

1
<�k�∩�γ�k�ε � γ

�k�
A ��ri� Qρ

x

[ p∏
i=1

h�W0
ri
�
]

=
∫
N�dρ�

∫
�ε�A�p

dt1 · · ·dtp Qρ
x

[
h�W0

γ
�k�
t1

� · · ·h�W0
γ
�k�
tp

�]�
In the second equality, we used the fact that W is a modification of W0 under
Nx to replace each term Wri

by W0
ri

.
The form of the finite-dimensional marginals under Qρ

x implies that, for N
a.e. choice of ρ, the law of �W0

γ
�k�
t

� t ≥ 0� under Qρ
x is Qρ�k�

x [notice that if ρ is

fixed, �γ�k�t � t ≥ 0� becomes a deterministic function]. Therefore, the previous
quantities are also equal to∫

�ε�A�p
dt1 · · ·dtp

∫
N�dρ�Qρ�k�

x �h�W0
t1
� · · ·h�W0

tp
��

=
∫
�ε�A�p

dt1 · · ·dtp N
�k�
x �h�Wt1

� · · ·h�Wtp
��

and (7) follows.
Set

u�k��x� = N
�k�
x

[
1 − exp

(
−
∫ ∞

0
h�Wt�dt

)]
�

Since h�x� = 0 and N�k��σ > ε� ≤N�σ > ε� <∞, the right-hand side of (7) is
clearly bounded by Cp for some constant C independent of p. It then follows
from (7) and a monotonicity argument that

u�k��x� = Nx

[
1 − exp

(
−
∫ ∞

0
h�W

γ
�k�
t
�dt

)]
= Nx

[
1 − exp

(
−
∫
<�k�

h�Wt�dt
)]
�
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Since the sets <�k� clearly increase to �0�∞� as k ↑ ∞, we conclude that

lim
k↑∞

↑ u�k��x� = u�x� = Nx

[
1 − exp

(
−
∫ ∞

0
h�Wt�dt

)]
�

This monotonicity property will be used in Section 5.

3. Moments of the exploration process. Our goal is to derive recursive
expressions for the moments

Nx

[(∫ σ

0
g�Wt�dt

)n]
�

where n ≥ 1 is an integer. From the definition of the Lévy snake, it will turn
out that the expression of these moments involves quantities of the type

N

[∫
�0<t1<···<tn<σ�

dt1 · · ·dtn F�ρt1� � � � � ρtn�mρ�t1� t2�� � � � �mρ�tn−1� tn��
]
�

where F is a measurable function on Mf�R+�n×Rn−1
+ . The next lemma allows

us to compute such quantities. To simplify notation, we write �µ� = �µ�1� for
µ ∈Mf�R+�.

Lemma 3.1. We have

N

[∫
�0<t1<···<tn<σ�

dt1 · · ·dtn F�ρt1� � � � � ρtn�mρ�t1� t2�� � � � �mρ�tn−1� tn��
]

=
∫
Q�n��dµ1 · · ·dµnda2 · · ·dan�F�µ1� � � � � µn�H�ka2

µ1�� � � � �H�kanµn���
whereQ�n� is the measure onMf�R+�n×Rn−1

+ which can be defined by induction
as follows. First Q�1� = M, and then, for every n ≥ 1, Q�n+1� is the image of

Q�n��dµ1 · · ·dµnda2 · · ·dan�1�0��µn���a�daM�dθ�
under the mapping �µ1� � � � � µn� a2� � � � � an� a� θ� → �µ1� � � � � µn� �kaµn� θ��
a2� � � � � an� a�.

Proof. The case n = 1 is Lemma 2.1. The proof is then complete by in-
duction on n using the Markov property of ρ under N and Lemma 2.2. ✷

We will now derive a recursive relation between the measures Q�n� intro-
duced in Lemma 3.1. We first need to introduce some notation. For every n ≥ 1,
we set B�n� =Mf�R+�n × Rn−1

+ [B�1� =Mf�R+�] and we take B = ⋃∞
n=1B

�n�.
Let n ≥ 2 and let �µ1� � � � � µn� a2� � � � � an� ∈ B�n� be such that aj ≤ �µj−1� ∧

�µj� and kajµj−1 = kajµj for every j ∈ �2� � � � � n� (these properties hold Q�n�

a.e.). We define several quantities depending on �µ1� � � � � µn� a2� � � � � an�. First,
we set

b = inf
2≤j≤n

aj� h =H�kbµ1��

Notice that kbµj = kbµ1 for every j ∈ �2� � � � � n�.
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We then set b− = µ1��0� h��, b+ = µ1��0� h�� and observe that b− ≤ b ≤ b+.
We let j1 < j2 < · · · < jk−1 be the successive integers in �2� � � � � n� such that

aj1
∈ �b−� b+�� aj2

∈ �b−� aj1
�� � � � � ajk−1

∈ �b−� ajk−2
��

By construction, 2 ≤ k ≤ n and b = ajk−1
. We also take j0 = 1 and jk = n+ 1

by convention.
We let ν0 be the restriction of µ1 (or of any µj) to �0� h�, and for every

j ∈ �1� � � � � n�, we define νj ∈ Mf�R+� by taking νj��0� r�� = µj��h�h + r��.
Figure 1 illustrates the definition of the measures νj. In this figure, measures
are represented by vertical segments (the length of the segment corresponding
to the total mass of the measure) and the horizontal lines give the successive
truncation levels.

Finally, for every l ∈ �1� � � � k�, we define

;l =
(
µ
�l�
1 � � � � � µ

�l�
jl−jl−1

� a
�l�
2 � � � � � a

�l�
jl−jl−1

) ∈ B�jl−jl−1�

by setting

µ
�l�
i = νjl−1+i−1� 1 ≤ i ≤ jl − jl−1�

a
�l�
i = ajl−1+i−1 − ajl−1

� 2 ≤ i ≤ jl − jl−1�

where by convention a1 = b+.

Fig. 1.
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Proposition 3.2. For every integer p ∈ �2� � � � � n�, for every measurable
subsets A0� � � � �An of B, we have

Q�n��k = p� ν0 ∈ A0� ;1 ∈ A1� � � � � ;p ∈ Ap�

=
(
β1�p=2� +

∫ yp−1

�p− 1�! π̃�dy�
)

M�A0�
∑

n1+···+np=n
ni≥1

Q�n1��A1� · · ·Q�np��Ap��

where π̃�dy� = π��y�∞��dy.

Proposition 3.2 will play a key role in the next section. We will derive it
from a slightly more precise result, which will be proved by induction on n.
We keep the previous notation and also set ;b = b+ − b−, ci = aji − b− for
1 ≤ i ≤ k− 1. Then, if B is a Borel subset of R

p
+, we claim that

Q�n��k = p� �;b� c1� � � � � cp−1� ∈ B� ν0 ∈ A0� ;1 ∈ A1� � � � � ;p ∈ Ap�
=

(
β1�p=2�1B�0�0� +

∫
π̃�dy�

∫ y

0
dz1

∫ z1

0
dz2

· · ·
∫ zp−2

0
dzp−1 1B�y� z1� � � � � zp−1�

)
× M�A0�

∑
n1+···+np=n

ni≥1

Q�n1��A1� · · ·Q�np��Ap��

(8)

Obviously, Proposition 3.2 follows from (8).
Before proceeding to the proof of (8), we state a useful lemma, which gives

the “law” under M�dµ� of the splitting of µ at a uniformly distributed mass
level.

Lemma 3.3. If µ ∈ Mf�R+� and a ∈ �0� �µ��, define r = r�µ�a� by r =
H�kaµ� and then τrµ� σrµ ∈ Mf�R+� by τrµ = µ��0� r�, σrµ��0� u�� = µ��r� r +
u�� for every u ≥ 0. Then∫

M�dµ�
∫ �µ�

0
daF�τrµ� σrµ�µ��r��� a− �τrµ��

=
∫ ∫

M�dµ1�M�dµ2�

×
(
βF�µ1� µ2�0�0� +

∫
π̃�dy�

∫ y

0
dzF�µ1� µ2� y� z�

)
�

(9)

Proof. Recall from Lemma 2.1 the definition of M and the notation U
for a subordinator with drift β and Lévy measure π̃. For every a ≥ 0, set
ηa = inf�t�Ut ≥ a�. The left-hand side of (9) can be written as∫ ∞

0
dt e−αt

∫ ∞

0
daE0

[
1�a<Ut�F

(
1�0� ηa��s�dUs� σηa�1�0� t��s�dUs��

;Uηa
� a−Uηa−

)]
�
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We may assume that F is factorized in the form F�µ1� µ2� u� v� =
1A1

�µ1�1A2
�µ2�1B�u� v�. Then the strong Markov property of U at time

ηa shows that the previous expression is also equal to

E0
[∫ ∞

0
da exp�−αηa�1A1

�1�0� ηa��s�dUs�1B�;Uηa
� a−Uηa−�

]
M�A2�

=M�A2�×
(
E0

[ ∑
t;Ut>0

exp�−αt�1A1
�1�0� t��s�dUs�

∫ ;Ut

0
1B�;Ut� z�dz

]

+E0
[∫ ∞

0
da1�;Uηa=0� exp�−αηa�1A1

�1�0� ηa��s�dUs�1B�0�0�
])
�

The first term of the sum inside parentheses is equal to

E0
[∫ ∞

0
dt e−αt 1A1

�1�0� t��s�dUs�
∫
π̃�dy�

∫ y

0
1B�y� z�dz

]

=
(∫

π̃�dy�
∫ y

0
1B�y� z�dz

)
M�A1��

whereas the change of variable s = ηa gives for the second term

E0
[∫ ∞

0
dUt 1�;Ut=0�e

−αt1A1
�1�0� t��s�dUs�1B�0�0�

]
= β1B�0�0�M�A1��

Lemma 3.3 now follows. ✷

Proof of (8). We first consider the case n=2. Then, necessarily, k=2.
Furthermore, from the construction of Q�2�, we have with the notation of
Lemma 3.3,

Q�2��k = 2� �;b� c1� ∈ B� ν0 ∈ A0� ν1 ∈ A1� ν2 ∈ A2�

=
∫ ∫

M�dµ�M�dµ′�
∫ �µ�

0
da1B�µ��r��� a− �τrµ��1A0

�τrµ�1A1
�σrµ�1A2

�µ′�

=M�A2�
∫

M�dµ�
∫ �µ�

0
da1B�µ��r��� a− �τrµ��1A0

�τrµ�1A1
�σrµ�

=
(
β1B�0�0� +

∫
π̃�dy�

∫ y

0
dz1B�y� z�

)
M�A0�M�A1�M�A2�

by Lemma 3.3.
We then complete the proof by induction on n. We fix n ≥ 2 and assume

that the desired result holds up to the order n. We then prove that the formula
also holds at the order n+ 1. When there is a risk of confusion, we write k�n�,
b�n�, b�n�− and so forth for the quantities defined at the order n.

Fix p ≥ 2 and n1� � � � � np ≥ 1 such that n1+· · ·+np = n+1. We may assume
that Ai ⊂ B�ni� for every i ∈ �1� � � � � p�. We first consider the case np ≥ 2. On
the event in consideration, we must have k�n+1� = k�n� = p and

an+1 > b�n� = inf
1≤i≤n

ai = b�n�− + c
�n�
p−1�
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Furthermore, from the equality µn+1 = �kan+1
µn� θn+1�, we have νn+1 =

�kan+1−b�n�νn� θn+1� and

;
�n+1�
1 = ;

�n�
1 � � � � � ;

�n+1�
p−1 = ;

�n�
p−1� ;

�n+1�
p = (

;
�n�
p � �νn+1� an+1 − b�n��)�

with an obvious notation. We then obtain

Q�n+1��k = p� �;b� c1� � � � � cp−1� ∈ B� ν0 ∈ A0� ;1 ∈ A1� � � � � ;p ∈ Ap�

=Q�n�
[
k=p� �;b� c1� � � � � cp−1� ∈B� ν0 ∈A0� ;1 ∈A1� � � � � ;p−1 ∈Ap−1�

∫ �µn�

b
dan+1

∫
M�dθ�1��;p� ��kan+1−bνn� θ�� an+1−b��∈Ap�

]

=
(
β1�p=2�1B�0�0� +

∫
π̃�dy�

∫ y

0
dz1

∫ z1

0
dz2

· · ·
∫ zp−2

0
dzp−1 1B�y� z1� � � � � zp−1�

)

× M�A0�Q�n1��A1� · · ·Q�np−1��Ap−1�
∫
Q�np−1��d;�

∫ �νnp−1�

0
da

×
∫

M�dθ�1��;� ��kaνnp−1� θ�� a��∈Ap�

using the induction hypothesis. The desired result then follows from the con-
struction of the measures Q�m�.

Consider then the case np = 1. We need to treat separately two subcases.
If p ≥ 3, we are in the situation where k�n� = k�n+1� − 1 = p− 1 and

b�n�− ≤ an+1 ≤ b�n� = inf
1≤i≤n

ai� c
�n+1�
p−1 = an+1 − b�n�− �

Then

Q�n+1��k = p� �;b� c1� � � � � cp−1� ∈ B� ν0 ∈ A0� ;1 ∈ A1� � � � � ;p ∈ Ap�

= Q�n�
[
k = p− 1�

∫ b

b−
da1��;b� c1�����cp−2� a−b−�∈B��

ν0 ∈ A0� ;1 ∈ A1� � � � � ;p−1 ∈ Ap−1

]
M�Ap�

=
(∫

π̃�dy�
∫ y

0
dz1

∫ z1

0
dz2 · · ·

∫ zp−2

0
dzp−1 1B�y� z1� � � � � zp−1�

)

× M�A0�Q�n1��A1� · · ·Q�np−1��Ap−1�M�Ap�
using the induction hypothesis in the last equality. This is the desired formula
since Q�1� = M.

It remains to treat the case when np = 1 and p = 2. This corresponds to
the situation where

0 ≤ an+1 < b�n�− = �ν�n�0 ��
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The proof of the desired result then reduces to checking that, writing r =
r�ν0� a� with the notation of Lemma 3.3, we have

Q�n+1��k = 2� �;b� c1� ∈ B� ν0 ∈ A0� ;1 ∈ A1� ;2 ∈ A2�

= Q�n�
[∫ �ν0�

0
da1B�ν0��r��� a− ν0��0� r���1A0

�τrν0�

×1A1
�σrµ1� � � � � σrµn� a2 − ν0��0� r��� � � � � an − ν0��0� r���

]
M�A2�

=
(
β1B�0�0� +

∫
π̃�dy�

∫ y

0
dz1B�y� z�

)
M�A0�Q�n��A1�M�A2��

The last equality follows from Lemma 3.3 after noticing that it is enough to
consider an event A1 “decomposed at the first node” as in the statement of
the proposition. We leave details to the reader. This completes the proof of (8)
and Proposition 3.2. ✷

4. The Laplace functional of the Lévy snake.

4.1. Moments of the occupation measure. In this section, we combine the
results of the previous section with spatial motion to get a recursive formula
for the moments of the occupation measure under Nx. For every integer p ≥ 2,
we set

γp = β1�p=2� +
∫ yp−1

�p− 1�! π̃�dy��

We denote by �b+�R+ ×E� the space of all bounded nonnegative measurable
functions on R+ ×E.

Proposition 4.1. For every integer n ≥ 1 and every g ∈ �b+�R+×E�, define
for t ≥ 0 and x ∈ E,

Tng�t� x� = 1
n!

Nx

[(∫ σ

0
dsg�t+Hs� Ŵs�

)n]
�

Then

T1g�t� x� = 0x

[∫ ∞

0
dr e−αrg�t+ r� ξr�

]

and, if n ≥ 2,

Tng�t� x� =
n∑

p=2

γp
∑

n1+···+np=n
ni≥1

T1�Tn1g · · ·Tnpg��t� x��
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Proof. The case n = 1 is a straightforward consequence of Lemma 2.1
and the construction of the Lévy snake:

T1g�t� x� =
∫
N�dρ�

∫ σ

0
dsQρ

x�g�t+H�ρs�� Ŵ0
s��

=
∫
N�dρ�

∫ σ

0
ds0x�g�t+H�ρs�� ξH�ρs���

=
∫ ∞

0
dr e−αr 0x�g�t+ r� ξr���

The recursive formula for Tng is basically a consequence of Proposition 3.2.
Let us take t = 0 for simplicity. Then

Tng�0� x� = Nx

[∫
�0<t1<···<tn<σ�

dt1 · · ·dtn
n∏
i=1

g�Hti
� Ŵti

�
]

=
∫
N�dρ�

∫
�0<t1<···<tn<σ�

dt1 · · ·dtn

×
∫
R0�H�ρt1 ��x�dw1�

∫
Rmρ�t1� t2��H�ρt2 ��w1� dw2�

· · ·
∫
Rmρ�tn−1� tn��H�ρtn ��wn−1� dwn�

n∏
i=1

g�H�ρti�� ŵi�

=
∫
Q�n��dµ1 · · ·dµnda2 · · ·dan�

×
∫
R0�H�µ1��x�dw1�

∫
RH�ka2

µ1��H�µ2��w1� dw2�

· · ·
∫
RH�kanµn−1��H�µn��wn−1� dwn�

n∏
i=1

g�H�µi�� ŵi��

where we used Lemma 3.1.
Fix ; = �µ1� � � � � µn� a2� � � � � an� ∈ B�n� such that aj ≤ �µj−1� ∧ �µj�

and kajµj−1 = kajµj for every j ∈ �2� � � � � n�. To simplify notation, let

<
�n�
x �;�dw1 · · ·dwn� be the probability measure on � n defined by

<
�n�
x �;�dw1 · · ·dwn� = R0�H�µ1��x�dw1�RH�ka2

µ1��H�µ2��w1� dw2�
· · ·RH�kanµn−1��H�µn��wn−1� dwn��

Recall the notation ν0, k, j0� j1� � � � � jk and ;1� � � � � ;k introduced in the previ-
ous section. It is intuitively clear, and can be verified by induction on n, that,
under <�n�x �;�dw1 · · ·dwn�,

w1�t� = · · · = wn�t� for t ≤H�ν0�
and, conditionally on w1�H�ν0��, the vectors(
w1�H�ν0�+ ·�� � � � �wj1−1�H�ν0�+ ·�)� � � � � (wjk−1

�H�ν0�+ ·�� � � � �wn�H�ν0�+ ·�)
are independent with respective distributions

<
�j1−j0�
w1�H�ν0���;1� ·�� � � � � <�jk−jk−1�

w1�H�ν0���;k� ·��
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From this observation, we get

Tng�0� x� =
∫
Q�n��d;�0x

[ k∏
l=1

(∫
<
�jl−jl−1�
ξH�ν0�

�;l� dw1 · · ·dwjl−jl−1
�

×
jl−jl−1∏
i=1

g�H�ν0� +H�µ�l�
i �� ŵi�

)]

=
n∑

p=2

γp

∫ ∞

0
dt e−αt

×0x

[ ∑
n1+···+np=n

ni≥1

p∏
j=1

(∫
Q�nj��d;�

∫
<
�nj�
ξt

�;�dw1 · · ·dwnj
�

×
nj∏
i=1

g�t+H�µi�� ŵi�
)]

=
n∑

p=2

γp
∑

n1+···+np=n
ni≥1

T1
( p∏
j=1

Tnjg

)
�0� x��

In the second equality, we used Proposition 3.2 and the fact that the “law” of
H�ν� under M�dν� is e−αt dt. This completes the proof. ✷

4.2. Identification of the Laplace functional. We denote by � the set of all
functions g ∈ �b+�R+ ×E� whose support is contained in �0�T� ×E for some
T > 0.

Theorem 4.2. Let g ∈ � . For every �t� x� ∈ E, set

u�t� x� = Nx

[
1 − exp−

∫ σ

0
g�t+Hs� Ŵs�ds

]
�

Then u is the unique nonnegative solution of the integral equation

u�t� x� +0x

[∫ ∞

0
ψ�u�t+ r� ξr��dr

]
= 0x

[∫ ∞

0
g�t+ r� ξr�dr

]
�(10)

Proof. We first assume that π is supported on �0�A� for some A < ∞.
Then ψ can be extended to an analytic function on R and, furthermore,

ψ�u� = αu+
∞∑
p=2

�−1�p γp up�

We fix g ∈ � such that g is supported on �0�T� ×E and for every λ > 0 we
set

uλ�t� x� = Nx

[
1 − exp−λ

∫ σ

0
g�t+Hs� Ŵs�ds

]
�

The proof of the next lemma is postponed to the end of this section.
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Lemma 4.3. There exists a constant C = C�g� < ∞ such that, for every
n ≥ 1,

�Tng�t� x�� ≤ Cn 1�0�T��t��

It follows that, for 0 < λ < C−1,
∞∑
n=1

λn

n!
Nx

[(∫ σ

0
g�t+Hs� Ŵs�ds

)n]
<∞�

By Fubini’s theorem, we get for 0 < λ < C−1,

uλ�t� x� =
∞∑
n=1

�−1�n−1 λ
n

n!
Nx

[(∫ σ

0
g�t+Hs� Ŵs�ds

)n]

=
∞∑
n=1

�−1�n−1 λn Tng�t� x��
(11)

Set ψ∗�u� = ψ�u� − αu = ∑∞
p=2�−1�pγpup. We can again use Fubini’s theo-

rem to evaluate

0x

[∫ ∞

0
dr e−αrψ∗�uλ�t+ r� ξr��

]

= 0x

[∫ ∞

0
dr e−αr

∞∑
p=2

�−1�p γp
( ∞∑
n=1

�−1�n−1 λn Tng�t+ r� ξr�
)p]

= 0x

[∫ ∞

0
dr e−αr

∞∑
p=2

�−1�p γp
∑

n1�����np
ni≥1

�−1�
∑
ni−p λ

∑
ni Tn1g�t+ r� ξr�

· · ·Tnpg�t+ r� ξr�
]

=
∞∑
n=2

�−1�n λn
( n∑
p=2

γp
∑

n1+···+np=n
ni≥1

T1�Tn1g · · ·Tnpg��t� x�
)

=
∞∑
n=2

�−1�n λn Tng�t� x��

by Proposition 4.1. Comparing with (11) gives

uλ�t� x� +0x

[∫ ∞

0
dr e−αrψ∗�uλ�t+ r� ξr��

]
= λT1g�t� x�

= λ0x

[∫ ∞

0
dr e−αr g�t+ r� ξr�

]
�

This equation can also be written in the form

uλ�t� x� − α0x

[∫ ∞

0
dr e−αr uλ�t+ r� ξr�

]
= 0x

[∫ ∞

0
dr e−αr hλ�t+ r� ξr�

]
�
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where hλ = λg−ψ ◦uλ. Note that hλ is bounded and supported on �0�T�×E.
It is then easy to see, for instance by using the resolvent equation for the
space–time process �r� ξr�, that the previous equation is equivalent to

uλ�t� x� = 0x

[∫ ∞

0
drhλ�t+ r� ξr�

]
�

which gives

uλ�t� x� +0x

[∫ ∞

0
ψ�uλ�t+ r� ξr��dr

]
= λ0x

[∫ ∞

0
g�t+ r� ξr�dr

]
�(12)

This is the desired integral equation, except that we have assumed 0 < λ <
C−1, and we want to get it with λ = 1. However, from the definition of uλ, we
easily get that, for every fixed x, the function λ→ uλ�t� x� is analytic and can
be extended to an analytic function on the half-plane �z ∈ C� Re z > 0�. Since
ψ is also analytic, we obtain that the left-hand side of (12) is also an analytic
function of λ. By analytic continuation, we conclude that (12) holds for every
λ > 0.

It remains to get rid of the assumption on the support of π. To this end, we
use the truncation procedure of Section 2.3. In the notation of this subsection,
we introduce

u�k��t� x� = N
�k�
x

[
1 − exp−

∫ σ

0
g�t+Hs� Ŵs�ds

]
�

SinceHs = ζWs
, N

�k�
x a.e., we may replace g�t+Hs� Ŵs� in the previous formula

by a function of Ws. We can then apply Section 2.3 to obtain

lim
k↑∞

↑ u�k��t� x� = u�t� x��

By the first part of the proof, we know that u�k� solves

u�k��t� x� +0x

[∫ ∞

0
ψ�k��u�k��t+ r� ξr��dr

]
= 0x

[∫ ∞

0
g�t+ r� ξr�dr

]
�

Recall that ψ�k� ↓ ψ as k ↑ ∞ and also note that u�t� x� ≤ Nx�
∫ σ

0 g�t +
Hs� Ŵs�ds� = T1g�t� x�. By letting k ↑ ∞ in the previous equation and using
simple monotonicity arguments, we arrive at the desired integral equation for
u. Finally, the uniqueness of the nonnegative solution of this integral equation
is a straightforward consequence of Gronwall’s lemma, using the fact that ψ
is Lipschitz. ✷

Proof of Lemma 4.3. For every u ∈ R, set

ψ�u� = αu+ βu2 +
∫
π�dr��eru − 1 − ru� = αu+

∞∑
p=2

γp u
p�
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Fix ε > 0 so small that
∫
�εT�∞��ψ�u��−1 du > T. Then the formula

∫ v�t�

εT

du

ψ�u� = T− t� 0 ≤ t ≤ T�

defines a nonnegative function �v�t�� 0 ≤ t ≤ T�, which solves the integral
equation

v�t� = εT+
∫ T

t
ψ�v�s��ds�(13)

For 0 ≤ t ≤ T, define by induction

v1�t� = εT�

vn�t� =
n∑

p=2

γp
∑

n1+···+np=n
ni≥1

∫ T

t
vn1

�s� · · ·vnp�s�ds�

We then claim that, for every n ≥ 1, t ∈ �0�T�,
v1�t� + · · · + vn�t� ≤ v�t��(14)

The bound (14) is trivial when n = 1. It then follows by induction from the
integral equation (13), observing that for n ≥ 1,∫ T

t
ψ�v1�s� + · · · + vn�s��ds ≥ v2�t� + · · · + vn+1�t��

The last bound is easy from the series expansion of ψ and the recursive defi-
nition of the functions vn.

To complete the proof, choose δ > 0 small enough so that T1�δg��t� x� ≤
v1�t� for t ∈ �0�T�. Proposition 4.1 and an immediate induction argument
imply that, for every n ≥ 1, t ∈ �0�T�,

Tn�δg��t� x� ≤ vn�t� ≤ v�t��
Since Tn�δg� = δnTng and v is bounded above over �0�T�, the desired result
follows. ✷

5. Application to superprocesses.

5.1. Superprocesses and their canonical measures. In this subsection,
we briefly recall a few basic facts about superprocesses, some of which are
part of the folklore of the subject. The �ξ�ψ� superprocess is the Borel
right Markov process with cadlag paths and values in Mf�E�, denoted by
�Yt� t ≥ 0� Qm� m ∈Mf�E��, whose transition kernel is characterized by the
following identity: For ϕ ∈ �b+�E�, t > 0,

Qm�exp−�Yt�ϕ�� = exp−�m�vϕt ��(15)
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where �vϕt �y�� t ≥ 0� y ∈ E� is the unique nonnegative solution of the integral
equation

vt�y� +0y

[∫ t

0
ψ�vt−r�ξr��dr

]
= 0y�ϕ�ξt���(16)

See in particular Theorem 2.1.3 in [3]. We may and will assume that Y is the
canonical process on D��0�∞�� Mf�E��.

Many results about superprocesses are more conveniently expressed in
terms of their canonical measures. To give a brief presentation of canonical
measures, fix y ∈ E and let t > 0. The law of Yt under Qδy

is an infinitely
divisible distribution on Mf�E�. By standard results about random measures
(see [15], Chapter 1), there exist an element γt ∈Mf�E� and a σ-finite mea-
sure St�y�dµ� on Mf�E�, such that St�y� �0�� = 0,

∫
��µ�1� ∧ 1�St�y�dµ� <∞

and for ϕ ∈ �b+�E�,

v
ϕ
t �y� = − log Qδx

�exp−�Yt�ϕ�� = �γt� ϕ� +
∫
�1 − e−�µ�ϕ��St�y�dµ��

Let us verify that γt = 0 under our assumptions. Taking ϕ = λ > 0, we deduce
from (16) that vλt �y� = vλt does not depend on y and

∫ λ

vλt

dv

ψ�v� = t�

Under our assumptions on ψ, v−1ψ�v� converges to ∞ as v→∞ and it follows
that λ−1vλt tends to 0 as λ→∞, which clearly implies γt = 0.

Furthermore, the Markov property of superprocesses implies that, for t′ >
t > 0,

v
ϕ
t′ �y� =

∫
�1 − exp�−�µ� ϕ���St′ �y�dµ� =

∫
�1 − exp�−�µ� vϕt′−t���St�y�dµ��

Using this last property in particular, we can construct (cf. the arguments
in Chapter 19 of [4]) a σ-finite measure �y on D��0�∞�� Mf�E��, which is
characterized by the following properties:

1. For every t > 0, the “law” of Yt under �y�· ∩ �Yt �= 0�� is St�y�dµ�.
2. The process �Yt� t > 0� is Markovian under �y with the transition kernels

of the �ξ�ψ� superprocess.
3. �y�Yt = 0� ∀t > 0� = 0.

The measures �y, y ∈ E, are called the canonical measures of the �ξ�ψ�
superprocess. We can recover the measures Qm from the collection ��y� y ∈ E�
by the following “cluster” construction. Let m ∈ Mf�E� and let

∑
j∈J δYj be
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a Poisson point measure on D��0�∞�� Mf�E�� with intensity
∫
m�dy��y�·�.

Then Qm is the law of the process �Ỹt� t ≥ 0� defined by

Ỹ0 =m�

Ỹt =
∑
j∈J

Y
j
t � if t > 0�

5.2. The Lévy snake and superprocesses. We fix a point x ∈ E and consider
the �ξ�ψ� Lévy snake �ρs�Ws� s ≥ 0� with initial point x.

Theorem 5.1. There exists a cadlag process �Zt� t > 0� defined on 5 and
with values in Mf�E�, such that:

(i) Nx a.e., for every g ∈ �b+�R+ ×E�,∫ σ

0
g�Hs� Ŵs�ds =

∫ ∞

0
dt

∫
Zt�dy�g�t� y��

(ii) The law of �Zt� t > 0� under Nx is �x.

Proof. We first verify that, for g ∈ � ,

Nx

[
1 − exp−

∫ σ

0
g�Hs� Ŵs�ds

]
=�x

[
1 − exp−

∫ ∞

0
dt

∫
Yt�dy�g�t� y�

]
�(17)

By standard results about superprocesses (see, e.g., [6], Theorem I.1.8) we
know that the function

v�s� x� = − log Qδx

[
exp−

∫ ∞

0
dt

∫
Yt�dy�g�s+ t� y�

]

solves (10). The Poisson cluster construction implies that the right-hand side
of (17) is equal to v�0� x�. The identity (17) thus follows from Theorem 4.2.

Then, for every t > 0, ε > 0, let Zε
t be the element of Mf�E� defined by

�Zε
t � f� =

1
ε

∫ σ

0
1�t� t+ε��Hs�f�Ŵs�ds�

It follows from (17) that the finite-dimensional marginals under Nx of the
process �Zε

t � t > 0� ε > 0� are the same as those of the process(
1
ε

∫ t+ε

t
Yr dr� t > 0� ε > 0

)

under �x. A little care is needed here because Nx and �x are both infinite
measures. We leave details to the reader. As a consequence, for every t > 0,
the limit

Zt = lim
n↑∞

Z
1/n
t
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exists Nx a.e. and the process �Zt� t > 0� has the same finite-dimensional
marginals as �Yt� t > 0� under �x. Thus, this process also has a cadlag mod-
ification under Nx, and we still denote by �Zt� t > 0� this cadlag modification.
Finally, if f is bounded and continuous on E, and v is a continuous function
on R+ with compact support contained in �0�∞�, we have Nx a.e.,∫ σ

0
v�Hs�f�Ŵs�ds = lim

n↑∞

∫ σ

0
n

(∫ Hs

�Hs−n−1�+
v�r�dr

)
f�Ŵs�ds

= lim
n↑∞

∫ ∞

0
drv�r� �Z1/n

r � f�

=
∫ ∞

0
drv�r��Zr�f��

where to justify the last convergence we observe that, for 0 < δ < T < ∞,
sup��Zε

t �1�, 0 < ε ≤ 1, δ ≤ t ≤ T� has the same distribution under Nx as

sup
{

1
ε

∫ t+ε

t
�Yr�1�dr� 0 < ε ≤ 1� δ ≤ t ≤ T

}
<∞� �x a.e.

Property (i) of Theorem 5.1 now follows easily, which completes the proof. ✷
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[1] Bertoin, J. (1996). Lévy processes. Cambridge Univ. Press.
[2] Bingham, N. (1975). Fluctuation theory in continuous time. Adv. in Appl. Probab. 7 705–766.
[3] Dawson, D. A. and Perkins, E. A. (1991). Historical processes. Mem. Amer. Math. Soc. 454

1–179.
[4] Dellacherie, C., Maisonneuve, B. and Meyer, P. A. (1992). Probabilités et Potentiel,
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Département de Mathématiques
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