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LIMIT THEOREMS FOR MIXING SEQUENCES
WITHOUT RATE ASSUMPTIONS

By István Berkes1 and Walter Philipp2

Hungarian Academy of Sciences and University of Illinois

We extend Lévy’s classical criterion for a sequence of independent
identically distributed random variables to belong to the domain of par-
tial attraction of a nondegenerate Gaussian law to stationary φ-mixing se-
quences. We also extend some results of Kesten and of Kuelbs and Zinn on
the LIL behavior of independent identically distributed random variables
to stationary φ-mixing sequences. No assumptions on the rate of decay for
the mixing coefficient are made.

1. Introduction. A sequence X1�X2� � � � of random variables is called
φ-mixing if φ�n� → 0 where

φ�n� = sup
{�P�B�A� −P�B��� A ∈ � k

1 � B ∈ � ∞
k+n� k ≥ 1

}
�

Here � n
m denotes the σ-field generated by the random variables �Xj� m ≤

j ≤ n�. There is an extensive literature dealing with the asymptotic properties
of φ-mixing sequences; in particular, it is known that, under suitable moment
conditions and mixing rates, a φ-mixing sequence satisfies the central limit
theorem, the law of the iterated logarithm and various related limit theorems.
Most results in the literature require a polynomial rate of decrease for φ,
except in the stationary case when a logarithmic rate φ�n� ≤ C�log n�−γ,
γ ≥ γ0 is usually assumed [see, e.g., Ibragimov (1975), Berkes and Philipp
(1979), Bradley (1988)]. Very little is known about what happens under weaker
mixing rates or if we assume only φ�n� → 0. Ibragimov (1962) proved that if
�Xn� is a stationary φ-mixing sequence with partial sums Sn satisfying

�1�1� EX1 = 0� E�X1�2+δ <∞ �δ > 0�� σ2
n = VarSn → ∞

then

�1�2� Sn/σn →� N�0�1��

However, the question whether (1.2) remains valid if in (1.1) we assume only
EX2

1 <∞ has been open for more than 35 years. In fact, we do not even know
if (1.1) with δ = 0 implies that (1.2) holds along an infinite sequence of n’s or
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806 I. BERKES AND W. PHILIPP

if Sn/σn has a subsequence with a nondegenerate limit distribution. It is also
unknown if (1.1) implies the law of the iterated logarithm, that is,

�1�3� lim sup
n→∞

Sn

�2σ2
n log log σ2

n�1/2
= 1 a.s.

As was observed in Dehling, Denker and Philipp (1986) and in Peligrad (1990),
the difficulties in these problems are connected with the fact that for very
slowly decreasing φ the standard deviation σn may not be the proper norming
factor in the CLT. In view of this fact, the natural question is whether for a
stationary φ-mixing sequence �Xn� satisfying EX2

1 < ∞ and σn → ∞ there
exist norming and centering sequences �An�� �Bn�� �Cn�� �Dn� such that

�1�4� Sn −An

Bn

→� N�0�1�

and

�1�5� lim sup
n→∞

Sn −Cn

Dn

= 1 a.s.�

where we assume Bn → ∞, Dn → ∞ and in (1.5) we exclude the trivial case

Sn/Dn → 0 a.s. and lim sup
n→∞

�−Cn�/Dn = 1

[when (1.5) is the result of the fluctuations of Cn and Dn and not those of Sn].
The purpose of this paper is to prove that the answer to the above question
is positive in the case of the generalized LIL (1.5) and in the case of the CLT
relation (1.4) holds at least along some infinite sequence �nk� of positive inte-
gers. It will also turn out that using general norming and centering constants
in the CLT and LIL, there is no need to assume finite variances and one can
give optimal criteria for the LIL and subsequential CLT for arbitrary φ-mixing
sequences without any moment conditions and without any assumptions on
the rate of decay of φ�n�.

Theorem 1. Let �Xj� j ≥ 1� be a strictly stationary φ-mixing sequence
of random variables. Denote by F the common distribution function of �Xj�.
Suppose that

�1�6� lim inf
x→∞

x2�1 −F�x��∫ x
0 t

2 dF�t� = 0

and that

�1�7� φ�1� < 1/4�

Then there exist numerical sequences �An� and �Bn� and a sequence �nk� of
positive integers such that Bn → ∞ and

�1�8� Snk
−Ank

Bnk

→� N�0�1��
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Theorem 2. Suppose that the sequence �Xj� j ≥ 1� satisfies the hypothe-
ses of Theorem 1. Then there exist numerical sequences �Cn�, �Dn� such that
Dn → ∞ and the set of limit points of

�1�9�
{
Sn −Cn

Dn

� n ≥ 1
}

is with probability 1 precisely the interval �−1�1�. Moreover,

�1�10� lim sup
n→∞

�Sn�
Dn

�= 0 a.s.

Remark 1. Condition (1.6) is Lévy’s classical necessary and sufficient con-
dition for an i.i.d. sequence �Xn� to belong to the domain of partial attraction
of the normal law, that is, to satisfy (1.8) with suitable �An�� �Bn� and �nk�.
By well-known theorems of Kesten (1972), Rogozin (1968) and Heyde (1969),
(1.6) is also a necessary and sufficient condition for an i.i.d. sequence �Xn� to
satisfy the LIL (1.5) with suitable �Cn� and �Dn�. Thus our theorems extend
the general LIL and the subsequential CLT to stationary φ-mixing sequences
under exactly the same conditions as they require for i.i.d. random variables,
without any assumption on the mixing rate. It is worth noting that Theorems
1 and 2 are new even in the case of finite second moments.

Remark 2. We note that if �Ank
�, �Bnk

� are the sequences in (1.8) given
by the proof of Theorem 1 and if �nk� grows sufficiently rapidly (which can
be guaranteed by passing to a further subsequence) then the sequences �Cn�,
�Dn� in Theorem 2 can be chosen as

Cj = Ank
j/nk� Dj = Bnk

�2 log k�1/2� nk−1 < j ≤ nk�

Remark 3. From the results of Dehling, Denker and Philipp (1986) it fol-
lows easily [see also Peligrad (1993)] that if �Xj� j ≥ 1� is a stationary
φ-mixing (or even strong mixing) sequence with mean 0 and finite second
moments and σ2

n = VarSn → ∞ then either

�1�11� Sn/σn → 0 in probability

or there exists an increasing sequence �nk� of positive integers and a constant
c > 0 such that

�1�12� Snk
/σnk →� N�0� c��

Although the norming factor in (1.12) is more explicit than in (1.8), the problem
whether (1.11) can actually hold is still an open question and thus it is unclear
whether (1.12) is always valid. On the other hand, our Theorem 1 shows that
with suitably chosen �An�� �Bn�, �nk� the subsequential CLT (1.8) is always
valid, even if (1.11) holds.
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Remark 4. The proofs of our theorems will show that (1.7) can be weak-
ened to φ�1� < 1 − 2−1/2 plus a condition on the maximal correlation co-
efficient ρ [in fact, ρ�1� < 1 will do]. On the other hand, (1.7) cannot be
dropped entirely in order to avoid trivialities, such as telescoping sums. If,
for instance, �Yj� j ≥ 1� is the sequence of the Rademacher functions and
we set Xj = Yj+1 − Yj� j ≥ 1, then �Yj� j ≥ 1� is 1–dependent and thus
φ-mixing, but Sn = Yn+1 − Y1 assumes only the values 0 and ±2 and thus
the sequence �Xj� j ≥ 1� cannot satisfy (1.5) or (1.8) with norming factors
tending to infinity. We will not pursue this issue any further, except to note
that only φ�1� < 1 is needed under the additional hypotheses EX2

1 < ∞ and
VarSn → ∞. Details will appear elsewhere.

The proof of Theorem 1 is complex and will take up most of our paper. Theo-
rem 2 will then be deduced from Theorem 1 by using an idea from Kuelbs and
Zinn [(1982), pages 522 and 523]. While their argument generalizes easily to
φ-mixing sequences in case of symmetric Xn, the general non-symmetric case
is much more delicate. In order to obtain the maximal inequalities required
we need the machinery developed in the proof of Theorem 1.

It should be noted that the asymptotic behavior of φ-mixing sequences de-
scribed by our theorems does not extend to strong mixing sequences, i.e. for
sequences �Xn� satisfying α�n� → 0 where

α�n� = sup
{�P�AB� −P�A�P�B��� A ∈ � k

1 � B ∈ � ∞
k+n� k ≥ 1

}
�

Indeed, Herrndorf (1983) constructed a stationary strong mixing sequence
�Xn� satisfying

EX1 = 0� EX2
1 < +∞� σ2

n = VarSn = n

but for which

Sn/bn → 0 in probability

for any sequence bn → ∞. Since EX2
1 < +∞, the distribution function F of

�X1� satisfies (1.6), but clearly neither (1.4) nor (1.8) can hold.
Examples of classes of φ-mixing and strong mixing sequences can be found

in Ibragimov and Linnik (1971), Bradley (1986) and Doukhan (1994). Last,
but not least, we would like to mention the basic papers by Bradley (1980a,
b, 1981, 1988) and by Peligrad (1982, 1985, 1990) which created a body of
methods and ideas on which we draw frequently in the present paper.

2. Preparatory lemmas. From a technical point of view, the proofs of
both theorems are much simpler under the assumption thatX1 is a continuous
symmetric random variable. However, as it will turn out, we have only very
limited information on the norming constants An, Bn and thus the usual
techniques of symmetrization and convolution with a small continuous random
variable to pass from the above special case to the case to the case of a general
distribution pose considerable difficulties. As a consequence, we have opted to
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deal with the general case directly. The first lemma is trivial for continuous
random variables.

Lemma 2.1. Let X be a nonnegative random variable with distribution
function F�x� = P�X ≤ x�. Then the following three statements are equiv-
alent:

lim inf
x→∞

x2P�X > x�
EX21�X ≤ x� = lim inf

x→∞
x2�1 −F�x��∫
�0� x� t

2 dF�t� = 0�(2.1)

lim inf
x→∞

x2P�X ≥ x�
EX21�X < x� = lim inf

x→∞
x2�1 −F�x−��∫

�0� x� t
2 dF�t� = 0�(2.2)

lim inf
x→∞

x2�1 −F�x−��∫ x
0 t�1 −F�t��dt = 0�(2.3)

Here, as usual, F�x−� = limy↑x F�y��

Proof. Suppose that

x2P�X > x�
EX21�X ≤ x� < ε�

Then, upon setting t = 2x� we have

t2P�X > 1
2t�

EX21�X ≤ 1
2t�

< 4ε�

Hence (2.1) and (2.2) are equivalent. Next, by Billingsley [(1995), page 236],

�2�4�
∫
�0� x�

t2 dF�t� = −x2�1 −F�x�� + 2
∫ x

0
t�1 −F�t��dt�

We divide this relation by x2�1−F�x−�� and conclude that (2.2) implies (2.3)
which in turn implies (2.1). This proves the lemma. ✷

In the proof of Theorem 1 we can assume, without loss of generality, that
�X1� is unbounded, that is,

�2�5� P��X1� > t� > 0 for all t > 0�

Indeed, in the opposite case, Ibragimov’s (1962) Theorem 1.4, the central limit
theorem for stationary φ-mixing sequences with finite �2 + δ�th moments
would yield a result much stronger than ours. [To verify the variance condition
in Ibragimov’s theorem, note that EX2

1 < ∞ and (1.7) imply σ2
n = ES2

n → ∞
according to Lemma 2.6 below.]

For n ≥ 1, define an by

�2�6� 1 −F�an� ≤
1
n

and 1 −F�an−� ≥ 1
n
�
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Clearly an is nondecreasing and an → ∞ since if an ≤ M for all n ≥ 1 then
(2.6) yields F�M� = 1, that is, P��X1� > M� = 0, contradicting (2.5). Put
x0 = 0 and

�2�7� xk �= a16k� k ≥ 1�

Lemma 2.2. Condition (1.6) implies

lim inf
k→∞

x2
k16−k∫

�0� xk� t
2 dF�t� = 0�

Proof. By Lemma 2.1, condition (1.6) implies (2.3). Hence for each 0 <
ε ≤ 1/16 there exists x = x�ε� with

�2�8� x2�1 −F�x−��∫ x
0 t�1 −F�t��dt < ε�

Let

G�x� �= 1
x2

∫ x

0
t�1 −F�t��dt� x > 0�

Clearly G is absolutely continuous and for any continuity point x of F (i.e.,
for almost every x) we have

x4G′�x� = x3�1 −F�x�� − 2x
∫ x

0
t�1 −F�t��dt ≤ 0

and thus G is nonincreasing. Choose k with xk ≤ x ≤ xk+1. Then by (2.6),
(2.7), (2.8) and the monotonicity of G we get

16−k−1x2
k∫ xk

0 t�1 −F�t��dt ≤ x2�1 −F�x−��∫ x
0 t�1 −F�t��dt < ε�

But then by (2.4) and (2.6),

16−kx2
k < 16ε

∫ xk

0
t�1 −F�t��dt

= 8ε
∫
�0� xk�

t2 dF�t� + 8εx2
k�1 −F�xk��

≤ 8ε
∫
�0� xk�

t2 dF�t� + 1
2 16−kx2

k�

This proves the lemma. ✷

Lemma 2.3. Let �bn� n ≥ 1� be a sequence of nonnegative numbers, not all
equal to zero, and assume that for some integer l ≥ 1 we have

�2�9� lim inf
N→∞

bN+1 + · · · + bN+l∑N+l
n=1 bn

= 0�
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Then the inequality

�2�10� bn+1 + · · · + bn+l ≤ 2lbn

holds for infinitely many n.

Proof. Suppose not; that is, there is an n0 such that for all n ≥ n0,

bn+1 + · · · + bn+l > 2lbn�

Summing these inequalities for n0 ≤ n ≤N we obtain

2l
N∑

n=n0

bn <
N∑

n=n0

�bn+1 + · · · + bn+l� ≤ l
N∑

n=n0

bn + l�bN+1 + · · · + bN+l��

whence
N∑

n=n0

bn < bN+1 + · · · + bN+l

and thus

�2�11�
N+l∑
n=1

bn < 2�bN+1 + · · · + bN+l� +
n0−1∑
n=1

bn�

If
∑∞

n=1 bn <∞, then letting N→ ∞ in (2.11) we get

∞∑
n=1

bn ≤
n0−1∑
n=1

bn�

that is, bn = 0 for n ≥ n0; but then (2.10) also holds for n ≥ n0, contrary to
our assumption. If

∑∞
n=1 bn = ∞, then dividing (2.11) by its left-hand side and

letting N→ ∞, we get a contradiction in view of (2.9).

Lemma 2.4. Let �Yj� j ≥ 1� be a strictly stationary φ-mixing sequence of
random variables with φ�1� < 1/2. Denote the distribution function of �Y1� by
H. Then for any n ≥ 1 and t > 0, we have

P
(

max
1≤i≤n

�Yi� > t
)
> min

( 1
6n�1 −H�t��� 1

4

)
�

Proof. Note that for 0 ≤ h ≤ 2/n we have �1 − h�n ≤ 1−nh/3 as one can
show by induction on n. Thus in the case n�1 −H�t�� ≤ 2 we get by Peligrad
(1990), Proposition 3.1 and φ�1� < 1/2,

P
(

max
1≤i≤n

�Yi� > t
)
≥ �1 −φ�1���1 −H�t�n�

>
1
2

(
1 − 1 + n

3
�1 −H�t��

)
= 1

6
n�1 −H�t���

If n�1 −H�t�� > 2 then the first inequality in the last chain of estimates is
still valid, but now H�t�n ≤ �1 − 2/n�n ≤ e−2 < 1/2 and thus the statement of
the lemma follows again. ✷
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The next lemma is a special case of Bradley (1980a), Lemma 2.3.

Lemma 2.5. Let �ξj� and �ηj� be φ-mixing sequences of random variables
with mixing coefficients φ�n� and φ′�n�, respectively. Suppose that the se-
quences �ξj� and �ηj� are independent of one another. Then the sequence
�ξj+ηj� is also φ-mixing with mixing coefficient not exceeding φ�n�+φ′�n�−
φ�n�φ′�n�.

Lemma 2.6. Let �Yk� k ≥ 1� be a strictly stationary φ-mixing sequence of
square integrable random variables satisfying φ�1� < 1/4. Let Sn = Y1 + · · ·+
Yn� σn = VarSn. Then there exists a function κ�n� → ∞, depending only on
φ, such that

�2�12� σm/σn ≥ κ�m/n�
for any m ≥ n ≥ 1 such that m/n is an integer and σn > 0.

In the case n = 1 Lemma 2.6 is contained in Lemma 2.2 of Bradley (1988).
[Note that the ρ-mixing condition of Bradley’s lemma is satisfied by φ�1� < 1/4
and well-known bounds for covariances ofφ-mixing random variables; see, e.g.,
Billingsley (1968), page 170.] Applying this statement for blocks of �Yk� k ≥ 1�
of length n, we get (2.12) in general.

Lemma 2.7 [Peligrad (1985), Lemmas 3.1 and 3.2]. Let �Yn�n≥1� be a φ-
mixing sequence of random variables with partial sums Tn. Suppose that for
some b > 0, p� s ∈N and a0 > 0,

�2�13� φ�s� + max
1≤i≤p

P
(�Tp −Ti� ≥ 1

2ba0
) ≤ η < 1�

Then for any A ≥ a2
0 we have

�2�14�
E�1+2b�2AT

2
p ≤ �1 + 2b�2 η

1 − η
EAT

2
p

+
(

2s
(

2 + 1
b

))2 1
1 − η

EA�b/2s�2 max
1≤i≤p

Y2
i �

where EAX denotes EX1�X > A�� Moreover, for a ≥ a0 and p > s, we have

�2�15�
P
(

max
1≤i≤p

�Ti� > �1 + b�a
)
≤ �1 − η�−1P��Tp� > a�

+ �1 − η�−1P

(
max
1≤i≤p

�Yi� >
ba

2�s− 1�
)
�

For s = 1 the last term is omitted.

The next lemma is a special case of Lemma 4.2 of Peligrad (1982).
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Lemma 2.8. Let �Yj� j ≥ 1� be a strictly stationary φ-mixing sequence of
square integrable random variables satisfying φ�1� < 1/4. Let Sn = Y1 + · · ·+
Yn� σ

2
n = VarSn. Then there exists a positive integer m0 depending only on

the sequence φ�n� such that for all p ≤m� m ≥m0,

(
1 − 2φ1/2�1�)1/2

σp ≤ 3σm�

Proof. By Peligrad’s (1982) Lemma 4.2 and by Lemma 2.6 the left-hand
side does not exceed σm+2σ1 ≤ 3σm� [Again, the ρ-mixing condition of Peligrad
(1982), Lemma 4.2 is satisfied by φ�1� < 1/4 and Lemma 1 of Billingsley
(1968), page 170; see the remark after Lemma 2.6.]

Lemma 2.9 [Petrov (1995), page 155]. Let Y1� � � � �Yn be independent ran-
dom variables with EYj = 0, σ2

j = EY2
j < ∞ and let Fj denote the distribu-

tion function of Yj. Then setting Sn = ∑n
j=1 Yj, s

2
n = ∑n

j=1 σ
2
j , we have for any

ε > 0,

sup
x

∣∣∣∣P�Sn/sn < x� − 1√
2π

∫ x

−∞
exp�−t2/2�dt

∣∣∣∣ ≤ C�Ln�ε� + ε��

where

Ln�ε� �= s−2
n

n∑
j=1

∫
�x�≥εsn

x2 dFj�x�

and C is an absolute constant.

The next lemma is a variant of Dehling, Denker and Philipp (1986),
Lemma 1, and gives a remainder term estimate in the central limit theorem
for stationary φ-mixing sequences in terms of certain truncated moments.

Lemma 2.10. Let �Yj� j ≥ 1� be a strictly stationary φ-mixing sequence of

random variables with EY1 = 0� EY2
1 <∞ and φ�1� < 1/4. Let Sn = ∑n

j=1 Yj

and σ2
n = VarSn� Let p ≥ 1 be the fourth power of an integer and let g ≥ 6

satisfy

�2�16� g ≤ φ−1/4�p1/4��
Let ψ > 0 and put

�2�17� u2 �=
∫
��Sp�≤gσp�

S2
p dP�

�2�18� v2 �= σ−2
p

∫
�gψ<�Sp�/σp≤g�

S2
p dP

and

�2�19� r = �g2c��
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where c satisfies

�2�20� max�2ψ�g−1� ≤ c < 1�

Finally, set

�2�21� n = r�p+ p1/4�
and

�2�22� τ2 �= ru2�

Then we have for each 0 < δ ≤ 1,

�2�23�

∣∣E exp�itτ−1Sn� − exp�−t2/2�∣∣
≤ 2c+ �t�u−1σpc

1/2 +Cδ�t�2+δ�u−1σpc
1/2�δ

+Cδ��t�u−1σp�2+δv2c−δ/2 + 4φ1/2�p1/4�
+ t4g−1 + 3�t�u−1σpκ�p3/4�−1/2

where Cδ ≥ 1 is a constant depending on δ and κ is the function in Lemma 2.6.

Proof. We follow the argument in Dehling, Denker and Philipp (1986).
By Lemma 2.6 we have σn → ∞; we also note that u ≤ σp. Hence, if �t� > r1/2,
the third term on the right-hand side of (2.23) is

≥ r1+δ/2cδ/2 ≥ �g2c/2�1+δ/2g−δ/2

≥ 1
3g

2+δ/2c1+δ/2 ≥ 1
3g

2+δ/2g−1−δ/2 = 1
3g ≥ 2

by (2.19), (2.20), g ≥ 6 and δ ≤ 1. Hence we can assume from now on that
�t� ≤ r1/2.

We use the standard blocking argument. We decompose Sn into r blocks of
length p each, separated by blocks of length q �= p1/4 each, that is,

�2�24� Sn =
r∑

j=1

Zj +
r∑

j=1

Z∗
j = Un +Vn�

where

Zj =
jp+�j−1�q∑

i=�j−1��p+q�+1

Yi� Z∗
j =

j�p+q�∑
i=jp+�j−1�q+1

Yi�

The blocks Z∗
j of Vn have length q and are separated by the blocks Zj of Un,

each having length p. Thus each Zj has q3 times as many terms as Z∗
j. Hence

by Lemma 2.6,

σ2
p = EZ2

1 ≥ κ�q3�EZ∗2
1 = κ�p3/4�EZ∗2

1 �
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where κ is the function in Lemma 2.6. Also, by a well-known estimate [see
Billingsley (1968), page 170] and the previous line of estimates we have

�2�25� EV2
n ≤ rEZ∗2

1 + 4r2φ1/2�p�EZ∗2
1 ≤ 5rEZ∗2

1 ≤ 5rκ�p3/4�−1σ2
p

since by (2.19), (2.20), (2.16) and the monotonicity of φ

rφ1/2�p� ≤ g2φ1/2�p� ≤ φ−1/2�p1/4�φ1/2�p� ≤ 1�

Now by (2.22), (2.24), (2.25) and since � exp�iu� − 1� ≤ �u�, u ∈ R, we obtain
∣∣E exp�itτ−1Sn�−E exp�itτ−1Un�

∣∣ ≤ E
∣∣exp�itτ−1Vn�−1

∣∣
≤ �t�τ−1E�Vn� ≤ 3�t�σp

u
κ�p3/4�−1/2�

(2.26)

The blocks Zj of Un are separated by the blocks Z∗
j of Vn having length

q = p1/4 each. Thus by a well-known estimate [see, e.g., Billingsley (1968),
page 171, Lemma 2] and by stationarity we get

�2�27� ∣∣E exp�itτ−1Un� − �E exp�itτ−1Sp��r
∣∣ ≤ 4rφ�p1/4� ≤ 4φ1/2�p1/4�

since we have rφ1/2�p1/4� ≤ 1 [proved similarly to the relation rφ1/2�p� ≤ 1
above]. Next we estimate �E exp�itτ−1Sp� − �1 − t2/�2r���. By Chebyshev’s
inequality and (2.19),

�2�28�
∣∣∣∣
∫
��Sp�>gσp�

exp�itτ−1Sp�dP
∣∣∣∣ ≤ g−2 ≤ cr−1�

For the next estimate we use Taylor’s theorem. We obtain

�2�29�

∣∣∣∣
∫
��Sp�≤gσp�

exp�itτ−1Sp�dP− �1 − t2/�2r��
∣∣∣∣

≤
∣∣∣∣P��Sp� ≤ gσp� + itτ−1

∫
��Sp�≤gσp�

SpdP

− 1
2t

2τ−2
∫
��Sp�≤gσp�

S2
p dP− �1 − t2/�2r��

∣∣∣∣
+Cδ�t�2+δτ−�2+δ�

∫
��Sp�≤gσp�

�Sp�2+δ dP�

where Cδ is a positive constant depending on δ. As in (2.28) we have

�2�30� ∣∣1 −P��Sp� ≤ gσp�
∣∣ ≤ g−2 ≤ cr−1�

Since ESp = 0, we have by (2.22) and (2.19),

�2�31�

∣∣∣∣τ−1
∫
��Sp�≤gσp�

Sp dP

∣∣∣∣ =
∣∣∣∣τ−1

∫
��Sp�>gσp�

Sp dP

∣∣∣∣
≤ g−1σpτ

−1 ≤ u−1σpr
−1c1/2�



816 I. BERKES AND W. PHILIPP

The �2 + δ�th moment is estimated as follows. By (2.18), (2.22), (2.19), (2.17)
and (2.20),

�2�32�

τ−�2+δ�
∫
�gψσp<�Sp�≤gσp�

�Sp�2+δ dP ≤ τ−�2+δ��gσp�δσ2
pv

2

= u−�2+δ�r−1−δ/2�gσp�δσ2
pv

2

≤ 2
(
σp

u

)2+δ
v2c−δ/2

1
r

and

�2�33�
τ−�2+δ�

∫
��Sp�≤gψσp�

�Sp�2+δ dP ≤ τ−�2+δ��gψσp�δu2

= 1
r

(
gψ

σp

u

1
r1/2

)δ
≤ 1
r

(
σp

u
c1/2

)δ
�

By (2.17) and (2.22),

1
2t

2τ−2
∫
��Sp�≤gσp�

S2
p dP = t2/�2r�

and hence substituting (2.30)–(2.33) into (2.29) we obtain, by (2.28),∣∣E exp�itτ−1Sp� − �1 − t2/�2r��∣∣ ≤ r−1η�

where

η �= 2c+ �t�σpc1/2u−1 + 2Cδ�t�2+δv2�σp/u�2+δc−δ/2 +Cδ�t�2+δ�σpc1/2u−1�δ�
Hence, and since �ar − br� ≤ r�a− b� for �a� ≤ 1, �b� ≤ 1, we have for �t� < r1/2,

�2�34� ∣∣E exp�itτ−1Un� − �1 − t2/�2r��r∣∣ ≤ η+ 4φ1/2�p1/4�
by (2.27). Since �ex−�1+x�� ≤ x2 for �x� ≤ 1/2, we obtain by the above remark,∣∣exp�−t2/2� − �1 − t2/�2r��r∣∣ ≤ t4/�4r� for �t� ≤ r1/2�

The result follows now from (2.34), (2.26), (2.19) and (2.20).
The following lemma is used in the proof of Theorem 2.

Lemma 2.11. Assume that the hypotheses of Lemma 2.10 hold. Let ε>0
and let α ≥ 90�1 − 2φ1/2�1��−1/2/ε. Then using the same notation as in
Lemma 2.10,

P
(

max
m≤n

�Sm� ≥ �1 + ε�τα
)
≤ 10P��Sn� ≥ τα�

provided that

�2�35� �σp/τ�2 + �σp/u�2κ�p3/4�−1 + c ≤ 1/2 and c1/2σp/u ≤ 1�

Here κ is the function in Lemma 2.6.



LIMIT THEOREMS FOR MIXING SEQUENCES 817

Proof. We apply Lemma 2.7 with a = a0 = τα, b = ε and s = 1. To verify
(2.13) with s = 1 it suffices to show, in view of φ�1� < 1/4 and the stationarity
of �Yj� j ≥ 1�, that

�2�36� 1
4 +P

(�Sm� ≥ 1
2ταε

) ≤ η for any m ≤ n�

where

�2�37� η = 4
10

+ c+ σ2
p

τ2
+ σ2

p

u2
κ�p3/4�−1�

To prove (2.36)–(2.37) note that since m ≤ n = r�p + p1/4� we can write
m = t�p+p1/4� + l where 0 ≤ t ≤ r and 0 ≤ l < p+p1/4. Set h = t�p+p1/4�.
Since l < p+p1/4, we can write l = l1 + l2 with 0 ≤ l1� l2 ≤ p and thus using
stationarity, Lemma 2.8, (2.22) and αε�1 − 2φ1/2�1��1/2 ≥ 90 we get

�2�38�

P
(�Sm −Sh� ≥ 1

4ετα
) = P

(�Sl� ≥ 1
4ετα

)
≤ P

(�Sl1
� ≥ 1

8ετα
)+P

(�Sl2
� ≥ 1

8ετα
)

≤ 64�σ2
l1
+ σ2

l2
�/�ε2τ2α2�

≤ 1200σ2
p/�ε2τ2α2�1 − 2φ1/2�1��� < σ2

p/τ
2�

Next, by (2.24) we have Sh = Uh +Vh and thus by the argument in (2.25),

EV2
h ≤ 5tσ2

pκ�p3/4�−1�

Thus by (2.22) and since t ≤ r and εα ≥ 90

�2�39� P
(�Vh� ≥ 1

8ετα
) ≤ 320tσ2

pκ�p3/4�−1/�ε2τ2α2� ≤ �σp/u�2κ�p3/4�−1�

Now

�2�40�

Uh = ∑
j≤t

(
Zj1��Zj� < gσp� −E�Zj1��Zj� < gσp��

)

+ ∑
j≤t

Zj1��Zj� ≥ gσp� +
∑
j≤t

E�Zj1��Zj� < gσp��

= I+ II+ III say�

By well-known estimates on φ-mixing random variables [Billingsley (1968),
page 170],

EI2 ≤ ∑
j≤t

EZ2
j1��Zj� < gσp� + 2φ1/2�p1/4�t2EZ2

11��Z1� < gσp�

≤ ru2 + 2φ1/2�p1/4�r2u2 ≤ ru2 + 2cru2

as t ≤ r, by (2.17), (2.16), (2.19) and since the blocks Zj are separated by p1/4

random variables Yi. Thus by (2.22), (2.20) and εα ≥ 90,

�2�41� P

(
�I� ≥ 1

16
εατ

)
≤ 256
ε2α2τ2

�ru2 + 2cru2� < 768
ε2α2

<
1

10
�
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Now by (2.30), t ≤ r and (2.19),

�2�42� P�II �= 0� ≤ ∑
j≤t

P��Zj� ≥ gσp� ≤ g−2t ≤ c�

Finally, by (2.31), t ≤ r and the assumption c1/2σp/u ≤ 1 we have

�2�43� �III� ≤ τ�c1/2σp/u� ≤ τ ≤ ταε/16�

Hence by (2.40), (2.41), (2.42) and (2.43) we obtain

�2�44� P
(�Uh� ≥ 1

8ετα
)
< 1

10 + c�

Combining (2.44) with (2.38) and (2.39) we see that (2.36) and (2.37) are sat-
isfied. Hence the lemma is proved. ✷

3. Truncation. Let p ≥ 1 and λ ≥ 4 be integers. We truncate Xi, i ≥ 1
by setting

�3�1�
X′

i�p =Xi1 ��Xi� ≤ aλp��
X′′

i�p =Xi1 ��Xi� > aλp�
so that

Xi =X′
i�p +X′′

i�p�

We also set for m ≥ 1,

�3�2�
S′
m�p = ∑

i≤m
�X′

i�p −EX′
i�p�� S′′

m�p = ∑
i≤m

X′′
i�p�

ρ′m�p = E�S′
m�p�� σ ′

m�p = E�S′2
m�p�1/2

and

�3�3� S′
p = S′

p�p� ρ′p = ρ′p�p� σ ′
p = σ ′

p�p�

The following lemma is an extension of Proposition 3.3 of Peligrad (1990) to
φ-mixing sequences without moments.

Lemma 3.1. We have for p ≥ p0

15000ρ′p ≥ ap�

Proof. Let �X∗
i�p� i ≥ 1� be an independent copy of �X′

i�p� i ≥ 1�. Clearly
�X′

i�p−X∗
i�p� i ≥ 1� is a stationary sequence of symmetric random variables;

by Lemma 2.5 it is also φ-mixing with mixing coefficient φ∗�n� not exceeding
2φ�n� −φ2�n�� Notice that φ∗�1� < 7/16. Let

�3�4� S∗
m�p = ∑

i≤m
�X∗

i�p −EX∗
i�p��
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We have for t > 0,

�3�5�
P
(

max
1≤i≤p

�X′
i�p −X∗

i�p� ≥ t
)
≤ P

(
max
1≤j≤p

�S′
j�p −S∗

j�p� ≥ 1
2t
)

≤ 16P
(�S′

p −S∗
p� ≥ 1

2t
)

≤ 32P
(�S′

p� ≥ 1
4t
)
�

The first inequality is trivial and the second one is an extension of Lévy’s
maximal inequality for independent symmetric random variables to the φ-
mixing case. Indeed, let us follow the proof in Loéve [(1963), page 248], and
observe that in the notation there,

P�Ak ∩Bk� ≥ P�Ak�P�Bk� −φ∗�1�P�Ak� ≥
( 1

2 −φ∗�1�)P�Ak� ≥ 1
16P�Ak�

upon using the fact that for any m ≤ n, the sum
∑n

i=m�X′
i�p −X∗

i�p� has a
symmetric distribution. Finally, the last inequality in (3.5) follows from the
fact that S′

p and S∗
p have the same distribution.

Let Qp be the distribution function of �X′
1� p −X∗

1� p� and define a∗
p by

�3�6� 1 −Qp�a∗
p� ≤

1
4p

� 1 −Qp�a∗
p−� ≥ 1

4p
�

Clearly a∗
p → ∞ since otherwise a∗

p ≤M and thus Qp�M� ≥ 1−1/�4p� would
hold for some M > 0 and infinitely many p’s; but then letting p → ∞ and
observing that Qp → H weakly where H is the distribution function of the
symmetrized random variable X1 −X∗

1 (X∗
1 is an independent copy of X1), it

follows that H�t� = 1 for t ≥ t0. That is, X1 −X∗
1 is bounded a.s., but then

by standard symmetrization inequalities [see, e.g., Loéve (1963), page 245], it
follows that X1 is also bounded a.s., which contradicts (2.5).

We claim that for p ≥ p0

�3�7� ap ≤ 2a∗
p�

We first show that the conclusion of the lemma follows then easily. Indeed,
suppose first that

�3�8� 1 −Qp

(
1
2
a∗
p

)
≤ 1
p
�

Then by the second relation of (3.6) the left side of (3.8) lies in the interval
�1/�4p��1/p�. Thus setting t = a∗

p/2 in (3.5) and applying Lemma 2.4 with
Yi =X′

i�p −X∗
i�p we obtain

�3�9�
1

24 ≤ 1
6p

(
1 −Qp

( 1
2a

∗
p

)) ≤ P
(

max
1≤i≤p

�X′
i�p −X∗

i�p

∣∣∣ ≥ 1
2a

∗
p

)

≤ 32P
(�S′

p� ≥ 1
8a

∗
p

) ≤ 256ρ′p/a
∗
p ≤ 512ρ′p/ap

by Markov’s inequality and (3.7). On the other hand, if (3.8) is not valid then
Lemma 2.4 shows that the third expression of (3.9) is greater than or equal
to 1/6 and (3.9) yields again the statement of Lemma 3.1.
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It remains to prove (3.7). We have for p ≥ p0,

P��X′
1� p� ≥ 2a∗

p� = P��X′
1� p� ≥ 2a∗

p� �X′
1� p −X∗

1� p� > a∗
p�

+P��X′
1� p� ≥ 2a∗

p� �X′
1� p −X∗

1� p� ≤ a∗
p�

≤ 1
4p

+P��X′
1� p� ≥ 2a∗

p� �X∗
1� p� ≥ a∗

p�

= 1
4p

+P��X′
1� p� ≥ 2a∗

p�P��X∗
1� p� ≥ a∗

p�

≤ 1
4p

+P��X′
1� p� ≥ 2a∗

p�P��X1� ≥ a∗
p�

≤ 1
4p

+ 1
2
P��X′

1� p� ≥ 2a∗
p��

where in the last step we used the fact that a∗
p → ∞ and thus X1/a

∗
p → 0 in

probability. Hence

P��X′
1� p� ≥ 2a∗

p� ≤
1

2p
�

Therefore, as λ ≥ 4, we have

P��X1� ≥ 2a∗
p�≤

1
2p

+P�X1 �=X′
1� p�=

1
2p

+P��X1�>aλp�≤
1

2p
+ 1
λp

<
1
p
�

which implies (3.7).

Lemma 3.2. There exists a constant C depending only on the sequence
�Xj� j ≥ 1� such that for all p ≥ 1 and λ ≥ 4,

�3�10� E�X′
1� p� ≤ Cσ ′

p�

Proof. It is known [see, e.g., Gnedenko and Kolmogorov (1954), page 173]
that if G is a distribution function with infinite second moment, then

∫
�t�≤x

�t�dG�t� = o

(∫
�t�≤x

t2 dG�t�
)1/2

as x→ ∞�

Thus in the case EX2
1 = ∞ we have E�X′

1� p�/σ ′
1� p → 0 as p → ∞; here, and

in the rest of this proof, the convergence is uniform in λ. If EX2
1 < ∞ then,

since X1 is nondegenerate by (2.5), E�X′
1� p�/σ ′

1� p has a positive finite limit as
p → ∞. Thus in all cases E�X′

1� p� ≤ Cσ ′
1� p for some constant C and since

σ ′
1� p/σ

′
p → 0 by Lemma 2.6, (3.10) is valid. ✷

4. Proof of Theorem 1. We fix an integer λ ≥ λ0 and for each integer
p ≥ 1 we define σ ′

p subject to the truncation of Xj at level aλp, as in (3.1)–
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(3.3). Throughout the remainder of the paper p will be restricted to integral
powers of 16, p = 16k, k = 1�2� � � � � Then we have either:

Case 1. lim infp→∞ σ ′
p/ap ≤ 10−5 log4 λ; or

Case 2. lim infp→∞ σ ′
p/ap > 10−5 log4 λ�

In Sections 4.1 and 4.2 we will construct in each of these two cases an
infinite sequence �nk� and centering and norming constants Ank

, Bnk
such

that in (1.8) the uniform distance of the distribution functions of the two
sides is at most C�log λ�−β for some positive constants C and β. The proof of
Theorem 1 will then be completed in Section 4.3.

4.1. Proof of Case 1. In this case the argument and the estimates are
similar to Dehling, Denker and Philipp (1986). Choose an infinite sequence
R0 of integers p = 16m such that

�4�1�1� sup
{
σ ′
p/ap� p ∈ R0

} ≤ 2 · 10−5 log4 λ�

We fix p ∈ R0 and apply Lemma 2.10 to the sequence �X′
i�p −EX′

i�p� i ≥ 1�.
We define nonoverlapping intervals

I0 = �0� �log λ�12��
Ii = ��log λ�12i� �log λ�12�i+1��� 1 ≤ i ≤N �= ��log λ�1/2� + 1

and set

bi = �σ ′
p�−2

∫
��S′

p�/σ ′
p∈Ii�

S′2
p dP� 0 ≤ i ≤N

and

B∗
j = ∑

0≤i≤j
bi� 0 ≤ j ≤N�

Lemma 4.1. We have

min
{
bj/B

∗
j� 1 ≤ j ≤N

} ≤N−1/2�

Proof. Suppose not; that is,

�4�1�2� bj/B
∗
j > N−1/2 for 1 ≤ j ≤N�

By (4.1.1) and Lemma 3.1, we have

�4�1�3�

2�log λ�−4 ≤ ρ′p
σ ′
p

= 1
σ ′
p

∫
��S′

p�/σ ′
p≤log12 λ�

�S′
p�dP+ 1

σ ′
p

∫
��S′

p�/σp>log12 λ�
�S′

p�dP

≤ B
∗1/2
0 + �log λ�−12



822 I. BERKES AND W. PHILIPP

and so

B∗
0 ≥ �log λ�−8�

By (4.1.2),

B∗
j+1 = B∗

j + bj+1 > B∗
j +N−1/2B∗

j+1�

that is,

B∗
j+1 > B∗

j�1 −N−1/2�−1

for 0 ≤ j ≤N− 1 and thus

B∗
N > B∗

0�1 −N−1/2�−N ≥ �log λ�−8 exp�
√
N� > 1

for λ ≥ λ0 by the choice of N. This contradicts the fact that B∗
N ≤ 1 by

definition and thus the lemma is proved. ✷

Choose a k with 1 ≤ k ≤N such that

�4�1�4� bk/B
∗
k ≤N−1/2 ≤ �log λ�−1/4�

We now choose the parameters in Lemma 2.10. Set

�4�1�5� g = �log λ�12�k+1�

and

�4�1�6� c = 2�log λ�−12� ψ = 1
2c�

Then

�4�1�7� �log λ�12 ≤ g ≤ exp
(�log λ�3/4)

if λ is sufficiently large and thus

�4�1�8� r ≤ g2c ≤ exp
(
2�log λ�3/4) = o�λ1/2� as λ→ ∞�

Also, g2c ≥ g ≥ �log λ�24 and thus for λ ≥ λ0,

�4�1�9� r ≥ g2c− 1 ≥ �log λ�12�

We now add the bounds provided by Lemma 2.10. In view of (4.1.6) and (4.1.7)
we obtain, similarly to (4.1.3),

2�log λ�−4 ≤ ρ′p
σ ′
p

= 1
σ ′
p

∫
��S′

p�/σ ′
p≤g�

�S′
p�dP+ 1

σ ′
p

∫
��S′

p�/σ ′
p>g�

�S′
p�dP

≤ u/σ ′
p + g−1 ≤ u/σ ′

p + �log λ�−12�

Thus

�4�1�10� σ ′
p/u ≤ �log λ�4�

Hence by (4.1.6), (4.1.9) and (4.1.10),

�4�1�11� σ ′
p

u
c1/2 ≤ 2�log λ�4�log λ�−6 = 2�log λ�−2
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and

�4�1�12� σ ′
p

τ
= σ ′

p

ur1/2
≤ �log λ�4�log λ�−6 = �log λ�−2�

Because of (4.1.4),

�σ ′
pv/u�2 ≤ �log λ�−1/4�

Thus the fourth term on the right-hand side of (2.23) does not exceed

Cδ�t�2+δ�σ ′
pv/u�2

(
σ ′
p

u
c−1/2

)δ
≤ Cδ�t�2+δ�log λ�−1/4�log λ�10δ

≤ Cδ�t�2+δ�log λ�−1/8

if δ ≤ 1/80. Hence adding all the terms in (2.23) we obtain from Lemma 2.10
for

�4�1�13� n = r�p+ p1/4�
and some τn�p > 0,

�4�1�14� ∣∣E exp�itτ−1
n�pS

′
n�p� − exp�−t2/2�∣∣ ≤ C��t�4 + 1��log λ�−1/40

for some constant C > 0 provided that p is so large that φ�p1/4� ≤ �log λ�−1

and κ�p3/4� ≥ �log λ�10. Now by (4.1.13), (4.1.8) and (2.6),

�4�1�15�
P�S′′

m�p �= 0 for some m ≤ n� ≤ nP��X1� > aλp�
≤ 2pr�λp�−1 ≤ �log λ�−1�

Thus by (4.1.14) we get, setting Sn = ∑
i≤n Xi and µn�p = ∑

i≤n EX
′
i�p�∣∣E exp�itτ−1

n�p�Sn − µn�p�� − exp�−t2/2�∣∣ ≤ 2C��t�4 + 1��log λ�−1/40�

Hence an application of Lemma 2.2 of Berkes and Philipp (1979) with T =
�log λ�1/280 yields that the Prohorov distance of the distribution of τ−1

n�p�Sn −
µn�p� and the standard normal distribution is at most C′�log λ�−1/300 for
some constant C′. Since the standard normal distribution function C satisfies
�C�x+ h� −C�x�� ≤ h for any real x and h > 0, it follows that

�4�1�16�
sup
x

∣∣∣∣P��Sn − µn�p�τ−1
n�p < x� − 1√

2π

∫ x

−∞
exp�−t2/2�dt

∣∣∣∣
≤ 2C′�log λ�−1/300�

Note also that (4.1.6) and the estimates (4.1.10)–(4.1.12) imply that con-
dition (2.35) of Lemma 2.11 is satisfied if λ ≥ λ0 and p is so large
that κ�p3/4� ≥ �log λ�10. Thus Lemma 2.11 implies for each ε > 0 and
α ≥ 90�1 − 2φ1/2�1��−1/2/ε

�4�1�17� P
(

max
m≤n

�S′
m�p� ≥ �1 + ε�τn�pα

)
≤ 10P��S′

n�p� ≥ τn�pα��
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Together with (4.1.15) this yields for each ε > 0 and α ≥ 90�1−2φ1/2�1��−1/2/ε,

�4�1�18�
P
(

max
m≤n

�Sm − µm�p� ≥ �1 + ε�τn�pα
)

≤ 10P��Sn − µn�p� ≥ τn�pα� + 11�log λ�−1�

This inequality will be used in the proof of Theorem 2.

4.2. Proof of Case 2. Fix λ ≥ λ0 and choose p so large that

�4�2�1� φ�p1/2� ≤ λ−2� p ≥ λ�

Set

�4�2�2� r = ��log λ�8�� n = r�p+ p1/2��
As in the proof of Lemma 2.10, we decompose S′

n�p = ∑
i≤n�X′

i�p−EX′
i�p� into

r blocks of length p each, separated by blocks of length q = p1/2 each; that is,
we write

S′
n�p =

r∑
j=1

Zj +
r∑

j=1

Z∗
j = Un +Vn�

where

Zj =
jp+�j−1�q∑

i=�j−1��p+q�+1

�X′
i�p −EX′

i�p�� Z∗
j =

j�p+q�∑
i=jp+�j−1�q+1

�X′
i�p −EX′

i�p��

By stationarity, Lemma 2.6 and (4.2.1), (4.2.2) we have, as in (2.25),

EV2
n ≤ rEZ∗2

1 + 4r2φ1/2�p�EZ∗2
1 ≤ 5rEZ∗2

1 ≤ 5rκ�p1/2�−1σ ′2
p ≤ rσ ′2

p �log λ�−3

if p is so large that κ�p1/2� ≥ 5�log λ�3. [Note that the first relation of (4.2.1)
implies φ�p� ≤ �log λ�−16 for λ ≥ λ0 and thus rφ1/2�p� ≤ 1.] Hence

�4�2�3� P
(�Vn� ≥ r1/2σ ′

p�log λ�−1) ≤ �log λ�−1�

On the other hand, Theorem 2 of Berkes and Philipp (1979) implies the
existence of independent random variables ξ1� � � � � ξr with the common law
H = � �S′

p� such that

�4�2�4� P
(�ξj −Zj� ≥ 6φ�p1/2�) ≤ 6φ�p1/2�� 1 ≤ j ≤ r

and since 6rφ�p1/2� ≤ λ−1 for λ ≥ λ0 by (4.2.1) and (4.2.2), we have

�4�2�5� P

(∣∣∣∣Un −
r∑

j=1

ξj

∣∣∣∣ ≥ λ−1
)
≤ λ−1�

We also observe that for λ ≥ λ0 and p ≥ p0, we have rσ ′2
p ≥ 1 as we are in

Case 2 and an → ∞. Thus (4.2.3) and (4.2.5) imply that the Lévy distance of
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� �S′
n�p/r

1/2σ ′
p� and � �∑r

j=1 ξj/r
1/2σ ′

p� is at most 2�log λ�−1. Hence applying
Lemma 2.9 for the ξj with

�4�2�6� ε = 1
log λ

and noting that the standard normal distribution function C satisfies �C�x+
h� −C�x�� ≤ �h�, we get

�4�2�7�

sup
x

∣∣∣∣P�S′
n�p/σ

′
pr

1/2 ≤ x� − 1√
2π

∫ x

−∞
exp�−t2/2�dt

∣∣∣∣
≤ sup

x

∣∣∣∣P
( r∑
j=1

ξj/σ
′
pr

1/2 ≤ x

)
− 1√

2π

∫ x

−∞
exp�−t2/2�dt

∣∣∣∣
+ 4�log λ�−1

≤ C�ε+Ln�ε�� + 4�log λ�−1 = C�5ε+Ln�ε���
where C is an absolute constant and

�4�2�8� Ln�ε� =
1

rσ ′2
p

∑
j≤r

∫
�x�≥εσ ′

pr
1/2
x2 dH�x� = �σ ′

p�−2
∫
x2≥ε2σ ′2

p r
x2 dH�x��

To estimate the last quantity, we apply Lemma 2.7 to the sequence Yi =
�X′

i�p − EX′
i�p�/σ ′

p, i = 1�2� � � � � Choose s so large that φ�s� ≤ 1/256. By
Lemma 2.8 we have σ ′

p−i�p ≤ 3σ ′
p�1 − 2φ1/2�1��−1/2 for all 1 ≤ i ≤ p, provided

that p is sufficiently large. Setting b = 1/2, D = 3�1 − 2φ1/2�1��−1/2 and
a0 = 64D, we see that condition (2.13) is satisfied with η = 1/128. Indeed,

P

(
�Tp −Ti� ≥

1
2
ba0

)
= P��Tp−i� ≥ 16D� ≤ 1

256D2

(
σ ′
p−i�p
σ ′
p

)2

≤ 1
256

�

Hence, for every A ≥ �64D�2 we have

�4�2�9� E4AT
2
p ≤ 4

127EAT
2
p + 64s2 128

127EA/16s2 max
1≤i≤p

Y2
i �

We set

h�A� = EAT
2
p� β = 4

127 �

�4�2�10� g�A� = 64s2128/127EA/16s2 max
1≤i≤p

Y2
i �

Then we can rewrite (4.2.9) in the form

h�4A� ≤ βh�A� + g�A��
Hence we obtain by induction for each k ≥ 1 and all A ≥ �64D�2,

�4�2�11� h�4kA� ≤ βkh�A� + 2g�A��
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Indeed, this is true for k = 1 and if it holds for k, then

h�4k+1A� ≤ βh�4kA� + g�4kA�
≤ β�βkh�A� + 2g�A�� + g�A�
≤ βk+1h�A� + 2g�A��

Set

�4�2�12� A = log4 λ

and let k be the largest integer with

2k ≤ 1
2 log λ�

Then by (4.2.12), (4.2.6) and (4.2.2),

4kA ≤ 1
4 log6 λ ≤ rε2�

Hence the last term in (4.2.8) (which equals Erε2T2
p) does not exceed, in view

of (4.2.11),

�4�2�13� h�4kA� ≤ βkh�A� + 2g�A� ≤ βk + 2g�A� ≤ �log λ�−2 + 2g�A�
for λ ≥ λ0. Thus it remains to estimate g�A�. Setting Zi�p = X′

i�p −EX′
i�p,

using the well-known identity [Billingsley (1995), page 275],

�4�2�14� EX1�X >M� =MP�X >M� +
∫ ∞

M
P�X > t�dt�

valid for nonnegative random variables X and noting that A/16s2 ≥ log2 λ for
λ ≥ λ0, we obtain

�4�2�15�

g�A� ≤ 65s2Elog2 λ max
1≤i≤p

Z2
i�p

σ ′2
p

≤ C1p

σ ′2
p

[
σ ′2
p log2 λP��Z1� p� ≥ σ ′

p log λ�

+
∫ ∞

σ ′2
p log2 λ

P�Z2
1� p > u�du

]

for some constant C1. Using (3.10) we can continue our estimates and obtain
for λ ≥ λ0, using (4.2.14) once more,

≤ C1p

σ ′2
p

[
σ ′2
p log2 λP

(
�X′

1� p� ≥
1
2
σ ′
p log λ

)

+
∫ ∞

σ ′2
p log2 λ

P

(
�X′

1� p� ≥
1
2

√
u

)
du

]

= 4C1p

σ ′2
p

∫
��1/4�σ ′2

p log2 λ≤X′2
1� p�

X′2
1� p dP(4.2.16)
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= 4C1p

σ ′2
p

∫
��1/4�σ ′2

p log2 λ≤X2
1≤a2

λp�
X2

1 dP

≤ C2p

a2
p log8 λ

∫
�C3ap log5 λ≤�X1�≤aλp�

X2
1 dP

≤ C2p

a2
p log8 λ

l∑
k=0

∫
�ap16k<�X1�≤ap16k+1�

X2
1 dP

since we are dealing with Case 2. Here C2 is a positive constant and

�4�2�17� l = �log16 λ� ≤ log λ�

where log16 denotes logarithm with respect to base 16. We now apply
Lemma 2.3 with

bn =
∫
�xn<�X1�≤xn+1�

X2
1 dP�

where xn is defined in (2.7). To check (2.9) we observe that

bN+1 + · · · + bN+l =
∫
�xN+1<�X1�≤xN+l+1�

X2
1 dP ≤ x2

N+l+1�1 −F�xN+1��

≤ 16l16−�N+l+1�x2
N+l+1

by (2.6). Hence by Lemma 2.2 the lim inf of the fraction in (2.9) equals 0, as l
is fixed. Recall now that p is of the form 16i and for p = 16i the last integral
in (4.2.16) equals bi+k. Thus by (4.2.15), (4.2.16), (4.2.17), Lemma 2.3 and (2.6)
we obtain for infinitely many p’s of the form p = 16i,

�4�2�18�
g�A� ≤ C2p

a2
p log8 λ

2l
∫
�ap/16<�X1�≤ap�

X2
1 dP

≤ 2C2p

a2
p log7 λ

a2
p�1 −F�ap/16�� ≤ 32C2�log λ�−7�

Hence by (4.2.7), (4.2.8), (4.2.6), (4.2.13) and (4.2.18) we have

�4�2�19� sup
x

∣∣∣∣P�S′
n�p/σ

′
pr

1/2 ≤ x� − 1√
2π

∫ x

−∞
exp�−t2/2�dt

∣∣∣∣ ≤ C3�log λ�−1

for some constant C3. Now as in Section 4.1 [cf. (4.1.15)] we have by (3.1),
(3.2), (2.6) and (4.2.2),

�4�2�20� P�S′′
m�p �= 0 for some m ≤ n� ≤ nP��X1� > aλp�

≤ 2r/λ ≤ �log λ�−1

and thus by (4.2.19) we get, setting µn�p = ∑
i≤n EX

′
i�p,

�4�2�21�
sup
x

∣∣∣∣P��Sn − µn�p�/σ ′
pr

1/2 ≤ x� − 1√
2π

∫ x

−∞
exp�−t2/2�dt

∣∣∣∣
≤ C4�log λ�−1

for some constant C4.
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Similarly to (4.1.18) we obtain in Case 2 the following maximal inequality:
For each δ > 0 and α ≥ 60�1 − 2φ1/2�1��−1/2/δ,

�4�2�22�
P
(

max
m≤n

�Sm − µm�p� ≥ �1 + δ�σ ′
pr

1/2α
)

≤ 3P��Sn − µn�p� ≥ σ ′
pr

1/2α� + 4�log λ�−1�

This will be used in the proof of Theorem 2.
We follow the pattern of the proof of Lemma 2.11 and (4.1.18), replacing τ

by σ ′
pr

1/2 and ε by δ. First as in (2.38) we obtain by (4.2.2) and the assumption
on α,

�4�2�23� P
(�Sm −Sh� ≥ 1

4δσ
′
pr

1/2α
) ≤ σ ′2

p /�σ ′2
p r� < 1/10�

Next as in (2.39) and (4.2.3) we get [see also the estimate for EV2
n preceding

(4.2.3)]

�4�2�24� P
(�Vh� ≥ 1

8δσ
′
pr

1/2α
) ≤ �log λ�−3 < 1/10�

Finally, since t ≤ r,

EU2
h ≤ rEZ2

1 + 4r2φ1/2�p1/2�EZ2
1 ≤ 5rσ ′2

p

since by (4.2.1) and (4.2.2), φ1/2�p1/2�r ≤ λ−1�log λ�8 < 1. Thus by αδ ≥ 60,

�4�2�25� P
(�Uh� ≥ 1

8δσ
′
pr

1/2α
)
< 1/10�

Now (4.2.23), (4.2.24), (4.2.25) and φ�1� < 1/4 imply that condition (2.13) of
Lemma 2.7 is satisfied with s = 1, b = δ, a = a0 = σ ′

pr
1/2α, η = 6/10 and we

obtain by Lemma 2.11 in analogy with relation (4.1.17),

�4�2�26� P
(

max
m≤n

�S′
m�p� ≥ �1 + δ�σ ′

pr
1/2α

)
≤ 3P��S′

n�p� ≥ σ ′
pr

1/2α��

The inequality (4.2.22) follows now from (4.2.26) and (4.2.20). ✷

4.3. Completion of the proof of Theorem 1. The results of Sections 4.1 and
4.2 show that for each λ ≥ λ0 there exist, regardless whether Case 1 or Case 2
holds, infinitely many different positive integers n and corresponding norming
and centering constants a∗

n and b∗n such that b∗n → ∞ and

sup
x

∣∣∣∣P��Sn − a∗
n�/b∗n ≤ x� − 1√

2π

∫ x

−∞
exp�−t2/2�dt

∣∣∣∣ ≤ C0�log λ�−γ�

where C0 and γ ≤ 1 are positive constants [see (4.1.16) and (4.2.21)]. Relation
b∗n → ∞ follows in Case 2 from the fact that σ ′

p ≥ ρ′p → ∞ by Lemma 3.1, while
in Case 1 we observe that u/σ ′

p ≥ �log λ�−4 by (4.1.10) and again σ ′
p → ∞.

Choosing the values λ = exp�k2/γ�, k = 1�2� � � � we can get an increasing
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sequence �nk� of positive integers and numbers Ank
, Bnk

�k = 1�2� � � �� such
that Bnk

→ ∞ and

�4�3�1�
sup
x

∣∣∣∣P��Snk
−Ank

�/Bnk
≤ x� − 1√

2π

∫ x

−∞
exp�−t2/2�dt

∣∣∣∣ ≤ 1
k2
�

k = 1�2� � � � �

This completes the proof of Theorem 1. ✷

5. Proof of Theorem 2. We shall deduce Theorem 2 from Theorem 1
by adapting an idea from Kuelbs and Zinn (1983), pages 522 and 523; the
maximal inequalities (4.1.18) and (4.2.22) obtained in Section 4 provide the
essential new ingredient required in the φ-mixing case. Since in (4.3.1) we
have Bnk

→ ∞, by passing to a further subsequence of �nk� we can assume
that Bnk

is increasing and

�5�1� P��Snk−1
−Ank−1

� ≥ k−1Bnk
� ≤ k−2� k = 1�2� � � �

and consequently

�5�2� �Snk−1
−Ank−1

�/Bnk
→ 0 a.s.

by the Borel–Cantelli lemma. Extend the sequence �Ank
� to a sequence

�Aj� j ≥ 1� by defining

Aj = Ank
j/nk� nk−1 < j ≤ nk�

Relations (4.1.18) and (4.2.22) and the linear growth of the sequence µm�p in
these maximal inequalities imply

�5�3�
P
(

max
nk−1<m≤nk

�Sm −Am� ≥ �1 + δ�Bnk
α
)

≤ 10P��Snk
−Ank

� ≥ Bnk
α� + 11k−2

for all δ > 0 and α ≥ 90�1 − 2φ1/2�1��−1/2/δ� Fix now 0 < ε < 1 and note that
by (5.3) and (4.3.1) we have for k ≥ k0

P
(

max
nk−1<m≤nk

�Sm −Am� ≥ �1 + ε���2 + ε� log k�1/2Bnk

)

≤ 10P��Snk
−Ank

� ≥ ��2 + ε� log k�1/2Bnk
� + 11k−2

≤ 20�1 −C���2 + ε� log k�1/2�� + 31k−2 = O�k−�1+ε/2��
and thus by the convergence part of the Borel–Cantelli lemma we get

�5�4� lim sup
k→∞

maxnk−1<m≤nk �Sm −Am�
Bnk

�2 log k�1/2
≤ 1 a.s.
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On the other hand, using (4.3.1), (5.1) and 1−C�x� ∼ �2π�−1/2x−1 exp�−x2/2�,
we obtain for any 0 < a < b < 1 and sufficiently large k,

P

(
a− k−1 <

�Snk
−Ank

� − �Snk−1
−Ank−1

�
Bnk

�2 log k�1/2
< b+ k−1

)

≥ P

(
a <

Snk
−Ank

Bnk
�2 log k�1/2

< b

)
− k−2

≥ C��2 log k�1/2b� −C��2 log k�1/2a� − 3k−2

≥ const.
1√

log k
exp�−a2 log k� − 3k−2 ≥ exp�−�1 − η� log k��

where η = �1−a2�/2. Thus applying the divergence part of the Borel–Cantelli
lemma to the φ-mixing sequence Snk

−Snk−1
we get, using also (5.2), that with

probability 1 the sequence

�5�5�
{

Snk
−Ank

Bnk
�2 log k�1/2

� k ≥ 1
}

has at least one limit point in the interval �a� b�. [Recall that the divergence
part of the Borel–Cantelli lemma continues to hold for φ-mixing sequences;
see Iosifescu and Theodorescu (1969), Corollary, page 6.] The same argument
applies for intervals �a� b� with −1 < a < b < 0 and thus almost surely the
set of limit points of the sequence (5.5) contains �−1�1�. Defining

Dm = Bnk
�2 log k�1/2� nk−1 < m ≤ nk

and using (5.4) it follows that almost surely the set of limit points of ��Sm −
Am�/Dm� m ≥ 1� is identical with the interval �−1�1� and also

�5�6� lim sup
k→∞

Snk
−Ank

Dnk

= 1� lim inf
k→∞

Snk
−Ank

Dnk

= −1 a.s.

To complete the proof of Theorem 2 it remains to verify (1.10); we shall
actually prove that lim supk→∞ �Snk

�/Dnk
�= 0 a.s. Assume on the contrary

that

�5�7� P
(

lim
k→∞

Snk
/Dnk

= 0
)
> 0

holds, then by the second relation of (5.6) we have

�5�8� Amk
/Dmk

→ 1

along some subsequence �mk� of �nk�. Since (4.3.1) and (5.1) continue to hold
along the subsequence �mk�, the proof of (5.6) yields

�5�9� lim sup
k→∞

Smk
−Amk

D∗
mk

= 1 a.s.�

where D∗
mk

= Bmk
�2 log k�1/2. Relations (5.7), (5.8) and �mk� ⊂ �nk� imply that

with positive probability we have �Smk
− Amk

�/Dmk
→ −1 and thus Smk

−
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Amk
< 0 for k ≥ k0 which contradicts to (5.9). This completes the proof of

Theorem 2. ✷
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