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A NEW PROOF THAT FOR THE CONTACT PROCESS ON
HOMOGENEOUS TREES LOCAL SURVIVAL IMPLIES

COMPLETE CONVERGENCE

By Marcia Salzano1 and Roberto H. Schonmann2

University of California, Los Angeles

We provide a new proof, substantially simpler than Zhang’s original
one, that for the contact process on homogeneous trees, local survival im-
plies complete convergence.

1. Introduction and results. In this paper we will consider the contact
process with infection parameter λ > 0, on the homogeneous tree of degree
d + 1, denoted by Td. The case in which d = 1 corresponds to the linear
chain Z and will not be considered here, so that we assume that d ≥ 2. A
great deal of attention has been given to contact processes on such trees since
the pioneering paper by Pemantle (1992) appeared, and in Liggett (1997) the
reader will find a survey of recent progress on these models. Interest stems
to a great extent from the fact that there are two distinct critical points 0 <
λ1 < λ2 < ∞. To describe their roles we define the survival probability ρ�η�
as the probability that the contact process started from the configuration η
never reaches the configuration with no particles. The recurrence probability
β�η� is defined as the probability that the contact process started from the
configuration ηwill for every given site have particles at that site at arbitrarily
large times (this is, of course, equivalent to requiring it to happen for one
specific site of Td). The following then happens.

1. For λ ≤ λ1, ρ�η� = 0 for every configuration η with finitely many particles.
One says in this case that the process dies out.

2. For λ1 < λ ≤ λ2, ρ�η� > 0 for every configuration ηwith a finite and positive
number of particles, but β�η� = 0 for every such configuration. One says in
this case that the process survives globally but not locally.

3. For λ > λ2, β�η� > 0 for every configuration η with a positive number of
particles. One says in this case that the process survives locally.

Note that it is known that at λ1 the system dies out, and that at λ2 it
survives globally but not locally. The second of these two facts was first proven
by Zhang (1996), but a simpler argument appeared in Lalley and Sellke (1996).
It is interesting to point out that Zhang’s proof relied on the same machinery
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developed to prove the complete convergence theorem above λ2, the result
whose proof we simplify in the current paper.

Next we introduce some notation, mostly similar to that used in our recent
study of contact processes on graphs, Salzano and Schonmann (1997). We sup-
pose that the reader is familiar with the field of interacting particle systems.
For those who need an introduction to it, Liggett (1985) is an excellent refer-
ence.

We will denote by �ξηG� t	 t ≥ 0� the contact process on the graph G starting
from the configuration η. When there is no risk of confusion, G will be omitted
in this notation. The set of vertices of the graph G will be denoted by �G.

We immerse the graph Z
+ which has vertices 
0�1�2� � � �� and edges con-

necting points which differ by 1 unit into Td, in an arbitrary fashion. This
allows us to refer to the sites 0�1�2� � � � of Td. The site 0 of Td is called its
root. An important subgraph of Td is obtained from this tree by removing
one of the neighbors of the root and defining it as the remaining connected
component which contains the root. We will suppose that the removed vertex
is not the vertex 1, so that the set of sites 
0�1�2� � � �� is contained in the
set of vertices of the new graph. This new graph will be denoted T

+
d . We will

measure the distance between sites in Td by the length of the minimal path
along neighboring sites which joins them. Then B�x�N� will denote the ball
of center x ∈ �Td

and radiusN. We use also the abbreviation B�N� = B�0�N�.
The following quantity will play a major role in this paper, as it did in

Liggett (1996b) and Lalley and Sellke (1996):

un = P

(
ξ0

Td� t�n� = 1 for some t ≥ 0
)
�

From the inequality un+m ≥ unum it follows that

lim
n→∞�un�1/n = α = α�λ�

exists. [Our α was called ρ in Liggett (1996), but this conflicts with the stan-
dard use of ρ for the survival probability; it was called β in Lalley and Sellke
(1996) but we used β for the recurrence probability in Salzano and Schonmann
(1997) and therefore prefer to use a different notation here.]

In this paper we will focus on the following theorem, originally proven by
Zhang (1996).

Theorem 1 (Zhang). For the contact process on Td, if λ > λ2, then for any

η ∈ 
0�1��Td ,

ξ
η
t ⇒ �1 − ρ�η��δ� + ρ�η�ν�(1.1)

as t→ ∞, where δ� is the measure concentrated on the configuration with no
particles and ν is the upper invariant measure.

The statement (1.1) is known as complete convergence. When it holds, it
fully describes the ergodic behavior of the contact process.
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Technically, the most difficult part of Zhang’s proof of complete convergence
for the contact process on Td is his proof of Proposition 5 in his paper, which
states that when λ > λ2,

inf
t≥0

P

(
ξ0

T
+
d � t

�0� = 1
)
> 0�(1.2)

After proving this, Zhang completes his proof of Theorem 1 by using a clas-
sical result in Griffeath (1978) which establishes a necessary and sufficient
condition for complete convergence to hold based on the behavior of two in-
dependent copies of the contact process. In Salzano and Schonmann (1997)
we provided a minor simplification of Zhang’s proof of Theorem 1 in that we
showed how the machinery which we developed in that paper can replace the
result of Griffeath (1978) in proving complete convergence on Td, once (1.2) is
available.

Here we will give a self-contained, relatively short and simple proof of the
following result.

Proposition 1. If α�λ� > 1/
√
d, then (1.2) holds.

When λ > λ2 we have un ≥ β�
0�� > 0 for each n. Therefore α�λ� = 1
and from Proposition 1 the estimate (1.2) follows. In this way Zhang’s proof of
Theorem 1 is greatly simplified. It is worth stressing that Zhang’s renormal-
ization procedure (see page 1418 and following in his paper) is not needed in
our proof.

From Proposition 1, one also obtains the following immediate consequence,
of a different nature.

Theorem 2 (Lalley and Sellke). If λ < λ2 then α�λ� ≤ 1/
√
d.

We end this introduction with a few comments which may be seen as a
review of some points in Salzano and Schonmann (1997) and which are of
relevance here.

The proof that local survival implies complete convergence presented here
depends heavily on the structure of the graph Td; likewise does Zhang’s orig-
inal proof. For the contact process on Z

d the statement that local survival
implies complete convergence is also true, as proved by Bezuidenhout and
Grimmett (1990). It is natural to ask if for general graphs this statement is
still true, but this was disproved (even for trees) in Salzano and Schonmann
(1997). A problem left open in that paper and that seems extremely difficult
but also very interesting is whether for homogeneous graphs (i.e., graphs such
that any vertex can be mapped into any other vertex by means of a graph-
automorphism) the statement is true or not.

An important consequence of complete convergence is that it implies that
the set of extremal invariant distributions is �e = 
δ�� ν�. It is worth re-
minding the reader that in Salzano and Schonmann (1997) there is a proof
that for an arbitrary homogeneous graph local survival implies �e = 
δ�� ν�.
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This proof is substantially simpler than the proof presented here of complete
convergence just for the homogeneous trees.

2. Proofs. Our proof of Proposition 1 will require the introduction of the
standard graphical construction of the contact process. We recall next this
graphical construction and some related basic notions. We associate each site
x ∈ Td with d + 2 independent Poisson processes, a first one with rate 1 and
d+1 others with rate λ. Make these Poisson processes also independent from
site to site. For each x, let 
Tx�kn 	 n ≥ 1�, k = 0�1�2� � � � � d + 1 be the arrival
times of these d + 2 processes, respectively. For each x and n ≥ 1 we write a
δ mark at the point �x�Tx�0n � and draw arrows from �x�Tx�kn � to �x�k��Tx�kn �
for k = 1� � � � � d + 1� where x�k�, k = 1� � � � � d + 1� are the neighbors of x,
arranged in some arbitrary order. We say that there is a path from �x� s� to
�y� t� if there is a sequence of times s = s0 < s1 < · · · < sn < sn+1 = t and
spatial locations x = x0� x1� � � � � xn = y so that for i = 1�2� � � � � n there is an
arrow from xi−1 to xi at time si and the vertical segments 
xi� × �si� si+1� for
i = 0�1� � � � � n do not contain any δ. We will say that the path is inside a set
D ⊂ �Td

× R+ in case these vertical segments are all contained in D. Given
two sets A�B ⊂ �Td

× R+, we will say that there is a path from A to B inside
D if there is such a path from a point of A to a point of B.

If η ⊂ Td and we define ξηt as the indicator function of the set 
x ∈
Td	 there is a path from η× 
0� to �x� t��, then �ξηt � t ≥ 0� is a version of
the contact process on Td.

We shall use the definition of an increasing event that was given by
Bezuidenhout and Grimmett (1991). Briefly, an event E is said to be increas-
ing if the following holds: for any realization of the graphical construction
that is in E, every other realization obtained from it by the addition of arrows
or the suppression of δ marks is also in E. The Harris–FKG inequality says
that if E and F are both increasing events, then

P�E ∩F� ≥ P�E�P�F��
The following object will be important in our proof of Proposition 1:

Yn�s = P
(
there is a path from �0�0� to �n� s� inside T

+
d × R+

)
= P

(
ξ0

T
+
d � s

�n� = 1
)
�

Lemma 1. There exists a sequence �s�n��n≥1 such that limn→∞�Yn�s�n��1/n=α�

Proof. Clearly for any sequence s�n�,
lim sup
n→∞

(
Yn�s �n�

)1/n ≤ lim sup
n→∞

�un�1/n = α�

This is not a very useful inequality. We are really after the complementary
inequality, which we address next. Define

Vm�k = P
(
there is a path from �0�0� to 
m� × R+ inside B�k� × �0� k�)

= P

(
ξ0
B�k�� t�m� = 1 for some t ≤ k

)
�
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Clearly,

lim
k→∞

Vm�k = um�(2.1)

Next define

Wn�k = P
(
there is a path from �0�0� to 
n� × R+ inside T

+
d × �0� kn�)

= P

(
ξ0

T
+
d � t

�n� = 1 for some t ≤ kn
)
�

We will argue next that

Wn�k ≥ Cm�k�Vm�k��n/m��(2.2)

where Cm�k is a positive quantity which does not depend on n. For this purpose
set I = min
i ∈ 
1�2� � � ��	 im > k� = min
i ∈ 
1�2� � � ��	B�im�k� ⊂ T

+
d�� Con-

sider now the sequence of sites x1 = Im�x2 = �I+1�m, x3 = �I+2�m� � � � � xJ =
�n/m�m. By pasting together a sequence of paths and using the translation
invariance of the graphical construction and the strong Markov property of
the underlying Poisson processes, one readily obtains (2.2). In this argument,
the first path is somewhat different from the others and it can go from �0�0�
to �x1�1� without exiting T

+
d × R+. The second path should go from �x1�1� to

�x2�T2�, for some random time T2 which satisfies T2 − 1 ≤ k, and it should
not exit B�x1� k�. The third path should go from �x2�T2� to �x3�T3�, for some
random time T3 which satisfies T3 −T2 ≤ k, and it should not exit B�x2� k�.
By now the way to choose the other paths should be clear. The reason for (2.2)
should also be clear, with the factor Cm�k > 0 being the probability of the
existence of the first path in this construction.

Define

Wn�k = max
j=0�����nk−1

P
(
there is a path from �0�0�
to 
n� × �j� j+ 1� inside T

+
d × R+

)
= max
j=0�����nk−1

P

(
ξ0

T
+
d � t

�n� = 1 for some t ∈ �j� j+ 1�
)
�

The event in this definition and the event that there is no death mark in

n� × �j� j+ 1� are both increasing; therefore, for a proper choice of s�n�,

Yn�s�n� ≥ e−1Wn�k ≥ e−1 1
kn
Wn�k�(2.3)

Using now (2.3), (2.2), (2.1) and the definition of α,

lim inf
n→∞ �Yn�s�n��1/n = lim inf

m→∞ lim inf
k→∞

lim inf
n→∞ �Yn�s�n��1/n

≥ lim inf
m→∞ lim inf

k→∞
�Vm�k�1/m

= lim inf
m→∞ �um�1/m

= α�
completing the proof. ✷
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Proof of Proposition 1. Suppose that α�λ� > 1/
√
d. Thanks to Lemma 1,

we can take n and s such that

�Yn�s�1/n = a > 1/
√
d�(2.4)

We will show that for a proper choice of a positive integer l,

inf
i=0�1�2����

P

(
ξ0

T
+
d �2ils

�0� = 1
)
> 0�(2.5)

This clearly suffices for our purposes, since then

inf
t≥0

P

(
ξ0

T
+
d � t

�0� = 1
)
≥ e−2ls inf

i=0�1�2����
P

(
ξ0

T
+
d �2ils

�0� = 1
)
> 0�

by the same reasoning behind the first inequality in (2.3).
In order to prove (2.5), we consider now the following modification of the

contact process on T
+
d . Until time s we run the usual contact process on this

graph started from a single particle at the origin. At time s we remove all
particles except for those which are in B�n�\B�n − 1�; from this time on we
keep the set B�n − 1� free of particles, but until time 2s we let the system
evolve in the remaining vertices with the usual contact process rules. At time
2s we remove all particles except for those which are in B�2n�\B�2n−1�; from
this time on we keep the set B�2n− 1� free of particles, but until time 3s we
let the system evolve in the remaining vertices with the usual contact process
rules. The modification should now be clear. For each j, at time js we remove
all particles except for those which are in B�jn�\B�jn− 1�; from this time on
we keep the set B�jn− 1� free of particles, but until time �j+ 1�s we let the
system evolve in the remaining vertices with the usual contact process rules.

Let Zj be the number of particles in this modified process at time js [all
of them are in B�jn�\B�jn− 1�]. It is clear that �Zj�j=0�1�2���� is a branching
process with mean offspring number dnYn� s = �da�n. Since the offspring dis-
tribution has a finite support (namely 
0�1� � � � � dn�), and in particular a finite
second moment, it follows from standard branching-process theory [see, e.g.,
Example 4.3 in Section 4.4, page 254 of Durrett (1996)] that for some random
variable X with mean E�X� = 1,

Zj

�da�nj →X a.s. as j→ ∞�

In particular, there is ε > 0 such that

P

(
Zl ≥

�da�nl
2

)
≥ ε�(2.6)

for all large enough l.
Choose now l large enough for (2.6) to hold, and also so that

(
1 − ε

2
anl

)�da�nl/2
≤ 1

2
�(2.7)
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This last requirement can be fulfilled because

lim
l→∞

(
1 − ε

2
anl

)�da�nl/2
≤ lim
l→∞

exp
(
−ε

2
anl

�da�nl
2

)
= lim
l→∞

exp
(
−ε

4
�da2�nl

)
= 0�

since da2 > 1 by (2.4).
Define now

ri = P

(
ξ0

T
+
d �2ils

�0� = 1
)
�

We will show inductively in i that

ri ≥
ε

2
anl�(2.8)

verifying therefore the validity of (2.5).
For i = 0 inequality (2.8) is clearly true, and we will show now that if it is

true for i it is true for i+ 1. From the Markov property and attractiveness of
the contact process we have

ri+1 ≥ P

(
ξ0

T
+
d � �2i+1�ls�x� = 1 for some x ∈ B�nl�\B�nl− 1�

)
Yln� ls

≥ P

(
ξ0

T
+
d � �2i+1�ls�x� = 1 for some x ∈ B�nl�\B�nl− 1�

)
�Yn�s�l�

It is clear that the contact process on T
+
d dominates the modified process in-

troduced above, immediately before the definition of Zj, in the usual sense
that it has a particle at any space-time location in which this other one has a
particle. The same is true if we consider a somewhat different modification of
the contact process on T

+
d , in which until time ls we make the same modifica-

tions as before, but from this time on we keep only the sites in B�nl− 1� free
of particles, and we let the system evolve in the remaining vertices with the
usual contact process rules. Using these observations, the last display above
yields

ri+1 ≥ P

(
Zl ≥

�da�nl
2

)(
1 − �1 − ri��da�

nl/2)�Yn�s�l ≥ ε2anl�
where in the second inequality we are using (2.6), the induction hypothesis
(2.8), (2.7) and (2.4). This completes the proof of Proposition 1. ✷
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