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COUPLING AND ERGODIC THEOREMS
FOR FLEMING–VIOT PROCESSES1

BY S. N. ETHIER AND THOMAS G. KURTZ

University of Utah and University of Wisconsin�Madison

Fleming�Viot processes are probability-measure-valued diffusion pro-
cesses that can be used as stochastic models in population genetics. Here
we use duality methods to prove ergodic theorems for Fleming�Viot
processes, including those with recombination. Coupling methods are also
used to establish ergodicity of Fleming�Viot processes, first without and
then with selection. A special type of selection known as symmetric
overdominance is treated by other methods.

1. Introduction. A Fleming�Viot process is a probability-measure-val-
ued Markov process in which the state of the process is interpreted as the
frequency distribution of the ‘‘types’’ of the individuals in a large population.
The type of an individual is identified with a point in a locally compact,

Ž .separable metric space E, r , and hence the state space for the process is
Ž .PP E , the set of Borel probability measures on E with the topology of weak

convergence. In this paper we are concerned with the ergodic properties of
Fleming�Viot processes.

Two forms of ergodic theorems are generally proved for Markov processes.
The first form typically states that there exists a unique stationary distribu-
tion for the process, that is, a unique probability distribution � on the state
space S of the process, such that if the Markov process has this distribution
as its initial distribution, then the process is stationary. The uniqueness of
the stationary distribution ensures that the stationary process X is ergodic
in the sense that the �-field of invariant events II, that is, the collection of

� Ž . 4 Ž �0, �.. � Ž . 4 � Ž .events of the form X � � G , G � BB S , such that X � � G � X t � �
4� G for all t � 0, includes only events of probability 0 or 1. The ergodic

theorem for stationary processes then implies that

1 t
1.1 lim f X s ds � f d� a.s.Ž . Ž .Ž .H Htt�� 0 S

1Ž .for all f � L � .
The second form of ergodic theorem is concerned with the asymptotic

behavior of the Markov process when the initial distribution is not the
stationary distribution. A typical theorem of this form would give conditions
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Ž .under which 1.1 holds for at least bounded continuous f. A slightly weaker
form would give conditions under which

1 t
1.2 lim E f X s ds � f d� , f � C S .Ž . Ž . Ž .Ž .H Htt�� 0 S

� Ž . � Ž Ž ..�If 1.2 holds, then lim E f X t � H f d� usually holds as well for allt �� S
Ž . �f � C S .
Ž . Ž . Ž .If 1.1 holds for all bounded continuous f, then 1.2 holds. If 1.2 holds for

all initial distributions, then � is the unique stationary distribution for the
�process. If S is compact and X is a Feller process that is, the semigroup

Ž . Ž .�corresponding to X maps C S into C S , then uniqueness of stationary
Ž .distributions implies 1.2 for all initial distributions.

There are a variety of approaches to proving ergodic theorems. Any sta-
tionary distribution � for a Markov process with generator A must satisfy

1.3 Af d�� 0, f � DD A ,Ž . Ž .H
S

which, using adjoint operator notation, says

1.4 A��� 0.Ž .
One approach to the first type of ergodic theorem is to prove uniqueness of
solutions of this adjoint equation. The proof of uniqueness is easy, for
example, in the case of irreducible finite-state Markov jump processes. Note

� Žthat if an explicit representation of A is used e.g., as a differential operator
.in the case of a diffusion process , then one must verify that any solution � of

Ž .1.3 is in the domain of the explicit representation.
A second approach is through renewal arguments, in particular the gener-

Ž . Žalized renewal arguments of Athreya and Ney 1978 and Nummelin 1978,
. Ž .1984 . When these arguments apply, one can conclude that 1.1 holds for all

1Ž . � Ž .initial distributions and all f � L � . Coupling methods Doeblin 1940 ;
Ž .�Griffeath 1976, 1978 provide a third approach. These methods provide one

� Ž .�of the basic approaches for particle systems Liggett 1985 and can be
� Ž . Ž .�applied to diffusions Lindvall 1983 ; Lindvall and Rogers 1986 . Coupling

methods also give a simple probabilistic proof of the renewal theorem
� Ž .�Athreya, McDonald and Ney 1978 . In their strongest form, coupling meth-

Ž . 1Ž .ods also give 1.1 for all initial distributions and all f � L � . Duality
Ž .arguments can be used to verify 1.2 . Duality methods were developed in the

� Ž .�context of particle systems Vasershtein 1969 and have been applied to
� Ž .prove ergodic theorems for Fleming�Viot processes Shiga 1982 ; Dawson

Ž . Ž .�and Hochberg 1982 ; Ethier and Griffiths 1990 .
Our primary concern in this paper is to develop coupling methods for

Fleming�Viot processes. This development is carried out in Sections 3 and 5.
We also review duality methods in Section 2 and use them to extend the

�previously known ergodicity results to models with recombination. For cer-
tain two-locus models, this extension already has been carried out by Ethier

Ž .�and Griffiths 1990 . The case of symmetric overdominance is considered in
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Section 4, where it is shown that the process formed by the sequence of
descending order statistics of the sizes of the atoms is an infinite-dimensional
ergodic diffusion.

A Fleming�Viot process can be characterized as the unique solution of the
martingale problem for a generator AA defined as follows. For 1 � i � j � m,

Žm. Ž m. Ž m� 1. Žm.define the sampling operators � : B E � B E by letting � f bei j i j
the function obtained from f by replacing x by x and renumbering thej i

� Ž . Ž 3. Ž3. Ž . Žvariables if necessary e.g., for f x , x , x � B E , � f x , x � f x ,1 2 3 12 1 2 1
. Ž3. Ž . Ž . Ž3. Ž . Ž .�x , x , � f x , x � f x , x , x and � f x , x � f x , x , x .1 2 13 1 2 1 2 1 23 1 2 1 2 2

ˆ� Ž .4 Ž .Let B be the generator of a Feller semigroup T t on C E . B is called
� Ž .4the mutation operator for the process and T t is given by a transition

Ž .function P t, x, � , that is,

1.5 T t f x � f y P t , x , dy ,Ž . Ž . Ž . Ž . Ž .H
E

Ž . � Ž .4 Ž . � Ž .4and in fact 1.5 extends T t to all of B E . For m � 1, define T t onm
Ž m.B E by

T t f x , . . . , xŽ . Ž .m 1 m

� ��� f y , . . . , y P t , x , dy ��� P t , x , dyŽ . Ž . Ž .H H 1 m 1 1 m m
E E

1.6Ž .

Žm. � Ž .4 Ž m.and let B denote the generator of T t on B E .m
Ž .Let � x , x , � be a transition function from E � E to E. For i � 1, . . . , m,1 2

Žm. Ž m. Ž m� 1.define the recombination operators H : B E � B E byi

H Žm. f x , . . . , xŽ .i 1 m�1

� f x , . . . , x , z , x , . . . , x � x , x , dz .Ž . Ž .H 1 i�1 i�1 m i m�1
E

1.7Ž .

We denote by 	� 0 the recombination intensity. Suppose E � E � ���� E1 N
� 4 Ž .and for I 	 1, . . . , N , define h : E � E � E by letting h x, y be theI I

Ž .element z � E such that z � x for i � I and z � y for i � I. If � x, y, � �i i i i
� 4Ý p 
 for some probability distribution p on the set of subsets I ofI h Ž x, y . II

� 41, . . . , N , then the resulting recombination will be called physical recombi-
nation.

Ž . Ž .For � in B E � E , the space of symmetric functions in B E � E , setsym

� Ž . Ž . ��� sup � x, y � � y, z and, for i � 1, . . . , m, define the selection op-x, y, z
Žm. Ž m. Ž m� 2 .erators K : B E � B E byi

K Žm. f x , . . . , xŽ .i 1 m�2

�� � x , x � � x , xŽ . Ž .i m�1 m�1 m�2� f x , . . . , x ,Ž .1 m2�

1.8Ž .

Ž .where 0
0 � 0. Note that the factor multiplying the function f in 1.8 is
nonnegative and bounded by 1. The function � is called the selection inten-
sity function.
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Ž m. Ž Ž .. Ž . ² m:For m � 1 and f � B E , define F � B PP E by F � � f, � �f f

H m f d�m, where �m denotes the m-fold product measure of �, and letE
mŽ . Ž Ž ..LL E 	 B PP E be the collection of functions of this form. Note that
mŽ . Ž Ž ..LL E is a subspace of B PP E closed under bounded pointwise conver-

Ž Žm..gence. For f � DD B , define AAF byf

² Žm. m�1: ² m: ² Žm. m:AAF � � � f , � � f , � � B f , �Ž . Ž .Ýf i j
1�i�j�m

m
Žm. m�1 m² : ² :� 	 H f , � � f , �Ž .Ý i

i�1
1.9Ž .

m
Žm. m�2 m m² : ² : ² :� 2� K f , � � f , � � �m f , � .Ž .Ý i

i�1

For a derivation and fuller explanation of this generator, see Ethier and
Ž .Kurtz 1987, 1993 .

THEOREM 1.1. Under the above assumptions on E, B, �, 	 and � , there is
Ž Ž ..for each initial distribution in PP PP E at most one solution of the martin-

gale problem for AA. If in addition we assume that

Ž1. 21.10 H : C E � C E ,Ž . Ž . Ž .1

then there is for each initial distribution exactly one solution. If the martin-
gale problem is well posed, then every solution has a version with continuous

Ž .sample paths in PP E .

Ž .The theorem is a minor modification of a result in Ethier and Kurtz 1987 .
Ž̂ .The assumption that B generates a Feller semigroup on C E is used in

the proof of uniqueness, as well as in the definition of BŽm.. Though the latter
operator can be avoided in the formulation of the Fleming�Viot process, it
plays a crucial role in Theorem 5.5 below, for example.

The structure of the generator suggests the existence of a dual process
with values in a space of functions. Note that the first, third and fourth terms
look like generators of jump processes, where a ‘‘jump’’ would be from

Ž m. Žm. Žm. Žm.f � B E to � f, H f or K f. We review the construction of thei j i i
function-valued dual process in the next section and apply it to the proof of an
ergodic theorem.

�2. A function-valued dual. Let E, B, �, 	 and � be as above but
Ž .�we do not assume 1.10 . Let M be a jump Markov process in N, the set

Ž .of positive integers, with transition intensities q � m m � 1 
2,m , m�1
Žq � 	m, q � 2�m and q � 0 otherwise unless of course l �m , m�1 m , m�2 m , l

.m . Let 0 � � � � � ��� be the sequence of jump times of M and let0 1
� , � , . . . be a sequence of random operators that are conditionally indepen-1 2
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dent given M and satisfy
�1

mŽm. �2.1 P � �� M � I , 1 � i � j � m ,Ž . � 4k i j �M Ž� �.�m , M Ž� .�m�14k kž /2
Žm. � �12.2 P � � H M � m I , 1 � i � mŽ . � 4k i �M Ž� �.�m , M Ž� .�m�14k k

and
Žm. � �12.3 P � � K M � m I , 1 � i � m.Ž . � 4k i �M Ž� �.�m , M Ž� .�m�24k k

Ž . Ž M Ž0.. Ž m.Given Y 0 � B E , define the � B E -valued process Y bym�1

Y t � T t � � � T � � � �Ž . Ž . Ž .M Ž� . k k M Ž� . k k�1 k�1k k�1

��� � T � Y 0 , � � t � � , k � 0.Ž . Ž .1 M Ž0. 1 k k�1

2.4Ž .

If Z is a solution of the martingale problem for AA and is independent of Y,
Ž m.then, for each m � 1 and f � B E ,

tm Ž .M t2.5 E f , Z t � E Y t , Z 0 exp � M s ds , t � 0,² : ² :Ž . Ž . Ž . Ž . Ž .H½ 5
0

Ž . Ž .where M 0 � m and Y 0 � f. The validity of this identity is proved in
Ž .Ethier and Kurtz 1987 .

The following lemma provides a useful estimate of the expectation on the
Ž . Ž .right-hand side of 2.5 showing in particular that it is finite .

Ž .LEMMA 2.1. Let M be as above. Then there exists a function F: N � 0,�
and a positive constant L such that

t Lt2.6 E exp � M s ds M 0 � m � F m e , m � 1, t � 0.Ž . Ž . Ž . Ž .H½ 5
0

Ž .PROOF. Denote by Q the operator associated with q , extended to thei j

Ž .space of possibly unbounded functions on N, and define F on N by F m �
1
Ž .m! , where 0 � 
� . Then there exists a positive constant L such that2

QF m � �mF mŽ . Ž .
1� m m � 1 F m � 1 � F m � 	m F m � 1 � F mŽ . Ž . Ž . Ž . Ž .Ž . Ž .2

� 2�m F m � 2 � F m � �mF mŽ . Ž . Ž .Ž .

 
1� m m � 1 m � 1 ! � m!Ž . Ž . Ž .Ž .Ž .2


 
� 	m m � 1 ! � m!Ž . Ž .Ž .Ž .2.7Ž .

 
� 2�m m � 2 ! � �m m!Ž . Ž .Ž .


 
1 �
� m m! � m � 1 1 � m � 	 m � 1 � 1Ž . Ž . Ž . Ž .Ž .2


 
�2� m � 1 m � 2 � �Ž . Ž .
� L

Ž .for all m � 1, where F 0 � 1 and the existence of L follows from the fact
that for m sufficiently large the term to the left of the inequality is negative.
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�Consequently, the optional sampling theorem implies that for �� inf t � 0:
Ž . 4 Ž .M t � z and M 0 � m,

t��
E exp � M s dsŽ .Hž /0

t��
� E F M t � � exp � M s dsŽ . Ž .Ž . Hž /0

t��
� F m � E QF M s � �M s F M sŽ . Ž . Ž . Ž .Ž . Ž .Ž .H

0

s
�exp � M r dr dsŽ .Hž /0

2.8Ž .

st��
� F m � LE exp � M r dr dsŽ . Ž .H Hž /0 0

t s��
� F m � L E exp � M r dr ds, t � 0,Ž . Ž .H Hž /0 0

and the lemma follows by Gronwall’s inequality. �

Ž .The duality identity 2.5 determines the one-dimensional distributions of
a solution of the martingale problem for AA in terms of the initial distribution.
Uniqueness of the one-dimensional distributions in turn implies uniqueness
of the finite-dimensional distributions and the Markov property of the solu-

� Ž . �tion. See Ethier and Kurtz 1986 , Theorem 4.4.2. Duality also gives a very
general ergodic theorem in the neutral case without recombination.

THEOREM 2.2. Let 	� 0 and �� 0, and let Z be a solution of the
Ž .martingale problem for AA. Suppose that there exists �� PP E such that

Ž . Ž . ² : Ž . � Ž .�lim T t f x � f ,� for all f � C E resp., f � B E and x � E. Then,t ��
m mŽ . � Ž .�for each m � 1 and f � C E resp., f � B E ,

m ² :2.9 lim E f , Z t � E Y � ,� ,² :Ž . Ž . Ž .m� 1
t��

Ž . Ž .where M 0 � m and Y 0 � f. If there exists a stationary distribution �, then
it is unique and

2.10 lim E F Z t � F � � d�Ž . Ž . Ž . Ž .Ž . H
t�� Ž .PP E

Ž Ž ..for all F � C PP E .

PROOF. Note that in the present case, M is a pure death process, so if
Ž .M 0 � m � 1, then after m � 1 jumps, M absorbs at 1. Therefore

m
lim E f , Z t² :Ž .
t��

² :� lim E T t � � Y � , Z 0 ; � � t ,Ž . Ž . Ž .m� 1 m�1 m�1
t��

2.11Ž .



COUPLING FLEMING�VIOT PROCESSES 539

� Ž .4 Ž .which by the ergodicity assumption on T t gives 2.9 in each case. Since
Ž . Ž .the right-hand side of 2.9 does not depend on Z 0 and since the collection of

m mŽ . ² : Ž .functions of the form F � � f , � , where m � 1 and f � C E , isf
Ž .convergence determining, if � is a stationary distribution, 2.10 follows. �

We next include recombination, but keep � � 0. Observe that
Ž . Ž .M Ž t . M Ž t .sup Y t, x is nonincreasing in t and inf Y t, x is nondecreas-x � E x � E

Žing. Ergodicity will follow if there exists a stationary distribution which is
.assured if E is compact and the difference of these quantities goes to zero as

t � � for an appropriate class of functions f.

THEOREM 2.3. Let �� 0 and let Z be a solution of the martingale problem
� . � �for AA. Suppose that there exists a Borel function � : 0,� � 0, 1 such that

� �2.12 sup sup P t , x , � � P t , y , � � � t , t � 0,Ž . Ž . Ž . Ž .
x , y�E Ž .��BB E

Ž . Ž m. Ž .and � t � 0 as t � �. Then, for each m � 1 and f � B E , if M 0 � m
Ž . Ž .and Y 0 � f , we have that lim Y t, x exists a.s. uniformly in x and ist ��

independent of x, and
m

2.13 lim E f , Z t � E lim Y t .² :Ž . Ž . Ž .
t�� t��

Ž .If there exists a stationary distribution �, then it is unique and 2.10 holds
Ž Ž ..for all F � C PP E .

� Ž . 4 � Ž . 4PROOF. Let � � inf t � 0: M t � 1 , 
 � inf t � � : M t � 2 and1 k k
� Ž . 4� � inf t � 
 : M t � 1 . Thenk�1 k

E sup Y � , x � inf Y � , x FFŽ . Ž .k�1 k�1 � kxx

� E sup Y 
 � , x � inf Y 
 � , x FFŽ . Ž .k k � kxx

�
�	 t� 	e sup T t Y � , x � inf T t Y � , x dtŽ . Ž . Ž . Ž .H k kž /

x0 x

2.14Ž .

� � sup Y � , x � inf Y � , x ,Ž . Ž .k kž /
xx

where
�

�	 t2.15 �� 	e � t dt � 1.Ž . Ž .H
0

Ž Ž . Ž ..It follows that lim sup Y t, x � inf Y t, x � 0 a.s. and hence thatt �� x x
Ž .Y t, x converges a.s., uniformly in x, to a limit that is independent of x,

Ž . Ž .which by 2.5 implies 2.13 . The second conclusion follows as in Theorem 2.2.
�
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� Ž .4We can weaken the ergodicity assumption on T t by imposing more
structure on the recombination. The fact that we need some additional
structure is clear from the observation that if

12.16 � x , y , � � � x , � � � y , �Ž . Ž . Ž . Ž .Ž .˜ ˜2

for some one-step transition function �, then the inclusion of recombination is˜
equivalent to changing the mutation operator to

˜2.17 Bf x � Bf x � 	 f z � f x � x , dz .Ž . Ž . Ž . Ž . Ž . Ž .Ž .˜H
E

˜It is simple to construct examples in which B is ergodic and B is not.
� . Ž m.Let 
 : E � E � 0,� be Borel measurable, and for m � 1, f � B E and

� �s � 0,� , define

� �2.18 � s � sup f x , . . . , x � f y , . . . , y : max 
 x , y � s .Ž . Ž . Ž . Ž . Ž .½ 5f 1 m 1 m i i
1�i�m

Note that

� �Žm .2.19 � s � � s , 1 � i � j � m , s � 0,� .Ž . Ž . Ž .� f fi j

Ž m.LEMMA 2.4. Suppose that for each m � 1 and f � B E ,

� �Žm .2.20 � s � � s , 1 � i � m , s � 0,�Ž . Ž . Ž .H f fi

and

� �2.21 � s � � u � t , s, du , t , s � 0,� � 0,� ,Ž . Ž . Ž . Ž . Ž . .HT Ž t . f f mm � �0, �

Ž . � . � � � �where � t, s, du is a transition function from 0,� � 0,� to 0,� . Then,m
Ž . � . � �for all t, s � 0,� � 0,� ,

� s � ��� � u � � , u , duŽ . Ž . Ž .H HY Ž t . Y Ž0. 0 M Ž0. 1 1 0
� � � �0, � 0, �2.22Ž .

� � � � , u , du ��� � t � � , s, du ,Ž . Ž .M Ž� . 2 1 2 1 M Ž� . k k1 k

where k � 0 is such that � � t � � .k k�1

Ž . Ž . � �REMARK 2.5. a Condition 2.20 will hold if for each x, x , y, y � E, one
Ž � .can construct random variables � and � with distributions � x, x , � and

Ž � .� y, y , � such that

2.23 P 
 � , � � 
 x , y � 
 x� , y� � 1.� 4Ž . Ž . Ž . Ž .
Ž . Ž .For example, if E � E � ���� E , 
 x, y � max 
 x , y and � cor-1 N 1� i� N i i i

responds to physical recombination, then the construction of the desired �
Ž .and � is immediate, and 2.20 holds.

1Ž . Ž . Ž Ž . Ž .. Ž .b If Bf x � �H f y � f x � dy , where �� 0, then for any 
,E2
Ž . Ž �� t
2 .m Ž Ž �� t
2 .m.� t, s, � can be taken to be 1 � e 
 � 1 � 1 � e 
 .m 0 s
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Ž . Ž .c Similarly, under the assumptions of Theorem 2.3, for any 
, � t, s, �m
Ž Ž ..m Ž Ž Ž ..m.can be taken to be 1 � � t 
 � 1 � 1 � � t 
 for s � 0 and 
 for0 � 0

s � 0.
Ž . Ž . �Ž . �Ž . Ž .d If E � R, Bf x � af x � bxf x , where a, b � 0, and 
 x, y �

� � Ž . Ž �b t . Ž .x � y , then � s � � se and hence � t, s, � can be taken to beT Ž t . f f mm


 .s expŽ�bt .
1� 1Ž . � � Ž . Ž Ž . Ž ..e If E � 0, 1 , Bf x � �H f z, x , x , . . . � f x , x , . . . dz and0 0 1 0 12

Ž . Ž � 4. Ž m.
 x, y � 1
 1 � min k � 0: x 	 y , then, for each m � 1 and f � B E ,k k
Ž . � Ž Ž Ž . �1 ..� Ž .we have � s � E � 1
 Z t � s , where Z t is the minimum ofT Ž t . f f m m

1m independent, mean � t, Poisson random variables.2
Ž . � �� �Ž . 4 � �� � ��f If E � 0, 1 � a , a , . . . : 0 � a � a � ��� 	 0, 1 � 0,� ,0 1 0 1

1 1
Bf x , a � � f z , x , x , . . . , 0, a , a , . . .Ž . Ž . Ž .Ž .ŽH 0 1 0 12 0

�f x , x , . . . , a , a , . . . dzŽ . Ž .Ž . .0 1 0 12.24Ž .
� �

� f x , x , . . . , a , a , . . .Ž . Ž .Ž .Ý 0 1 0 1�akk�0

ŽŽ . Ž .. Ž � Ž . Ž .4. Ž .and 
 x, a , y, b � 1
 1 � min a : x , a 	 y , b , then � s �k k k k k T Ž t . f
Ž Ž �1 .. Ž . Ž .� 1
 t � s . If the recombinant of x, a and y, b is obtained by select-f

Ž . Ž .ing all x , a with x � U and all y , b with y � U, for a randomk k k k k k
Ž . Ž .variable U, then 2.23 and hence 2.20 will be satisfied. Note that in this

model, x can be interpreted as the location on the chromosome of a mutationk
Žand a as the time since that mutant first appeared in the population i.e., itsk

.age . Recombination then consists of breaking the chromosomes at U and
combining the part to the left of U from one of the chromosomes with the
part to the right of U from the other.

Ž .PROOF OF LEMMA 2.4. The inequality follows easily from 2.4 by itera-
Ž . Ž . Ž .tively applying 2.21 followed by 2.19 or 2.20 , depending on � . �k

Ž . Ž .THEOREM 2.6. Suppose 2.20 and 2.21 hold with � , � , . . . as in Lemma1 2
Ž m. � Ž m. Ž . 42.4. Define C E � f � B E : lim � u � 0 and suppose that for
 u� 0 f
Ž m. Ž m. meach m � 1, C E is separating for PP E . For x � E and s � 0, define


Ž . � m Ž . 4U x, s � y � E : max 
 x , y � s and suppose for each compactm 1� i� m i i
m m Ž .set K 	 E , there exist 0 � s � � and x � E such that K 	 U x, s .m

Assume that the martingale problem for AA is well posed. If for each 
� 0
and s � 0,

lim E ��� I u � � , u , du ���Ž . Ž .H H � 
 , �� 0 M Ž0. 1 1 0
t�� � � � �0, � 0, �

� t � � , s, du � 0,Ž .M Ž� . k kk

2.25Ž .

� 4where k � max i: � � t , then there is at most one stationary distribution fori
the Fleming�Viot process with generator AA.
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Ž . Ž m.REMARK 2.7. a The assumption that C E is separating for each


� Ž . ² m: Ž m. 4m implies F � � f , � : f � C E , m � 1, 2, . . . is separating forf 


Ž Ž ..PP PP E .
Ž . Ž � �.b If for each m � 1, � t, s, 0, s � 1 for all t, s � 0 andm

2.26 � u � t , s, du � g t , s� � s� , t � 0, 0 � s � s� ,Ž . Ž . Ž . Ž . Ž .H m m
� �0, �

� . Ž . Ž .where � is nondecreasing on 0,� with � u � 0 for u � 0, 0 � g t, s � 1,m
Ž .and lim g t, s � 0 for each s � 0, then the expectation on the left-handt �� m

Ž .side of 2.25 is bounded by

� sŽ .
2.27 E min g � � � , sŽ . Ž .M Ž� . i i�1i� 1� 
 � �tŽ . i

Ž . Ž .and the limit in 2.25 holds. If we take � u � u, then the examples in
Ž . Ž . Ž . Ž .Remarks 2.5 b , d , e and f satisfy this condition.

Ž . � .c Assume that there exist a nondecreasing function � on 0,� with
Ž . Ž .� u � 0 for u � 0 and a sequence of Borel functions h t such thatm

2.28 � u � t , s, du � exp h t � s , t , s � 0Ž . Ž . Ž . Ž . Ž .Ž .H m m
� �0, �

and
� �

2.29 � h t � exp �� t dt � 0,Ž . Ž . Ž .Ý Hm m m m
0m�1

1 Ž . Ž . � 4where � � m m � 1 � 2	 the jump intensity for M and � is them m2
�stationary distribution for M. Implicitly, we are assuming that the integral

Ž . �in 2.29 exists and the series converges. Then, for � � t � � ,k k�1

��� � u � � , u , du ��� � t � � , s, duŽ . Ž . Ž .H H 0 M Ž0. 1 1 0 M Ž� . k kk� � � �0, � 0, �

k

� exp h t � � � h � � � � sŽ . Ž . Ž .ÝM Ž� . k M Ž� . i i�1k i�1½ 5
i�1

2.30Ž .

and the ergodic theorem for M implies that
k1

lim h � � �Ž .Ý M Ž� . i i�1i� 1kk�� i�1
� �

� � h t � exp �� t dt � 0,Ž . Ž .Ý Hm m m m
0m�1

2.31Ž .

Ž . Ž .so the right-hand side of 2.30 converges to zero, implying 2.25 .

Ž .PROOF OF THEOREM 2.6. By 2.22 , for each 
� 0,

� s � � 
 � � � ��� I uŽ . Ž . Ž . Ž .H HY Ž t . Y Ž0. Y Ž0. � 
 , �� 0
� � � �0, � 0, �2.32Ž .

� � , u , du ��� � t � � , s, du ,Ž . Ž .M Ž0. 1 1 0 M Ž� . k kk
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Ž . Ž . Ž m.so by 2.25 , if Y 0 � C E for some m � 1, then


2.33 lim E � s � 0.Ž . Ž .Y Ž t .
t��

Suppose Z and Z are stationary Fleming�Viot processes. Let K 	 E be1 2
compact, select x Žm. � Em and s � 0 for each m � 1 such that K m 	m

Ž Žm. . m m ŽU x , s and define H � E � K . Without loss of generality we canm m m
. Ž m.assume that s is increasing in m. Now fix m � 1 and f � C E . Thenm 


m m
E f , Z 0 � E f , Z 0² : ² :Ž . Ž .1 2

m m� E f , Z t � E f , Z t² : ² :Ž . Ž .1 2

Ž . Ž .M t M t� E Y t , Z 0 � E Y t , Z 0Ž . Ž . Ž . Ž .¦ ; ¦ ;1 2

Ž .M t
 
� 2 E � s � f E I , Z 0Ž . Ž .¦ ;Y Ž t . M Ž t . H 1ž M Ž t .

Ž .M t�E I , Z 0Ž .¦ ;H 2 /M Ž t .

2.34Ž .

m0
 
� 2 E � s � f E I , Z 0Ž . Ž .¦ ;Y Ž t . m H 1ž0 m0

m0�E I , Z 0Ž .¦ ;H 2 /m0


 
� 6 f P M t � m ,� 4Ž . 0

Ž .and the right-hand side of 2.34 can be made arbitrarily small by taking m0
large, K large and t large, which proves the uniqueness of stationary
distributions. �

3. Coupling neutral Fleming–Viot processes. Let B be the genera-
Ž .tor for a Markov process in a locally compact, separable metric space E, r .

˜Ž .Let E, r be another locally compact, separable metric space and let � :˜ 1
˜ ˜ ˜E � E, � : E � E and �: E � E � E be Borel measurable mappings such2

˜ ˜Ž .Ž . Ž .that � � � x , x � x for i � 1, 2. An operator B on B E and the map-i 1 2 i
pings � , � and � determine a Markov coupling for B if the martingale1 2

˜ ˜Ž . Ž .problem for B is well posed and, for each f � DD B , f � � � DD B andi
˜Ž . Ž .B f � � � Bf � � for i � 1, 2. In particular, if X is a solution of thei i

˜martingale problem for B, then X � � � X and X � � � X are solutions of1 1 2 2
˜the martingale problem for B. We say that B, � , � and � determine a1 2

successful Markov coupling for B if, in addition, for each solution X of the
˜� .D 0,� martingale problem for B, there exists a random time � such thatẼ

� Ž . Ž . 4P �� �, X �� t � X �� t for all t � 0 � 1.1 2
˜ �Typically, E � E � E, � and � are the projections on E � E i.e.,1 2

Ž . �� x , x � x for i � 1, 2 and � is the identity operator. For example, giveni 1 2 i
Ž .�� PP E and �� 0, define

13.1 Bf x � � f y � f x � dyŽ . Ž . Ž . Ž . Ž .Ž .H2
E
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and

1˜3.2 Bf x , x � � f y , y � f x , x � dy .Ž . Ž . Ž . Ž . Ž .Ž .H1 2 1 22
E

˜Then B, � , � , and � determine a successful Markov coupling for B, with �1 2
being the hitting time of the diagonal of E � E by the solution X of the

˜� .D 0,� martingale problem for B.E�E
˜For an example in which E is not E � E, see the paragraph following the

next one.
˜Returning to the general case, suppose B, � , � and � determine a1 2

˜� Ž . Ž .4Markov coupling for B and let D � x � E: � x � � x . Given a transition1 2
˜ ˜function � from E � E to E, define the transition function � from E � E to˜

Ẽ by

� x , y , G � I x , y I � z , z � � x , � y , dzŽ . Ž . Ž . Ž . Ž .Ž . Ž .˜ HD�D G 1 1
E

� I c x , y I � x , xŽ . Ž .Ž .HŽD�D . G 1 2
E�E

3.3Ž .

� � x , � y , dx � � x , � y , dx .Ž . Ž . Ž . Ž .Ž . Ž .1 1 1 2 2 2

Ž . Ž .Note that � z, z � D, so if x and y are in D, then � x, y, D � 1. Also, for˜
˜ �1Ž . Ž Ž .. Ž Ž . Ž . .all �� BB E and x, y � E, we have � x, y, � � � � � x , � y , � , so˜ i i i

Ž m. � 4 Ž . Ž Ž . Ž ..that if m � 1, g � B E , i � 1, 2 and f x , . . . , x � g � x , . . . , � x ,1 m i 1 i m
then

˜ Žm. Žm.3.4 H f x , . . . , x � H g � x , . . . , � xŽ . Ž . Ž . Ž .Ž .j 1 m�1 j i 1 i m�1

˜for all x , . . . , x � E and j � 1, . . . , m.1 m�1
˜ �1Ž . Ž . Ž . Ž .Define � : PP E � PP E for i � 1, 2 by � � � �� and define �: PP Eˆ ˆ ˆi i i

˜ �1Ž . Ž . Ž . Ž .� PP E � PP E by � � , � � � � � � . Let AA be the generator for theˆ 1 2 1 2
Ž . Ž .neutral �� 0 Fleming�Viot process in PP E with mutation operator B and

˜recombination given by 	 and �, and let AA be the generator for the neutral
˜ ˜Ž .Fleming�Viot process in PP E with mutation operator B and recombination

�given by 	 and �. We are implicitly assuming that B generates a Feller˜
ˆ ˜ ˆ ˜ ˜Ž . Ž . �semigroup on C E and that B generates a Feller semigroup on C E . Let Z

˜ ˜be a solution of the martingale problem for AA. Then, for i � 1, 2, Z � � � Z isˆi i
a Fleming�Viot process with mutation operator B and recombination given

˜by 	 and �, that is, AA, � , � and � determine a Markov coupling for AA. Moreˆ ˆ ˆ1 2
˜importantly, we will show that if B, � , � and � determine a successful1 2

˜Markov coupling for B, then, with some additional assumptions, AA, � , �ˆ ˆ1 2
and � determine a successful Markov coupling for AA.ˆ

LEMMA 3.1. Let Z be a neutral Fleming�Viot process with type space E,
� Ž .4 Ž .mutation operator B with corresponding semigroup T t on B E as in

Section 1 and recombination given by 	 and �. Let D 	 E be closed. Suppose
Ž . Ž . Ž .that T t I � I for all t � 0, lim T t I x � 1 for each x � E andD D t �� D

Ž . � Ž . 4� x, y, D � 1 for all x, y � D. Define �� inf t � 0: Z t, D � 1 . Then the
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following conclusions hold:

Ž . � 4 � 4 Ž .a P �� � � 0 and, a.s. on the event �� � , Z �� t, D � 1 for all
t � 0.

Ž . Ž . � 4b If 	� 0 i.e., there is no recombination , then P �� � � 1.
Ž . Ž . Ž .c If there exist t � 0 and 
� 0 such that T t I x � 
 for all x � E,D

� 4then P �� � � 1.

Ž .PROOF. Since Z has continuous sample paths in the weak topology we
can assume that Z is a solution of the martingale problem for AA with respect

� 4 Ž .to a right continuous filtration FF . Let �� 0, g � B E and h �t �, g
� ��t Ž . Ž . Ž .H �e T t g dt. If h � DD B , then Bh � � h � g . In general, the0 �, g �, g �, g

�Ž . Ž .4collection of pairs h , �g : g � B E is the bounded pointwise closure of�, g

�Ž . Ž .4 � Ž .h, �h � Bh : h � DD B since B E is the bounded pointwise closure of
Ž .� Ž .RR �� B and setting h � h it follows that�, g

² : ² :M t � h , Z t � h , Z 0Ž . Ž . Ž .h

t ² :� � h � g , Z sŽ . Ž .H ž
0

3.5Ž .
2Ž1. ² :�	 H h , Z s � h , Z s dsŽ . Ž .² :ž / /1

� 4 Ž .is an FF -martingale for all g � B E . If g extends to a continuous functiont
on the one-point compactification of E, h will be continuous, so M will haveh
continuous sample paths. If M has continuous sample paths, its quadratich
variation is

t 22 ² :² :3.6 h , Z s � h , Z s ds,Ž . Ž . Ž .H ž /
0

2Ž .and for each f � C R ,

² : ² :f h , Z t � f h , Z 0Ž . Ž .Ž . Ž .
t 2 �1 2 ² : ² :² :� h , Z s � h , Z s f h , Z sŽ . Ž . Ž .Ž .H ž /2ž

0

² :� � h � g , Z sŽ . Ž .ž
3.7Ž .

2 �Ž1. ² : ² :�	 H h , Z s � h , Z s f h , Z s dsŽ . Ž . Ž .² : Ž .ž / /1 /
� 4 Ž .is an FF -martingale. However, the collection of g for which 3.7 is at

Ž .martingale is closed under bounded pointwise convergence, so 3.7 is a
� ��t Ž .martingale for all g and h � h . Let g � I and h � H �e T t I dt.�, g D � 0 D

Ž . Ž .Note that T t I x is a nondecreasing function of t for each x � E, andD
Ž .hence h x is a nonincreasing function of � for each x � E. The fact that�

Ž . Ž . Ž . Ž . Ž .T t I x � I x for each x � E as t � 0 implies that lim h x � I xD D ��� � D
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� Ž .for each x � E. Assume that f � 0. Then, since � h � I � 0,� D

² : ² :V t � f h , Z t � f h , Z 0Ž . Ž . Ž .Ž . Ž .� � �

t 2 �1 2 ² : ² :� h , Z s � h , Z s f h , Z s² :Ž . Ž . Ž .Ž .H ž /� � �2ž
0

3.8Ž .
2 �Ž1. ² : ² :�	 H h , Z s � h , Z s f h , Z s dsŽ . Ž . Ž .² : Ž .ž /1 � � � /

� 4 Ž1.is an FF -submartingale. Now, letting �� � and observing that H I �t 1 D
I , we see thatD�D

V t � f Z t , D � f Z 0, DŽ . Ž . Ž .Ž . Ž .
t 2 �1� Z s, D � Z s, D f Z s, DŽ . Ž . Ž .Ž .Ž .H ž 2

0
3.9Ž .

2 ��	 Z s, D � Z s, D f Z s, D dsŽ . Ž . Ž .Ž .Ž . /
� 4 � 4is an FF -submartingale. Since FF is assumed right continuous,t t

˜Ž . Ž .V t � lim V s defines a right continuous process satisfyings� Q, s� t�
˜ ˜ ˜Ž . Ž . � Ž . � Ž . � �V t � V t a .s. for each t � 0 since V t � E V t FF �t

� Ž . � � Ž . �lim E V s FF � V t a.s. . By taking f to be strictly increasing ins� Q, s� t� t
˜Ž . Ž . Ž .3.9 , we see that Z t � lim Z s, D must exist and be right contin-s� Q, s� t�
Ž̃ . Ž .uous and satisfy Z t � Z t, D a.s. for each t � 0. Since D is closed, the

Ž .continuity of Z implies that Z �, D is upper semicontinuous and hence

˜3.10 P Z t , D � Z t for all t � 0 � 1.Ž . Ž . Ž .� 4
˜ ˜Ž . Ž .It follows that Z t � Z t, D a.s. for each t � 0, that is, Z is a modification of

2	 z ˜Ž . Ž . Ž . Ž Ž ..Z �, D . Take f z � e if 	� 0 and f z � z if 	� 0. Then f Z t is a
Ž Ž ..right continuous submartingale that is a modification of f Z t, D .

˜� Ž . Ž .4Let � � inf t � 0: Z t � � , 1 . If � is finite a.s., then, with f as above,� �

˜ ˜3.11 E f Z � , D � E f Z � � E f Z 0 � E f Z 0, DŽ . Ž . Ž . Ž . Ž .Ž .Ž . Ž .Ž .� �

Ž .and hence, using 3.10 ,

P Z � , D � 1� 4Ž .�

˜� P Z � � 1Ž .� 4�
3.12Ž .

� 2	ZŽ0 , D . � 2	� 2	 2	�E e � e 
 e � e , if 	� 0,Ž .Ž .
� ½ E Z 0, D � � 
 1 � � , if 	� 0.Ž . Ž .Ž .

Ž .The finiteness a.s. of � also follows from 3.9 by letting g be the solution on�

� �0, 1 of

1 � � �2 23.13 z � z g z � 	 z � z g z � z , g 0 � 0, g 0 � 0,Ž . Ž . Ž . Ž . Ž . Ž . Ž .2
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and observing that g is bounded and

E g Z � , D � E g Z 0, DŽ . Ž .Ž .Ž .�� �3.14 E � � .Ž . � �

Ž .Finally, the right-hand side of 3.12 is less than or equal to zero unless
� 2	ZŽ0, D .� 2	� Ž .E e � e . If we know that sup Z t, D � 0, then the strongt � 0

Ž . Ž .Markov property and 3.12 imply that there is positive probability of Z �, D
� Ž .4hitting 1. However, the assumptions on T t and � imply that the dual

Ž . Ž . M Ž t .process Y with Y 0 � I satisfies Y t � I for all t � 0 and hence thatD D

Ž .M t² :3.15 E Z t , D � E T t � s I , Z 0 , t � 0,Ž . Ž . Ž . Ž .t D

where s is the time of the last jump in the dual process before time t. Sincet
Ž . Ž . Ž .T t I x � 1 as t � � for each x, the right-hand side of 3.15 will beD

� Ž . 4positive for some t sufficiently large, and hence P Z t, D � 0 � 0, giving
Ž . Ž . Ž .the first conclusion in part a . The second conclusion in part a uses 3.9 .

Ž . Ž .Under the assumptions of part b , the right-hand side of 3.15 converges to
� Ž .�1, so given 0 � �� 1, there exists t such that E Z t, D � 1 � � and hence

' '� Ž . 4 Ž .P Z t, D � 1 � � � 1 � � . Consequently, by 3.12 ,

.2	 Ž1� � 2	� 2	 2	�'
 'e 1 � � � e 
 e � e , if 	� 0,Ž .Ž .Ž .�� 43.16 P �� � �Ž . 2� '1 � � � � 
 1 � � , if 	� 0,Ž .Ž .ž /
Ž .and since � is arbitrary, part b follows.

Ž .Finally, under the uniformity assumption in part c , the above calcula-
� 4tions give a lower bound on P �� � that is independent of the initial

distribution. Consequently, the strong Markov property and a renewal argu-
ment give the desired conclusion. �

˜Ž .If there is a successful Markov coupling B, � , � , � for the mutation1 2
˜� Ž . Ž .4operator B with D � x � E: � x � � x a closed set satisfying the1 2

Ž . Ž . Žconditions of parts b or c of the lemma with respect to the semigroup
˜ ˜� Ž .4 .T t corresponding to B , it is clear how to construct a successful coupling

for the neutral Fleming�Viot process. Clearly, these conditions hold for the
Ž . Ž . �example defined in 3.1 and 3.2 but in this case the resulting ergodic

Ž .theorem has already been proved by Shiga 1990 ; see also Ethier and
Ž .� Ž .Griffiths 1993 . See Lindvall and Rogers 1986 for a coupling for multidi-

mensional diffusion processes.

˜THEOREM 3.2. Suppose that the martingale problem for AA, the neutral
Fleming�Viot generator with mutation operator B and recombination given by

˜Ž .	 and �, is well posed. Assume that B, � , � , � determines a successful1 2
Ž .Markov coupling for B and that � is defined by 3.3 . Suppose that the˜

˜martingale problem for AA, the neutral Fleming�Viot generator with mutation
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˜operator B and recombination given by 	 and �, is well posed. Then the˜
following conclusions hold.

Ž .a There exists at most one stationary distribution for the Fleming�Viot
process with generator AA.

˜Ž . Ž .b If 	� 0, then AA, � , � , � determines a successful Markov couplingˆ ˆ ˆ1 2
for AA, where � , � and � are defined as in the paragraph preceding Lemmaˆ ˆ ˆ1 2
3.1.

˜ ˜Ž . Ž . Ž .c If there exist t � 0 and 
� 0 such that T t I x � 
 for all x � E,D
˜Ž .then AA, � , � , � determines a successful Markov coupling for AA.ˆ ˆ ˆ1 2

˜Ž . Ž . Ž . Ž .PROOF. Given � , � � PP E , let �� � � , � � PP E , so that � � � �ˆ ˆ1 2 1 2 i i
˜ ˜for i � 1, 2. Let Z be a solution of the martingale problem for AA starting from

˜ ˜� Ž . 4� and let Z � � � Z for i � 1, 2. By Lemma 3.1, �� inf t � 0: Z t, D � 1 isˆi i
˜� 4 Ž .finite with positive probability and, a.s. on �� � , Z �� t, D � 1 for all

˜ �1 ˜� 4 Ž . Ž . Žt � 0. Consequently, a.s. on the event �� t , Z t, G � Z t, � G � Z t,1 1
�1 ˜ �1 ˜ �1. Ž . Ž . Ž . Ž .D � � G � Z t, D � � G � Z t, � G � Z t, G for all G � BB E , and1 2 2 2

hence

� 43.17 P Z t � Z t � P �� t , t � 0.� 4Ž . Ž . Ž .1 2

� 4 Ž .It follows that for t satisfying P �� t � 0, the distributions of Z t and1
Ž .Z t cannot be mutually singular. However, if there exists more than one2

stationary distribution for AA, then there exist two mutually singular station-
Ž . Ž .ary distributions. See Lemma 5.3 below. This contradiction verifies part a .

Ž . Ž . � 4 Ž .Under the assumptions of parts b and c , P �� � � 1, so 3.17 implies
that the coupling is successful. �

The usual application of a successful coupling is to prove an ergodic
theorem for the coupled process. If there is a stationary distribution for the
process, then existence of a successful coupling ensures that the stationary
distribution is unique and implies asymptotic stationarity for the process
starting from any initial distribution. Since for the neutral Fleming�Viot
process, duality gives ergodicity under much more general conditions, our
primary interest in the above coupling is as a first step in constructing a
coupling for the Fleming�Viot process with selection, a setting in which
duality appears to give ergodicity results in only very limited cases. Even in
the neutral case, however, when the above coupling exists, it gives stronger
ergodicity results than the duality argument does.

Ž . Ž .THEOREM 3.3. Suppose that the conditions of Theorem 3.2 b or c are
satisfied and that there exists a stationary distribution � for the Fleming�Viot

Žprocess. If 	� 0, the existence of a stationary distribution for the mutation
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.process implies the existence of �. Then, for each solution Z of the martin-
gale problem for AA,

1 t
3.18 lim F Z s ds � F � � d� a.s., F � B PP EŽ . Ž . Ž . Ž . Ž .Ž . Ž .H Htt�� Ž .0 PP E

and

3.19 lim sup P Z t � G �� G � 0.� 4Ž . Ž . Ž .
t�� Ž Ž ..G�B PP E

PROOF. Suppose that Z and Z are solutions of the martingale problem1 2
Ž Ž ..for AA with initial distributions � , � � PP PP E . The coupling inequality1 2

Ž .3.17 implies

� 43.20 P Z t � G � P Z t G � P �� t , t � 0,� 4 � 4Ž . Ž . Ž .1 2

˜ ˜where � is the coupling time for a solution Z of the martingale problem for AA

˜� Ž Ž .. 4 Ž . Ž .with P � Z 0 � � � � for i � 1, 2. Taking � �� in 3.20 gives 3.19 ,î i 2
Žand by the successful coupling and the ergodicity of Z in the stationary2

.process sense, by virtue of the uniqueness of stationary distributions , we
have

1 1t t
lim F Z s ds � lim F Z s dsŽ . Ž .Ž . Ž .H H1 2t tt�� t��0 0

3.21Ž .
� F � � d� a.s.Ž . Ž .H

Ž .PP E

Ž .and 3.18 follows. �

4. An ergodic theorem for the unlabeled infinitely-many-alleles
diffusion model with symmetric overdominance. A Fleming�Viot pro-
cess Z with type space E and mutation operator B of the form

14.1 Bf x � � f y � f x Q x , dy ,Ž . Ž . Ž . Ž . Ž .Ž .H2
E

where �� 0 and Q is a one-step transition function for a Markov chain in E
such that

� 44.2 Q x , y � 0, x , y � E,Ž . Ž .
is sometimes referred to as the infinitely-many-alleles diffusion model, since

Ž . � Ž .�by 4.2 every mutant allele is new. It is known Ethier and Kurtz 1987 that

4.3 P Z t � PP E for all t � 0 � 1,� 4Ž . Ž . Ž .a

Ž . � Ž . 4where PP E � �� PP E : � is purely atomic .a
Let

�

4.4 � � p � p , p , . . . : p � p � ��� � 0, p � 1Ž . Ž . Ý� 1 2 1 2 i½ 5
i�1
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and

�

4.5 � � p � p , p , . . . : p � p � ��� � 0, p � 1 ,Ž . Ž . Ý� 1 2 1 2 i½ 5
i�1

�� �so that � is the closure of � in 0, 1 and is therefore compact. Define � :� �

Ž . Ž . Ž .PP E � � by letting � � � p if p is the size or mass of the ith largest� i
Ž .atom of � or 0 if � has fewer than i atoms for each i � 1, and note that

Ž Ž ..� PP E � � . In some applications it is sufficient to consider the processa �

� � Z, which keeps track of the allele frequencies but not the alleles to which
Žthey correspond. For this reason we call it the unlabeled infinitely-many-

.alleles diffusion model.
Ž .In the neutral case with no recombination, Ethier and Kurtz 1987

� .showed that � � Z can be characterized as the unique solution of the C 0,���
martingale problem for

� 2 �1 � 1 �
4.6 G � p 
 � p � � pŽ . Ž .Ý Ýi i j j i2 � p � p 2 �pi j ii , j�1 i�1

Ž . Ž .with DD G taken to be the subalgebra of C � generated by 1, � , � , . . . ,� 2 3
Ž . � m � Ž .where � p � Ý p . By convention, sums in 4.6 are evaluated on �m i�1 i �

�and extended to � by continuity.�

In the presence of selection, however, � � Z is ordinarily non-Markovian.
�Nevertheless, in one important case, namely, heterozygote advantage known

Ž .�as symmetric overdominance or heterosis; see Watterson 1977 or disadvan-
tage, the Markov property of � � Z is preserved. Fix a real constant � , let D
be the diagonal of E � E and consider the selection intensity function

4.7 � x , y � � I x , y ;Ž . Ž . Ž .˜ D

�� 0 means heterozygote advantage and �� 0 means the opposite. We
begin by showing that � � Z can be characterized as the unique solution of the

� .C 0,� martingale problem for��

� �
4.8 G � G � � p p � � pŽ . Ž .Ž .Ý� i i 2 �pii�1

Ž . Ž .with DD G � DD G .�

Ž .LEMMA 4.1. G is closable in C � and its closure generates a Feller� �

� Ž .4 Ž . � .semigroup T t on C � . In particular, the C 0,� martingale problem� � ��
for G is well posed.�

� �Ž . Ž .PROOF. Denote by G the action of 4.8 on DD , the subspace of C �� �

Ž .consisting of all functions of the form F� � , . . . , � , where k � 1, m ,m m 11 k
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2Ž k .. . . , m � 2, and F � C R , and note thatk

�G F� � , . . . , �Ž .� m m1 k

k
1� m m � � � � F � � , . . . , �Ž .Ž .Ý i j m �m �1 m m z z m m2 i j i j i j 1 k

i , j�14.9Ž .
k

� G � F � � , . . . , �Ž .Ý � m z m mi i 1 k
i�1

� Ž .and G 	 G . Letting a p denote for each p � � the infinite-dimensional� � �

Ž . Ž .square matrix whose i, j th entry is p 
 � p for i, j � 1, 2, . . . , we findi i j j
that

G� exp ��� 
2 fŽ .Ž .� 2

� exp ��� 
2 G f � G� exp ��� 
2 fŽ . Ž .Ž .2 � � 2

² :� grad exp ��� 
2 , a grad fŽ .2

1 ² :� exp ��� 
2 Gf � � grad � , a grad fŽ . � 42 224.10Ž .
� G� exp ��� 
2 fŽ .Ž .� 2

1 ² :� � exp ��� 
2 grad � , a grad fŽ .2 22

� exp ��� 
2 G � c fŽ . Ž .2

Ž . ² : 2for each f � DD G , where � , � denotes the inner product in l and c �
�Ž . Ž . Ž . Ž .exp �� 
2 G exp ��� 
2 � C � . We know that RR �� G is dense in2 � 2 �

Ž . � Ž .� 
 
C � for every �� 0 cf. Ethier and Kurtz 1981 . Let �� c . Then��

Ž . Ž .RR �� G � c is dense in C � by the bounded perturbation theorem, hence�
�Ž . Ž . Ž . Ž . Ž .RR �� G is dense in C � by 4.10 and finally RR �� G is dense in C �� � � �

� Ž . Ž .since G 	 G . Since DD G is dense in C � by Stone�Weierstrass and G� � � � �

� Ž .�is dissipative cf. Ethier and Kurtz 1981 , the first conclusion of the lemma
follows by the Hille�Yosida theorem. The second conclusion is a consequence

� Ž . �of this Ethier and Kurtz 1986 , Theorem 4.4.1 . �

PROPOSITION 4.2. Let Z be a Fleming�Viot process with type space E,
Ž . Ž .mutation operator B satisfying 4.1 and 4.2 , no recombination, and selec-

Ž . � .tion intensity function � given by 4.7 . Then � � Z solves the C 0,�˜ ��
martingale problem for G .�

� Ž .�PROOF. Denote the generator of Z by AA see 1.9 . Let k � 1, m , . . . , m1 k
Ž m.� 2 and m � m � ����m . Define f � B E to be the indicator function of1 k

Ž . mthe set of x , . . . , x � E for which x � ��� � x , x � ��� � x ,1 m 1 m m �1 m �m1 1 1 2

. . . , x � � � � � x . Thenm � � � ��m �1 m �� � ��m1 k�1 1 k

² m:4.11 F � � f , � � � ��� � � �Ž . Ž . Ž . Ž .Ž .f m m1 k
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and

k mi
AAF � � � � � � � �Ž . Ž . Ž .Ž . Ž .Ý Łf m �1 mi lž /2 l : l	ii�1

� m m � � � � � �Ž . Ž .Ž . Ž .Ý Łi j m �m �1 mi j l
l : l	i , j1�i�j�k

km�m� � � � �Ž .Ž .Ł m lž /2 2 l�14.12Ž .
k

� � m � � � � � �Ž . Ž .Ž . Ž .Ý Łi m �1 mi l
l : l	ii�1

k

� �m� � � � � �Ž . Ž .Ž . Ž .Ł2 m l
l�1

� G � ��� � � �Ž . Ž .Ž .� m m1 k

Ž .for all �� PP E , and the result follows. �

� Ž .�It is known Ethier and Kurtz 1981 that the diffusion in � with�

Ž .generator G has a unique stationary distribution � � PP � and is re-0 �

versible with respect to � . The probability measure � is known as the0 0
� Ž .�Poisson-Dirichlet distribution with parameter � Kingman 1975 , and

Ž . Ž .� � � 1. Let us define � � PP � by0 � � �

4.13 � dp � exp �� p � dp 
 exp �� d� .Ž . Ž . Ž . Ž . Ž .Ž . H� 2 0 2 0
��

The main result of this section is the following strong ergodic theorem. A
more general result can be proved using the methods of Section 5, but the
present approach has the advantage of simplicity.

Ž .THEOREM 4.3. Let P t, p, dq denote the transition function correspond-�

� Ž .4 � Ž .4ing to the semigroup T t of Lemma 4.1. Then � is stationary for T t� � �

and

� �4.14 lim sup P t , p , � � � � � 0, p � � .Ž . Ž . Ž .� � �
t�� Ž .��BB ��

� Ž .4In particular, � is the unique stationary distribution for T t .� �

Ž .PROOF. As already noted in 4.10 ,

1 ² :4.15 G f � Gf � � grad � , a grad fŽ . � 22

Ž . Ž .for all f � DD G , so the stationarity of � in fact, reversibility follows by a�

Ž . �result of Fukushima and Stroock 1986 . Alternatively, see Ethier and Kurtz
Ž . � Ž .1994 , Section 4. The strong ergodicity 4.14 will follow from a lemma of
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Ž .Shiga 1981 , provided we can show that, for some t � 0,0

4.16 P t , p , � � P t , p , � � � � � , p � � ,Ž . Ž . Ž .� 0 0 0 0 � �

where � denotes mutual absolute continuity.
Ž . ŽAgain appealing to Fukushima and Stroock 1986 or just using the Gir-

.sanov transformation , we have

P t , p , �Ž .�

t
� E I exp h X t � h X 0 � g X s dsŽ . Ž . Ž .Ž . Ž . Ž .Hp �X Ž t .� �4 ½ 5

0

4.17Ž .

for all t � 0 and p � � , where X is the diffusion in � with generator G,� �
1 1² : �h � �� and g � Gh � grad h, a grad h . Alternatively, see Dawson22 2

Ž . � Ž .1978 . This gives the first equivalence in 4.16 for all t � 0. The third0
Ž .equivalence is immediate from 4.13 , and the second holds for all t suffi-0

ciently large, because

4.18 P t , p , dq �� t , p , q � dqŽ . Ž . Ž . Ž .0 0

Ž . Ž .for a function � on 0,� � � � � with the property that � t, p, q � 1 as� �

Ž . � Ž .�t � �, uniformly in p and q; see Ethier 1992 or Griffiths 1979 . �

5. Coupling and an ergodic theorem for Fleming–Viot processes
with selection. Construction of a coupling for the Fleming�Viot process
with selection does not seem to be as simple as in the neutral case. In fact, we
use the neutral coupling and Dawson’s Girsanov-type formula to give condi-

Ž .tions under which a successful coupling not necessarily Markov exists. The
Ž .following lemma is suggested by work of Athreya and Ney 1978 and Num-

Ž .melin 1978 .

Ž .LEMMA 5.1. Let � x, � be a one-step transition function on a measurable
Ž . Ž . Žstate space S, SS and let � x, y, � be transition function from S � S, SS �

. Ž . � �SS to S, SS . Let � : S � S � 0, 1 be SS � SS-measurable and satisfy

5.1 � x , � � � y , � � � x , y � x , y , � , x , y � S, �� SS .Ž . Ž . Ž . Ž . Ž .
� 4 � 4Let X and Y be independent Markov chains with one-step transitionk k

function �. If
�

5.2 � X , Y � � a.s.,Ž . Ž .Ý k k
k�0

then there exists a probability space on which is defined a Markov chain
˜ ˜ ˜ ˜�Ž .4 � 4 � 4 � 4X , Y such that X has the same distribution as X , Y has the samek k k k k

� 4distribution as Y and there exists a random variable 0 � �� � a.s. suchk
˜ ˜that k � � implies X � Y .k k

Ž . Ž . ŽPROOF. Assume without loss of generality that � x, x, � � � x, � , � x,
. Ž . Ž . Ž . Ž . Ž .x � 1, � x, y, � � � y, x, � , � x, y � � y, x and, for x 	 y, � x, y �

1 1� Ž . Ž .. Replacing � x, y by � x, y � if x 	 y does not affect the validity of2 2
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Ž . � Ž . Ž .5.2 . For each y � S, define a transition function � from S, SS to S, SS byy

� x , �Ž .y

� x , � � � x , y � x , y , � 
 1 � � x , y , if x 	 y ,Ž . Ž . Ž . Ž .Ž . Ž .
� ½ � x , � , if x � y.Ž .

5.3Ž .

Ž . Ž .Define the transition function � from S � S, SS � SS to S � S, SS � SS by˜

� x , y , � � � � � x , y � x , y , � � �Ž . Ž . Ž .˜ 1 2 1 2

� 1 � � x , y � x , � � y , � .Ž . Ž . Ž .Ž . y 1 x 2

5.4Ž .

˜ ˜�Ž .4 Ž .Let X , Y be a Markov chain with one-step transition function � x, y, �˜k k
˜ ˜�Ž .4 � 4 � 4and with initial distribution that of X , Y . Then X and Y are Markovk k k k

chains with one-step transition function �. Intuitively, at the kth transition a
˜ ˜Ž .coin is flipped which is heads with probability � X , Y . If heads comesk�1 k�1

˜ ˜ ˜ ˜Ž .up, then X � Y and both have conditional distribution � X , Y , � . Ifk k k�1 k�1
˜ ˜tails comes up, X and Y are conditionally independent with conditionalk k

˜ ˜Ž . Ž . �distributions � X , � and � Y ,� , respectively. Let �� min k � 0:˜ ˜Y k�1 X k�1k� 1 k�1

˜ ˜ 4 � 4X � Y . We want to show that P �� � � 1.k k
Ž . Ž . Ž .First note that, for each x, y � S, � x, � � � x, � and, letting f x, zy y

Ž . Ž Ž ..denote the Radon�Nikodym derivative, f x, z � 1
 1 � � x, y if x 	 y,y
Ž .and f y, z � 1. By the Markov property and the definition of �, we have for˜y

each m � 1,

� 4P �� m � 1

� E I��� m�14

˜ ˜� E 1 � � X , Yž /m m

˜ ˜� E 1 � � X , Yž /ž /m� 1 m�1

˜ ˜� 1 � � x , y � X , dx � Y , dyŽ .Ž . Ž . Ž .˜ ˜HH m m Y m�1 m X m�1 mm� 1 m�1
E E

5.5Ž .

˜ ˜� E 1 � � X , Yž /ž /m� 1 m�1

˜ ˜� 1 � � x , y f X , x f Y , yŽ .Ž . Ž . Ž .˜ ˜HH m m Y m�1 m X m�1 mm� 1 m�1
E E

˜ ˜� X , dx � Y , dy .Ž . Ž .m� 1 m m�1 m
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Continuing in this way, we see that

m

� 4P �� m � 1 � E 1 � � X , YŽ .Ž .Ł k k
k�0

�
m�1

f X , X f Y , Y ,Ž . Ž .Ł Y k k�1 X k k�1k k
k�0

5.6Ž .

�Ž .4where X , Y is as in the statement of the lemma. Observe thatk k

m�1

5.7 L � f X , X f Y , YŽ . Ž . Ž .Łm Y k k�1 X k k�1k k
k�0

Ž .is a martingale empty products are 1 and

m�1

5.8 L � exp 4 � X , Y , m � 0.Ž . Ž .Ým k kž /
k�0

1� Ž .Here, we are using the assumption that � x, y � when x 	 y, together2
12 uŽ . �with the inequality 1
 1 � u � e for 0 � u � .2

� m Ž . 4 Ž .For c � 0, let � � min m � 0: Ý � X , Y � c and note that by 5.2 ,c k�0 k k
Ž .� � � a.s. By 5.6 ,c

m��c

� 4P �� m � 1 � E L 1 � � X , YŽ .Ž .Ým k k
k�0

5.9Ž .
m��c

� E L 1 � � X , Y .Ž .Ž .Łm � � k kc
k�0

Ž . 4 cSince by 5.8 , L � e , letting m � �, we can interchange the limit andm � � c

expectation on the right to obtain

�c
�c� 45.10 lim sup P �� m � 1 � E L 1 � � X , Y � e .Ž . Ž .Ž .Ł� k kc

k�0m��

Since c is arbitrary, the lemma follows. �

˜Let B, B, � , � , �, 	 , � and � satisfy the conditions of Theorem 3.2, and˜1 2
Ž2. ˜Ž . Ž .let �� B E � E � DD B . Let AA be the generator for the neutralsym 0
˜ ˜Ž .Fleming�Viot process in PP E with mutation operator B and recombination
˜ Ž .given by 	 and �, and let Z, defined on some  , FF, Q , be a solution of˜
˜ � 4the martingale problem for AA with respect to a filtration FF . Define � �˜0 t i
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˜ ˜ ˜Ž2.Ž . Ž . Ž . Ž Ž . Ž ..B E � E � DD B by � x, y � � � x , � y . Following Dawson˜sym i i i
Ž .1978 ,

2 21 ˜ ˜L t � exp � , Z t � � , Z 0Ž . Ž . Ž .² : ² :˜ ˜i i i2½ ž
t 2Ž2. Ž2.˜ ˜ ˜� � � , Z s � B � , Z sŽ . Ž .² :˜ ˜¦ ;H 12 i iž

0

3Ž2. ˜�2	 H � , Z sŽ .² :˜1 i
5.11Ž .

4Ž2. ˜�2� K � , Z sŽ .² :˜1 i

2˜� 1 � 2	� � � , Z s dsŽ . Ž .² :ĩ / 5/
� 4is an FF -martingale, and definingt

5.12 P A � L t dQ, A � FF ,Ž . Ž . Ž .Hi i t
A

˜Ž . Ž .and extending P to GG � � FF enlarging  if necessary , Z on  , GG, P is ai t t i

˜solution of the martingale problem for AA , the generator of the Fleming�Vioti
˜ ˜Ž .process in PP E with mutation operator B, recombination given by 	 and �,˜

and selection intensity function � . Note that for each t, there are constantsĩ

Ž . Ž . Ž2. Ž . Ž . Ž .c t and C t depending on � , B � and 	 such that c t � L t � C t a.s.i
for i � 1, 2.

˜ Ž .Set Z � � � Z for i � 1, 2. Then, on  , GG, P , Z is a Fleming�Viotˆi i i i
process with mutation operator B, recombination given by 	 and � and
selection intensity function � . Letting � be the coupling time for Z and Z ,1 2

5.13 P Z T � G � c T Q Z T � G � c T Q Z T � G , �� T .� 4 � 4 � 4Ž . Ž . Ž . Ž . Ž . Ž .i i i i

Note that the right-hand side does not depend on i and is a nonzero measure
Ž .in G for T sufficiently large. Let � � Z 0 and definei i

�5.14 � � , � , G � Q Z T � G �� T� 4Ž . Ž . Ž .T 1 2 i

for such T and

� 45.15 � � , � � c T Q �� TŽ . Ž . Ž .T 1 2

for all T. The following result is an immediate consequence of Lemma 5.1 and
Ž .the estimate in 5.13 .

PROPOSITION 5.2. Let U and V be independent Fleming�Viot processes in
Ž .PP E with mutation operator B, recombination given by 	 and � and selec-

tion intensity function � . Suppose that a successful Markov coupling exists for
the neutral process with mutation operator B and recombination given by 	

Ž . Ž Ž2.. Ž .and �, that �� B E � E � DD B and that � � , � is defined bysym T 1 2
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Ž . Ž .5.15 for all choices of � , � � PP E . If for some T � 0,1 2

�

5.16 � U kT , V kT � � a.s.,Ž . Ž . Ž .Ž .Ý T
k�0

˜ ˜then there exists a probability space on which are defined processes U and V
˜ ˜such that U and U have the same distribution and V and V have the same

˜ ˜Ž . Ž .distribution, and there exists a random variable � such that U t � V t for
all t � �.

˜ ˜� Ž .4 � Ž .4PROOF. By Lemma 5.1, the ‘‘skeletons’’ U kT and V kT can be con-
structed. Then, using the Markov property, the skeletons can be interpolated.
� Ž . �See, e.g., Lemma 4.5.15 of Ethier and Kurtz 1986 . �

Ž .The condition in 5.16 is immediate under the assumptions of Theorem
Ž . � Ž . Ž .�3.2 c e.g., in the case defined by 3.1 and 3.2 , but in general this would

appear to be a difficult problem. We can, however, use the estimates to give a
very general proof of uniqueness of stationary distributions. First, we need
the following lemma, which is part of the mythology of Markov chain theory.

Ž .LEMMA 5.3. Let P x, � be a one-step transition function on E. Suppose
that � and � are stationary distributions for P. Then either � � � or1 2 1 2
there exist two mutually singular stationary distributions for P.

REMARK. A referee has pointed out that a proof can be based on Theorem
Ž .12.1 and Remark 12.2 of Dynkin 1978 . Instead, we give an essentially

self-contained argument.

� 4 �PROOF OF LEMMA 5.3. Let X , k � 0 denote the canonical process on E .k
Let E and P denote expectations and probabilities on E� for the Markov� �

Ž . Ž .chain corresponding to P x, � with initial distribution � . Define T on B E
Ž . Ž . Ž .by Tg x � H g y P x, dy .E

Ž .Suppose that � 	 � and let f � B E satisfy Hf d� 	 Hf d� . By the er-1 2 1 2
godic theorem,

n�11
5.17 H � lim f XŽ . Ž .Ý knn�� k�0

1 Ž .exists P -a.s. for both i � 1 and i � 2. Let �� � � � . Then � is� 1 22i

another stationary distribution. Note that H cannot be constant P -a.s., since�

d� i² : � �5.18 f ,� � E H � E H X ,Ž . Ž .i � � 0i d�
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and if H were constant P -a.s., the right-hand side would not depend on i.�

� 4We claim that, given a Borel set B with P H � B � 0, the measure �� B
defined by

E I X IŽ .� � 0 �H � B4
5.19 � � �Ž . Ž .B � 4P H � B�

Ž .is a stationary distribution for P x, � . Let

n�11
�5.20 H � lim sup f X .Ž . Ž .Ý knn�� k�0

� � �4 �Of course P H � H � 1. Define�

n�11
�5.21 C � x , x , . . . � E : lim sup f x � BŽ . Ž . Ž .ÝB 0 1 k½ 5nn�� k�0

Ž . Ž . � 4and L x , x , . . . � I x , x , . . . 
P H � B . Note that C is invariant inB 0 1 C 0 1 � BB
Ž . Ž .the sense that x , x , . . . � C if and only if x , x , . . . � C . We want to0 1 B 1 2 B

show that the invariance implies

� �5.22 E L X , X , . . . X � E L X , X , . . . X .Ž . Ž . Ž .� B 0 1 0 � B 0 1 1

Ž .To see that this is the case, denote the left-hand side by h X and observe0
that the right-hand side satisfies

� �5.23 E L X , X , . . . X � E L X , X , . . . X � h X .Ž . Ž . Ž . Ž .� B 0 1 1 � B 1 2 1 1

Then, using the invariance of C and the Markov property,B

� �5.24 h X � E L X , X , . . . X � E h X X � Th X .Ž . Ž . Ž . Ž . Ž .0 � B 1 2 0 � 1 0 0

Ž .Using the stationarity and 5.24 , we have

2E h X � h XŽ . Ž .Ž .� 1 0

2 2� E h X � E h X � 2 E h X h XŽ . Ž . Ž . Ž .� 1 � 0 � 1 05.25Ž .
2� 2 E h X � 2 E Th X h XŽ . Ž . Ž .� 0 � 0 0

� 0

Ž .and hence 5.22 . To see that � is a stationary distribution, note thatB
Ž .d� 
d�� h and therefore, for each g � B E ,B

E g X � E g X h XŽ . Ž . Ž .� 1 � 1 0B

� E g X h XŽ . Ž .� 1 15.26Ž .
� E g X h XŽ . Ž .� 0 0

² :� g ,� .B
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Finally, observe that

�L X , X , . . . � lim E L X , X , . . . X , . . . , XŽ . Ž .B 0 1 � B 0 1 0 k
k��

�� lim E L X , X , . . . XŽ .� B k k�1 k
k��5.27Ž .

� lim h XŽ .k
k��

� h X , P -a.s.Ž .0 �

� 4 Ž . Ž �Let c satisfy 0 � P H � c � 1 and define B � c,� and B � ��, c .� 1 2
Ž .Ž . Ž .Then C and C are disjoint, so L L X , X , . . . � 0 a.s. By 5.27 ,B B B B 0 11 2 1 2

Ž .there exist bounded measurable functions h , h on E such that h X �1 2 1 0
Ž . Ž . Ž .L X , X , . . . and h X � L X , X , . . . , P -a.s., which must satisfyB 0 1 2 0 B 0 1 �1 2

h h � 0, �-a.s. It follows that � and � are mutually singular stationary1 2 B B1 2

distributions. �

Ž .LEMMA 5.4. Let P x, � be a one-step transition function on E and suppose
� is a stationary distribution. Then, either � is ergodic in the sense that

n�11
² :5.28 lim f X � f ,� , P -a.s., f � B E ,Ž . Ž . Ž .Ý k �nn�� k�0

� 4 �where X is the canonical process on E and P is the Borel probabilityn �
� � 4measure on E under which X is a Markov chain with transition function Pn

and initial distribution � , or there are mutually singular stationary distribu-
Ž .tions, � and � , and 0 � 	� 1 such that �� 	� � 1 � 	 � .1 2 1 2

Ž . � 4REMARK. Note that 5.28 implies X is ergodic under P in the usualk �

Ž .sense of ergodic theory invariant sets have probability 0 or 1 .

Ž .PROOF OF LEMMA 5.4. If 5.28 fails to hold, then there exists f such that
� Ž .H defined in 5.20 is not constant P -a.s., and hence � and � con-� B B1 2

structed in the proof of Lemma 5.3 provide the desired stationary distribu-
� � 4tions with 	� P H � c . ��

THEOREM 5.5. Suppose that the conditions on B, 	 and � of Theorem 3.2
Ž . Ž Ž2..are satisfied. Let �� B E � E � DD B be a selection intensity function.sym

Then there is at most one stationary distribution for the Fleming�Viot process
determined by B, 	 , � and � .

Ž Ž ..PROOF. Suppose � , � � PP PP E are both stationary distributions. By1 2
Lemma 5.3, we can assume that � and � are mutually singular. However,1 2

Ž . Ž .constructing the coupling so that Z 0 has distribution � for i � 1, 2, 5.13i i
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implies that

5.29 � G � c T Q Z T � G , �� T ,� 4Ž . Ž . Ž . Ž .i i

where the right-hand side is independent of i and is a nonzero measure for T
sufficiently large, contradicting the singularity of � and � . �1 2
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