CHARACTERISTIC FUNCTIONS OF RANDOM VARIABLES ATTRACTED TO 1-STABLE LAWS ${ }^{1}$

By Jon Aaronson and Manfred Denker

Tel Aviv University and Universität Göttingen

Abstract

The domain of attraction of a 1-stable law on \mathbb{R}^{d} is characterized by the expansions of the characteristic functions of its elements.

0 . Introduction. Let X_{1}, X_{2}, \ldots be \mathbb{R}^{d}-valued, independent, identically distributed random variables. The distributional limits of $\left(S_{n}-A_{n}\right) / B_{n}$, where $A_{n} \in \mathbb{R}^{d}, B_{n}>0$ are constants and $S_{n}=\sum_{k=1}^{n} X_{k}$, are given by the well-known stable laws. [Lévy (1954), Gnedenko and Kolmogorov (1954) and I bragimov and Linnik (1971)].

A probability distribution function F on \mathbb{R}^{d} is called stable if for all $a, b>0$ there are $c>0$ and $v \in \mathbb{R}^{d}$ such that

$$
F_{a} * F_{b}(x)=F_{c}(x-v), \quad x \in \mathbb{R}^{d},
$$

where $F_{s}(x)=F(x / s), x \in \mathbb{R}^{d}, s>0$, and strictly stableif this is true with $v=0$.
In this case [Lévy (1954)] necessarily $a^{p}+b^{p}=c^{p}$ for some $0<p \leq 2$, and p is called the order of the stable law F.

A distribution G on \mathbb{R}^{d} belongs to the domain of attraction of the stable law F if there are constants $A_{n} \in \mathbb{R}^{d}$ and $B_{n}>0$ such that the distributions $\left(S_{n}-A_{n}\right) / B_{n}$ converge weakly to F where $S_{n}=X_{1}+\cdots+X_{n}$ and X_{1}, X_{2}, \ldots are i.i.d. with distribution G.

For $p \in(0,2]$ and $d \in \mathbb{N}$, we let $\operatorname{DA}(p, d)$ be the collection of distribution functions in the domain of attraction of some stable law on \mathbb{R}^{d} of order p.

In this paper, we obtain expansions of the characteristic functions of distributions on \mathbb{R}^{d} which are in the domain of attraction of a stable law.

In Section 1 we deal with the case $d=1$. The first partial results are in Gnedenko and Koroluk (1950). The expansions are given fully in Ibragimov and Linnik (1971) in case $p \neq 1$ (see Theorem 1).

Our main result is Theorem 2 giving the expansions in case $p=1$.
In Section 2 we obtain as corollaries expansions in case $d \geq 2$. Other results in this case are to be found in Rvac̃eva (1962), Meerschaert (1986), Kuelbs and Mandrekar (1974) and Araujo and Giné (1979, 1980).

A stable law of order p on \mathbb{R} has a characteristic function ψ of the form

$$
\log \psi(t)=i t \gamma-c|t|^{p}\left[1-i \beta \operatorname{sgn}(t) \tan \left(\frac{p \pi}{2}\right)\right], \quad p \neq 1,
$$

[^0]and
$$
\operatorname{Relog} \psi(t)=-c|t|, \quad \operatorname{Im} \log \psi(t)=t\left(\gamma+\frac{2 \beta c}{\pi} \log \left(\frac{1}{|t|}\right)\right), \quad p=1
$$
where $c>0, \beta, \gamma \in \mathbb{R}$ are constants [Lévy (1954)].
The form of the characteristic functions of stable laws on \mathbb{R}^{d} was obtained by Feldheim [see Feldheim (1937), Lévy (1954) and Samorodnitsky and Taqqu (1994), Theorem 2.3.1]:

To each stable law of order p on \mathbb{R}^{d} there corresponds a finite measure ν on S^{d-1} (called the spectral measure) and $\mu \in \mathbb{R}^{d}$ (called the translate) so that the characteristic function ψ has the form

$$
\begin{equation*}
\log \psi(u)=i\langle u, \mu\rangle-\int_{S^{d-1}}|\langle u, s\rangle|^{p}\left(1-i \operatorname{sgn}(\langle s, u\rangle) \tan \left(\frac{p \pi}{2}\right)\right) \nu(d s) \tag{1a}
\end{equation*}
$$

for $p \neq 1$ and
(1b) $\quad \log \psi(u)=i\langle u, \mu\rangle-\int_{S^{d-1}}|\langle u, s\rangle|\left(1+i \frac{2}{\pi} \operatorname{sgn}(\langle u, s\rangle) \log (|\langle u, s\rangle|)\right) \nu(d s)$
for $p=1$. Evidently a stable law on \mathbb{R}^{d} has a density if and only if the support of its spectral measure is not contained in a proper subspace of \mathbb{R}^{d}, and in this case we say that both the stable law and the spectral measure are nondegenerate.

Clearly, the stability of an \mathbb{R}^{d}-valued random variable Z implies that of its inner products $\langle Z, u\rangle, u \in \mathbb{R}^{d}$.

An example of Marcus (1983) shows that the converse of this is false without additional assumptions.

According to Theorems 2.1.2 and 2.1.5 in Samorodnitsky and Taqqu (1994), the \mathbb{R}^{d}-valued random variable Z is strictly stable (stable with index ≥ 1) if its inner products $\langle Z, u\rangle, u \in \mathbb{R}^{d}$, are strictly stable on \mathbb{R} (stable on \mathbb{R} with index ≥ 1).

The first characterizations of domains of attraction were in terms of the tails of the distributions concerned.

In the unidimensional case [Gnedenko and Kolmogorov (1954)], for $p<2$, the (right continuous) distribution function $G \in \mathrm{DA}(p, 1)$ iff there is a function $L: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$, slowly varying at ∞ [see Feller (1971)], and constants $c_{1}, c_{2} \geq 0$, $c_{1}+c_{2}>0$ such that

$$
\begin{align*}
& L_{1}(x):=x^{p}(1-G(x))=\left(c_{1}+o(1)\right) L(x), \tag{2}\\
& L_{2}(x):=x^{p} G(-x)=\left(c_{2}+o(1)\right) L(x) \quad \text { as } x \rightarrow+\infty .
\end{align*}
$$

The results of Gnedenko and Kolmogorov (1954) were generalized to \mathbb{R}^{d} in Rvac̃eva (1962) [see also M eerschaert (1986)], to Hilbert space in Kuelbs and Mandrekar (1974), and to Banach space in Araujo and Giné (1979).

1. Unidimensional characterization. The characteristic function ψ of $G \in \mathrm{DA}(p, 1)$ is considered in Gnedenko and Koroluk (1950) and Ibragimov and Linnik (1971).

In Gnedenko and K oroluk (1950), $\mathrm{DA}(p, 1)$ is characterized in terms of $\psi(t)$.
In Ibragimov and Linnik (1971), the asymptotic expansion of $\log \psi(t)$ around 0 is established with error small when compared to

$$
\operatorname{Prob} .\left(|Z|>\frac{1}{|t|}\right)=|t|^{p}\left(L_{1}\left(\frac{1}{|t|}\right)+L_{2}\left(\frac{1}{|t|}\right)+\right)=|t|^{p}\left(c_{1}+c_{2}+o(1)\right) L\left(\frac{1}{|t|}\right)
$$

as $t \rightarrow 0$. Here, Z is a G-distributed random variable, and $G \in \operatorname{DA}(p, 1)$, $p \neq 1$, satisfies (2) with the slowly varying functions L, L_{1}, L_{2} and constants $c_{1}, c_{2} \geq 0, c_{1}+c_{2}>0$. Specifically:

Theorem 1 [Ibragimov and Linnik (1971), Theorem 2.6.5]. Suppose that G satisfies (2) with $p \neq 1$. Then

$$
\log \psi(t)=i t \gamma-c|t|^{p} L\left(|t|^{-1}\right)\left[1-i \beta \operatorname{sgn}(t) \tan \left(\frac{p \pi}{2}\right)\right]+o\left(|t|^{p} L\left(|t|^{-1}\right)\right)
$$

where

$$
\begin{gathered}
\beta=\frac{c_{1}-c_{2}}{c_{1}+c_{2}}, \quad c=\Gamma(1-p)\left(c_{1}+c_{2}\right) \cos \left(\frac{p \pi}{2}\right), \\
\gamma= \begin{cases}0, & 0<p<1 \\
\int x G(d x), & 1<p \leq 2\end{cases}
\end{gathered}
$$

The expansion of the characteristic function when $p=1$ is also treated in I bragimov and Linnik (1971) for a limited class of slowly varying functions L, namely those where

$$
\int_{0}^{\lambda} \frac{x L(x) d x}{1+x^{2}}=L(\lambda)(\log \lambda+o(1))
$$

as $\lambda \rightarrow \infty$ [cf. Theorem 2 here, Theorem 2.6 .5 there and formula (2.6.34) there]. As can be easily checked, the functions $L(x) \sim(\log x)^{a}, a \in \mathbb{R}$, and $L(x) \sim \exp \left[(\log x)^{a}\right], 0<a<1$, are slowly varying functions not in this class.

Theorem 2. Suppose that G satisfies (2) with $p=1$. Then

$$
\begin{aligned}
& \operatorname{Relog} \psi(t)=-c|t| L\left(|t|^{-1}\right)+o\left(|t| L\left(|t|^{-1}\right)\right) \\
& \operatorname{Im} \log \psi(t)=t \gamma+\frac{2 \beta c}{\pi} C t L\left(\frac{1}{|t|}\right)+t\left(H_{1}\left(\frac{1}{|t|}\right)-H_{2}\left(\frac{1}{|t|}\right)\right)+o\left(|t| L\left(|t|^{-1}\right)\right)
\end{aligned}
$$

as $t \rightarrow 0$, where

$$
\begin{aligned}
H_{j}(\lambda) & =\int_{0}^{\lambda} \frac{x L_{j}(x) d x}{1+x^{2}}, \quad j=1,2, \\
C & =\int_{0}^{\infty}\left(\cos y-\frac{1}{1+y^{2}}\right) \frac{d y}{y},
\end{aligned}
$$

and the constants $c>0, \beta, \gamma \in \mathbb{R}$ are defined by

$$
\begin{aligned}
\beta & =\frac{c_{1}-c_{2}}{c_{1}+c_{2}}, \quad c=\frac{\left(c_{1}+c_{2}\right) \pi}{2} \\
\gamma & =\int_{-\infty}^{\infty}\left(\frac{x}{1+x^{2}}+\operatorname{sgn}(x) \int_{0}^{|x|} \frac{2 u^{2}}{\left(1+u^{2}\right)^{2}} d u\right) G(d x)
\end{aligned}
$$

Remark 1. Note that

$$
H_{1}(\lambda)=\int_{0}^{\lambda} \frac{x^{2} P(Z>x) d x}{1+x^{2}}
$$

whence

$$
\begin{aligned}
H_{1}(\lambda)-H_{2}(\lambda) & =E\left(\left[|Z| \wedge \lambda-\tan ^{-1}(|Z| \wedge \lambda)\right] \operatorname{sgn}(Z)\right) \\
& =E((|Z| \wedge \lambda) \operatorname{sgn}(Z))+O(1)
\end{aligned}
$$

as $\lambda \rightarrow \infty$, where Z is G-distributed and H_{1}, H_{2} are as in Theorem 2.
REMARK 2. From this representation of the characteristic function of distributions in $\operatorname{DA}(p, 1)$, one deduces the existence of a p-stable random variable Y and constants $A_{n}, B_{n} \in \mathbb{R}, B_{n}>0$ so that $\left(S_{n}-A_{n}\right) / B_{n} \rightarrow Y$ in distribution. These constants [unique up to $o\left(B_{n}\right)$ as $n \rightarrow \infty$] are given by

$$
n L\left(B_{n}\right)=B_{n}^{p}, \quad A_{n}= \begin{cases}0, & 0<p<1 \\ \gamma n, & 1<p \leq 2 \\ \gamma n+n\left(H_{1}\left(B_{n}\right)-H_{2}\left(B_{n}\right)\right), & p=1\end{cases}
$$

To see this in case $p=1$, write

$$
\log E\left(\exp \left[i t\left(\frac{S_{n}-A_{n}}{B_{n}}\right)\right]\right)=-\frac{i t A_{n}}{B_{n}}+n \log \psi\left(\frac{t}{B_{n}}\right):=\alpha_{n}(t)+i \beta_{n}(t)
$$

Then

$$
\alpha_{n}(t)=-c \frac{n|t|}{B_{n}} L\left(\frac{B_{n}}{|t|}\right)+o\left(\frac{n|t| L\left(B_{n} /|t|\right)}{B_{n}}\right) \rightarrow-c|t| \quad \text { as } n \rightarrow \infty
$$

and

$$
\begin{aligned}
\beta_{n}(t)= & \frac{t\left(H_{1}\left(B_{n} /|t|\right)-H_{1}\left(B_{n}\right)\right)}{L\left(B_{n}\right)}-\frac{t\left(H_{2}\left(B_{n} /|t|\right)-H_{2}\left(B_{n}\right)\right)}{L\left(B_{n}\right)} \\
& +\frac{2 \beta c t C L\left(B_{n} /|t|\right)}{\pi L\left(B_{n}\right)}+o\left(\frac{n|t| L\left(B_{n} /|t|\right)}{B_{n}}\right)
\end{aligned}
$$

Now, for $j=1,2$ and $k>1$ [see (5) in Lemma 3 below],

$$
H_{j}(k \lambda)-H_{j}(\lambda)=c_{j} L(\lambda) \log k+o(L(\lambda)) \quad \text { as } \lambda \rightarrow \infty
$$

Thus, with $k=1 /|t|$,

$$
\beta_{n}(t) \rightarrow t\left(c_{1}-c_{2}\right) \log \frac{1}{|t|}+\frac{2 \beta c C t}{\pi}=\frac{2 \beta c t}{\pi}\left(\log \frac{1}{|t|}+C\right) \quad \text { as } n \rightarrow \infty .
$$

Thus, the above representation is a characterization of $\operatorname{DA}(p, 1)$.
Remark 3. We notethat the expansion of $\psi(t)$ around 0 up to $o\left(|t|^{p} L(1 /|t|)\right)$ is determined entirely by the asymptotic equivalence class of the slowly varying function L and the constants $c_{1}, c_{2} \geq 0$ for G satisfying (2) with $p \neq 1$.

This is not the case when $p=1$ as shown by the following examples.
There is a distribution G so that

$$
\begin{aligned}
& L_{1}(x):=x(1-G(x))=(\log x)^{2}+(\log x)^{3 / 2}+O(1), \\
& L_{2}(x):=x G(-x)=(\log x)^{2}+O(1) \quad \text { as } x \rightarrow+\infty .
\end{aligned}
$$

Here, $L(\lambda)=(\log \lambda)^{2}, p=c_{1}=c_{2}=1$, and one calculates from Theorem 2 that

$$
\operatorname{Im} \log \psi(t)=\frac{4 t}{5 \pi} L\left(\frac{1}{|t|}\right)^{5 / 4}+o\left(|t| L\left(\frac{1}{|t|}\right)\right) \quad \text { as } t \rightarrow 0
$$

On the other hand, there is a symmetric distribution satisfying

$$
L_{1}(x)=L_{2}(x)=(\log x)^{2}+O(1) \quad \text { as } x \rightarrow+\infty
$$

for which also $L(\lambda)=(\log \lambda)^{2}$, and $p=c_{1}=c_{2}=1$; but here (owing to symmetry)

$$
\operatorname{Im} \log \psi(t) \equiv 0
$$

Proof of Theorem 2. Assume that G is represented in the form (2).
For $x>0$ define distribution functions $G_{j}, j=1,2$, on \mathbb{R}_{+}by

$$
G_{1}(x)=G(x)-G(0) \quad \text { and } \quad G_{2}(x)=G(0)-G(-x) .
$$

We have that

$$
G_{j}(\infty)-G_{j}(x)=\frac{L_{j}(x)}{x}=\frac{\left(c_{j}+o(1)\right) L(x)}{x} .
$$

Write

$$
\begin{aligned}
\int\left(1-\exp (i t x)+\frac{i t x}{1+x^{2}}\right) G(d x)= & \int_{0}^{\infty}\left(1-\exp (i t x)+\frac{i t x}{1+x^{2}}\right) G_{1}(d x) \\
& +\int_{0}^{\infty}\left(1-\frac{i t x}{1+x^{2}}-\exp (-i t x)\right) G_{2}(d x)
\end{aligned}
$$

and let

$$
\gamma_{j}=\int_{0}^{\infty} \frac{2 x^{2}}{\left(1+x^{2}\right)^{2}}\left(G_{j}(\infty)-G_{j}(x)\right) d x=\int_{0}^{\infty} \frac{2 x L_{j}(x) d x}{\left(1+x^{2}\right)^{2}} .
$$

Integration by parts gives

$$
\begin{aligned}
\int_{0}^{\infty} & \left(1-\exp \left[-(-1)^{j} i t x\right]-(-1)^{j} \frac{i t x}{1+x^{2}}\right) G_{j}(d x) \\
& =(-1)^{j} i t \int_{0}^{\infty}\left(\exp \left[-(-1)^{j} i t x\right]-\frac{1-x^{2}}{\left(1+x^{2}\right)^{2}}\right) \frac{L_{j}(x) d x}{x} \\
& =|t| \int_{0}^{\infty} \sin (|t| x) \frac{L_{j}(x) d x}{x}+(-1)^{j} i t \int_{0}^{\infty}\left(\cos (t x)-\frac{1-x^{2}}{\left(1+x^{2}\right)^{2}}\right) \frac{L_{j}(x) d x}{x}
\end{aligned}
$$

Changing variables, we obtain that

$$
\begin{gathered}
\int_{0}^{\infty} \sin (|t| x) \frac{L_{j}(x) d x}{x}=\int_{0}^{\infty} \sin (x) \frac{L_{j}(x /|t|) d x}{x} \\
\int_{0}^{\infty}\left(\cos (t x)-\frac{1}{1+(t x)^{2}}\right) \frac{L_{j}(x) d x}{x}=\int_{0}^{\infty}\left(\cos (x)-\frac{1}{1+x^{2}}\right) \frac{L_{j}(x /|t|) d x}{x} .
\end{gathered}
$$

By Lemma 1, we see that

$$
\int_{0}^{\infty} \sin (|t| x) \frac{L_{j}(x) d x}{x}=(1+o(1)) L_{j}\left(\frac{1}{|t|}\right) \frac{\pi}{2}
$$

Now

$$
\begin{aligned}
\int_{0}^{\infty}(& \left.\cos (t x)-\frac{1-x^{2}}{\left(1+x^{2}\right)^{2}}\right) \frac{L_{j}(x) d x}{x} \\
= & \int_{0}^{\infty}\left(\cos (t x)-\frac{1}{1+(t x)^{2}}\right) \frac{L_{j}(x) d x}{x}+\int_{0}^{\infty} \frac{x\left(1-t^{2}\right) L_{j}(x) d x}{\left(1+x^{2}\right)\left(1+(t x)^{2}\right)} \\
& +\int_{0}^{\infty} \frac{2 x L_{j}(x) d x}{\left(1+x^{2}\right)^{2}} \\
= & \int_{0}^{\infty}\left(\cos (t x)-\frac{1}{1+(t x)^{2}}\right) \frac{L_{j}(x) d x}{x}+\int_{0}^{\infty} \frac{x\left(1-t^{2}\right) L_{j}(x) d x}{\left(1+x^{2}\right)\left(1+(t x)^{2}\right)}+\gamma_{j}
\end{aligned}
$$

By Lemma 2,

$$
\int_{0}^{\infty}\left(\cos (t x)-\frac{1}{1+(t x)^{2}}\right) \frac{L_{j}(x) d x}{x}=C L_{j}\left(\frac{1}{|t|}\right)+o\left(L\left(\frac{1}{|t|}\right)\right)
$$

Set

$$
\tilde{H}_{j}(\lambda):=\int_{0}^{\infty} \frac{x L_{j}(x) d x}{\left(1+x^{2}\right)\left(1+x^{2} / \lambda^{2}\right)}
$$

By Lemma 3, $\tilde{H}_{j}(\lambda)=H_{j}(\lambda)+o(L(\lambda))$ as $\lambda \rightarrow \infty$.

Putting everything together, we obtain

$$
\begin{aligned}
\int_{0}^{\infty}(1+ & \left.\frac{i t x}{1+x^{2}}-\exp (i t x)\right) G_{1}(d x)+\int_{0}^{\infty}\left(1-\frac{i t x}{1+x^{2}}-\exp (-i t x)\right) G_{2}(d x) \\
= & L\left(\frac{1}{|t|}\right)|t|\left(c_{1}+c_{2}\right) \frac{\pi}{2}-i t L\left(\frac{1}{|t|}\right)\left(c_{1}-c_{2}\right) C \\
& -i t\left(\tilde{H}_{1}\left(\frac{1}{|t|}\right)-\tilde{H}_{2}\left(\frac{1}{|t|}\right)\right)-i t\left(\gamma_{1}-\gamma_{2}\right)+o\left(|t| L\left(\frac{1}{|t|}\right)\right) \\
= & L\left(\frac{1}{|t|}\right)|t|\left(c_{1}+c_{2}\right) \frac{\pi}{2}-i t L\left(\frac{1}{|t|}\right)\left(c_{1}-c_{2}\right) C \\
& -i t\left(H_{1}\left(\frac{1}{|t|}\right)-H_{2}\left(\frac{1}{|t|}\right)\right)-i t\left(\gamma_{1}-\gamma_{2}\right)+o\left(|t| L\left(\frac{1}{|t|}\right)\right)
\end{aligned}
$$

and hence Theorem 2.
We conclude this section by collecting the lemmas on slowly varying functions needed for Theorem 2.

Assume that $h: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is locally integrable, slowly varying at infinity and such that $u \mapsto h(u) / u$ is a nonincreasing function. Recall that h has a representation

$$
h(x)=\eta(x) \exp \left[\int_{1}^{x} \frac{\varepsilon(s)}{s} d s\right]
$$

for some functions $\eta(s) \rightarrow K \in \mathbb{R}$ and $\varepsilon(s) \rightarrow 0$ as $s \rightarrow \infty$ [see Feller (1971)].
Lemma 1.

$$
\int_{0}^{\infty} \frac{\sin y}{y} h\left(\frac{y}{t}\right) d y=(1+o(1)) h\left(\frac{1}{t}\right) \frac{\pi}{2} .
$$

Proof. As the proof of Lemma 2.6.1 in Ibragimov and Linnik (1971).
Lemma 2.

$$
\int_{0}^{\infty}\left[\cos y-\frac{1}{1+y^{2}}\right] \frac{1}{y} h\left(\frac{y}{t}\right) d y=(1+o(1)) h\left(\frac{1}{t}\right) \int_{0}^{\infty}\left[\cos y-\frac{1}{1+y^{2}}\right] \frac{1}{y} d y .
$$

Proof. We first split the region of integration into four parts: $I_{1}=\left[\Delta_{1}, \infty\right)$, $I_{2}=\left[\delta, \Delta_{1}\right), I_{3}=\left[t \Delta_{2}, \delta\right)$ and $I_{4}=\left[0, t \Delta_{2}\right)$ where $\delta<1<\Delta_{1}=\left(N-\frac{1}{2}\right) \pi$, $N \in \mathbb{N}$.

Since $\left|\int_{\left[\Delta_{1}+n \pi, \Delta_{1}+(n+1) \pi\right]} \cos y[h(y / t) d y / y]\right|$ decreases in n,

$$
\left|\int_{I_{1}} \cos y \frac{h(y / t) d y}{y}\right| \leq \frac{\pi h\left(\Delta_{1} / t\right)}{\Delta_{1}} \sim \frac{\pi h(1 / t)}{\Delta_{1}} .
$$

Also,

$$
\int_{I_{1}} \frac{1}{1+y^{2}} \frac{h(y / t) d y}{y} \leq \frac{h\left(\Delta_{1} / t\right)}{\Delta_{1}} \pi \sim \frac{\pi h(1 / t)}{\Delta_{1}}
$$

Since, for $x \in\left[\Delta_{2} t, \delta\right)$,

$$
\frac{h(x / t)}{h(1 / t)}=(1+o(1)) \exp \left[\int_{x / t}^{1 / t} \frac{\varepsilon(s)}{s} d s\right]=\exp [o(-\log x)] \leq x^{-1 / 2}
$$

for t small enough and Δ_{2} large enough,

$$
\begin{aligned}
\left|\int_{I_{3}}\left(\frac{1}{1+y^{2}}-\cos y\right) h\left(\frac{y}{t}\right) \frac{d y}{y}\right| & =O\left(h\left(\frac{1}{t}\right) \int_{0}^{\delta}\left|\frac{1}{1+y^{2}}-\cos y\right| y^{-3 / 2} d y\right) \\
& =O\left(h\left(\frac{1}{t}\right) \delta^{3 / 2}\right)
\end{aligned}
$$

Since the function h is locally integrable, it follows that for t small enough

$$
\begin{aligned}
\left|\int_{I_{4}}\left(\frac{1}{1+y^{2}}-\cos y\right) h\left(\frac{y}{t}\right) \frac{d y}{y}\right| & =\left|\int_{0}^{\Delta_{2}}\left(\frac{1}{1+t^{2} z^{2}}-\cos t z\right) h(z) \frac{d z}{z}\right| \\
& =O\left(t^{2} \Delta_{2} \int_{0}^{\Delta_{2}}|h(z)| d z\right) \\
& =O\left(t^{2}\right)=o\left(h\left(\frac{1}{t}\right)\right)
\end{aligned}
$$

For $\delta \leq x \leq \Delta_{1}$ we have (uniformly in x), by the slow variation property of h,

$$
\lim _{t \rightarrow 0} \frac{h(x / t)}{h(1 / t)}=1
$$

It follows that

$$
\begin{aligned}
& \left|\int_{I_{2}}\left(\frac{1}{1+y^{2}}-\cos y\right)\left[h\left(\frac{y}{t}\right)-h\left(\frac{1}{t}\right)\right] \frac{d y}{y}\right| \\
& \quad \leq 2 h\left(\frac{1}{t}\right)\left[\sup _{\delta \leq x \leq \Delta_{1}}\left|\frac{h(x / t)}{h(1 / t)}-1\right|\right] \int_{\delta}^{\Delta_{1}} \frac{d y}{y} \\
& \quad=o\left(h\left(\frac{1}{t}\right)\right)
\end{aligned}
$$

Applying the estimates for I_{1}, I_{3} and I_{4} with $h=1$, it follows that

$$
\int_{0}^{\infty}\left(\frac{1}{1+y^{2}}-\cos y\right) \frac{h(y / t)-h(1 / t)}{y} d y=o\left(h\left(\frac{1}{t}\right)\right)+O\left(h\left(\frac{1}{t}\right)\left(\delta^{3 / 2}+\Delta_{1}^{-1}\right)\right)
$$

Letting $\Delta_{1} \rightarrow \infty$ and $\delta \rightarrow 0$ as $t \rightarrow 0$, the lemma follows.

Lemma 3. Let

$$
H(\lambda):=\int_{0}^{\lambda} \frac{x h(x) d x}{1+x^{2}}
$$

then H is slowly varying at ∞,

$$
\begin{equation*}
\frac{h(\lambda)}{H(\lambda)} \rightarrow 0 \quad \text { as } \lambda \rightarrow \infty \tag{3}
\end{equation*}
$$

$$
\begin{aligned}
\tilde{H}(\lambda) & :=\int_{0}^{\infty} \frac{x h(x) d x}{\left(1+x^{2}\right)\left(1+x^{2} / \lambda^{2}\right)} \\
& =H(\lambda)+o(h(\lambda)) \quad \text { as } \lambda \rightarrow \infty
\end{aligned}
$$

and

$$
\begin{equation*}
H(k \lambda)-H(\lambda) \sim h(\lambda) \cdot \log k \quad \text { as } \lambda \rightarrow \infty \tag{5}
\end{equation*}
$$

Remark. Slow variation of H, (3) and (5) are established in Lemma 1 of Parameswaran (1961).

Proof. We first show (5):

$$
\begin{aligned}
H(k \lambda)-H(\lambda) & =\int_{\lambda}^{k \lambda} \frac{x h(x) d x}{1+x^{2}} \sim \int_{\lambda}^{k \lambda} \frac{h(x) d x}{x} \\
& =\int_{1}^{k} \frac{h(\lambda x) d x}{x} \sim \log k h(\lambda) .
\end{aligned}
$$

Next, we see that (3) follows from (5) as $\forall M>1$,

$$
\begin{aligned}
\frac{H(\lambda)}{h(\lambda)} & =\frac{H\left(e^{M} e^{-M} \lambda\right)}{h(\lambda)} \\
& \geq \frac{H\left(e^{M} e^{-M} \lambda\right)-H\left(e^{-M} \lambda\right)}{h(\lambda)} \\
& \sim \frac{h\left(e^{-M} \lambda\right) M}{h(\lambda)} \rightarrow M \quad \text { as } \lambda \rightarrow \infty .
\end{aligned}
$$

It follows from (3) and (5) that H is slowly varying at ∞.
To continue, we claim that
(6) $\quad \tilde{H}(\lambda)=\int_{0}^{\lambda} \frac{x h(x) d x}{\left(1+x^{2}\right)\left(1+x^{2} / \lambda^{2}\right)}+\frac{\log 2}{2} h(\lambda)+o(h(\lambda)) \quad$ as $\lambda \rightarrow \infty$.

To see this, note that

$$
\begin{aligned}
\int_{\lambda}^{\infty} \frac{x h(x) d x}{\left(1+x^{2}\right)\left(1+x^{2} / \lambda^{2}\right)}= & \int_{1}^{\infty} \frac{x h(\lambda x) d x}{\left(1 / \lambda^{2}+x^{2}\right)\left(1+x^{2}\right)} \\
= & h(\lambda) \int_{1}^{\infty} \frac{x d x}{\left(1 / \lambda^{2}+x^{2}\right)\left(1+x^{2}\right)} \\
& +h(\lambda) \int_{1}^{\infty}\left(\frac{h(\lambda x)}{h(\lambda)}-1\right) \frac{x d x}{\left(1 / \lambda^{2}+x^{2}\right)\left(1+x^{2}\right)} \\
= & \frac{\log 2}{2} h(\lambda)+o(h(\lambda))
\end{aligned}
$$

as $\lambda \rightarrow \infty$ by the dominated convergence theorem since $|h(\lambda x) / h(\lambda)-1| \rightarrow 0$ as $\lambda \rightarrow \infty \forall x>1$ and $|h(\lambda x) / h(\lambda)-1| \leq x \forall x$ large enough. This establishes (6).

To complete the proof of (4), we note that

$$
\frac{x h(x)}{\left(1+x^{2}\right)\left(1+x^{2} / \lambda^{2}\right)}=\frac{\lambda^{2}}{\lambda^{2}-1}\left(\frac{x h(x)}{x^{2}+1}-\frac{x h(x)}{x^{2}+\lambda^{2}}\right)
$$

whence, in view of (6),

$$
\tilde{H}(\lambda)=\frac{\lambda^{2}}{\lambda^{2}-1} \int_{0}^{\lambda} \frac{x h(x) d x}{x^{2}+1}-\frac{\lambda^{2}}{\lambda^{2}-1} \int_{0}^{\lambda} \frac{x h(x) d x}{x^{2}+\lambda^{2}}+\frac{\log 2}{2} h(\lambda)+o(h(\lambda))
$$

Now

$$
\begin{aligned}
\frac{\lambda^{2}}{\lambda^{2}-1} \int_{0}^{\lambda} \frac{x h(x) d x}{x^{2}+1} & =H(\lambda)+O\left(\frac{H(\lambda)}{\lambda^{2}}\right) \\
& =H(\lambda)+o(h(\lambda)) \quad \text { as } \lambda \rightarrow \infty
\end{aligned}
$$

because both h and H are slowly varying at ∞; and

$$
\begin{aligned}
\frac{\lambda^{2}}{\lambda^{2}-1} \int_{0}^{\lambda} \frac{x h(x) d x}{x^{2}+\lambda^{2}} & \sim \int_{0}^{\lambda} \frac{x h(x) d x}{x^{2}+\lambda^{2}} \\
& =\int_{0}^{1} \frac{x h(\lambda x) d x}{x^{2}+1} \\
& \sim \frac{\log 2}{2} h(\lambda) \text { as } \lambda \rightarrow \infty
\end{aligned}
$$

Thus,

$$
\tilde{H}(\lambda)=H(\lambda)+o(h(\lambda)) \quad \text { as } \lambda \rightarrow \infty
$$

which is (4).
2. Multidimensional characterization.

Corollary 1. Let $0<p<2, p \neq 1$ and G be a distribution function on \mathbb{R}^{d}. The following are equi valent:
(A) G belongs to the domain of attraction of the nondegenerate stable law of order p, spectral measure ν and translate μ.
(B) The characteristic function ψ of G has the form

$$
\log \psi(t u)= \begin{cases}-t^{p} L\left(\frac{1}{t}\right) \Phi(u)+i t\langle u, \mu\rangle+o\left(t^{p} L\left(\frac{1}{t}\right)\right), & \text { if } p>1, \\ -t^{p} L\left(\frac{1}{t}\right) \Phi(u)+o\left(t^{p} L\left(\frac{1}{t}\right)\right), & \text { if } p<1\end{cases}
$$

as $t \rightarrow 0^{+}, \forall u \in S^{d-1}$, where $\mu \in \mathbb{R}^{d}, L$ is slowly varying at ∞, ν is a nondegenerate finite measure on S^{d-1} and

$$
\Phi(u):=\int_{S^{d-1}}|\langle u, s\rangle|^{p}\left(1-i \operatorname{sgn}\langle s, u\rangle \tan \left(\frac{p \pi}{2}\right)\right) \nu(d s) .
$$

Proof. (A) \Rightarrow (B). Let X_{1}, X_{2}, \ldots be i.i.d. with distribution G and $A_{n} \in$ $\mathbb{R}^{d}, B_{n}>0$ such that $\left(S_{n}-A_{n}\right) / B_{n} \rightarrow Z$ weakly where Z is p-stable. Let $u \in \mathbb{R}^{d}$. It follows from Feldheim's theorem that $\langle u, Z\rangle$ has a one-dimensional p-stable distribution with parameters $\gamma_{u}^{\prime}=\langle u, \mu\rangle, c_{u}^{\prime}=\int_{S^{d-1}}|\langle u, s\rangle|^{p} \nu(d s)$ and

$$
\beta_{u}^{\prime}=\frac{1}{c_{u}^{\prime}} \int_{S^{d-1}}|\langle u, s\rangle|^{p} \operatorname{sgn}(\langle u, s\rangle) \nu(d s) .
$$

The characteristic function $\psi(t u)$ of $\left\langle u, X_{1}\right\rangle$ has a form

$$
\log \psi(t u)=i t \gamma_{u}-|t|^{p} L_{u}\left(\frac{1}{|t|}\right)\left(1-i \beta_{u} \operatorname{sgn}(t) \tan \left(\frac{\pi p}{2}\right)\right)
$$

as in Theorem 1 with some slowly varying function L_{u} and parameters γ_{u} and β_{u} (we normalize L_{u} so that $c_{u}=1$). Hence,

$$
\begin{aligned}
& i t\left(\frac{n \gamma_{u}}{B_{n}}-\frac{\left\langle u, A_{n}\right\rangle}{B_{n}}\right)-|t|^{p} \frac{n}{B_{n}^{p}} L_{u}\left(\frac{B_{n}}{|t|}\right)\left(1-i \beta_{u} \operatorname{sgn}(t) \tan \left(\frac{p \pi}{2}\right)\right) \\
& \quad \rightarrow i t \gamma_{u}^{\prime}-c_{u}^{\prime}|t|^{p}\left(1-i \beta_{u}^{\prime} \operatorname{sgn}(t) \tan \left(\frac{p \pi}{2}\right)\right) .
\end{aligned}
$$

The parameter γ_{u} must be linear in u if $p>1$, since $\left(n \gamma_{u}-\left\langle u, A_{n}\right\rangle\right) / B_{n} \rightarrow$ $\langle u, \mu\rangle$ and $n / B_{n} \rightarrow \infty$. In case $p<1, \gamma_{u}$ can be arbitrary since $n / B_{n} \rightarrow 0$. Moreover, $\left(n / B_{n}^{p}\right) L_{u}\left(B_{n}\right)$ converges to c_{u}^{\prime} and $\beta_{u}=\beta_{u}^{\prime}$. Setting $L(t)=$ $\left(1 / c_{u}^{\prime}\right) L_{u}(t)$ for some fixed u, we obtain, for $v \in \mathbb{R}^{d}$,

$$
\lim _{n \rightarrow \infty} \frac{L\left(B_{n}\right)}{L_{v}\left(B_{n}\right)}=\lim _{n \rightarrow \infty} \frac{\left(n / B_{n}^{p}\right) L_{u}\left(B_{n}\right)}{c_{u}^{\prime}\left(n / B_{n}^{p}\right) L_{v}\left(B_{n}\right)}=\frac{1}{c_{v}^{\prime}} .
$$

Hence $L_{v}(\lambda) \sim c_{v}^{\prime} L(\lambda)$ as $\lambda \rightarrow \infty$.
$(B) \Rightarrow(A)$. Conversely, if the characteristic function ψ of G is as in (B), then for every $u \in \mathbb{R}^{d}$ the characteristic functions of $Y_{n}^{(u)}=B_{n}^{-1} \sum_{k=1}^{n}\left(\left\langle u, X_{k}\right\rangle-\right.$ $\left\langle A_{n}, u\right\rangle$) converge, where X_{1}, X_{2}, \ldots are i.i.d. with distribution G, where B_{n} is defined by $n L\left(B_{n}\right)=B_{n}^{p}$ and where $A_{n}=0$ if $p<1$ and $A_{n}=n \mu$ if $p>1$.

It follows that the characteristic functions of $\left(S_{n}-A_{n}\right) / B_{n}$ converge (necessarily to a characteristic function), such that the limit variable Z has all distributions $\langle u, Z\rangle, u \in \mathbb{R}^{d}, p$-stable. Thus, Z is stable itself if $p>1$. In case $p<1$, we note that Z has a characteristic function of the form (1a) with $\mu=0$ and is strictly stable.

If G is a distribution function on \mathbb{R}^{d}, we define $G_{u}(\cdot)$ to be the distribution function of $\langle u, Z\rangle$, where Z is a random variable with distribution G.

Corollary 2. (A) If a distribution function G on \mathbb{R}^{d} belongs to the domain of attraction of the nondegenerate stablelaw of order 1 , spectral measure ν and translate μ, then its characteristic function ψ has the form

$$
\begin{align*}
& \operatorname{Relog} \psi(t u)=-t L\left(\frac{1}{t}\right) \int_{S^{d-1}}|\langle u, s\rangle| \nu(d s)+o\left(t L\left(\frac{1}{t}\right)\right) \\
& \operatorname{Im} \log \psi(t u)=t H_{u}\left(\frac{1}{t}\right)+t L\left(\frac{1}{t}\right) \frac{2 C}{\pi} \int_{S^{d-1}}\langle u, s\rangle \nu(d s)+t \gamma_{u}+o\left(t L\left(\frac{1}{t}\right)\right) \tag{7}
\end{align*}
$$

as $t \rightarrow 0^{+} \forall u \in S^{d-1}$, where L is slowly varying at ∞,

$$
C=\int_{0}^{\infty}\left(\cos y-\frac{1}{1+y^{2}}\right) \frac{d y}{y}
$$

and

$$
H_{u}(x)=\int_{0}^{x} \frac{v\left(1-G_{u}(v)-G_{u}(-v)\right)}{1+v^{2}} d v
$$

has a representation

$$
\begin{equation*}
H_{u}(\lambda)=\left\langle u, \Gamma_{\lambda}\right\rangle-\frac{2 L(\lambda)}{\pi} \int_{S^{d-1}}\langle u, s\rangle \log (|\langle u, s\rangle|) \nu(d s)-\gamma_{u}+o(L(\lambda)) \tag{8}
\end{equation*}
$$

for some $\Gamma_{\lambda} \in \mathbb{R}^{d}$ and satisfies

$$
\begin{equation*}
H_{u}(k \lambda)-H_{u}(\lambda) \sim \frac{2}{\pi} L(\lambda) \int_{S^{d-1}}\langle u, s\rangle \nu(d s) \log k \tag{9}
\end{equation*}
$$

as $\lambda \rightarrow \infty$.
(B) Let the characteristic function ψ of a distribution G on \mathbb{R}^{d} satisfy (7) for some $\gamma_{u} \in \mathbb{R}$, some finite measure ν on S^{d-1}, some slowly varying function L and some functions H_{u} with representation (8) and satisfying (9). Then G belongs to the domain of attraction of a nondegenerate stable law of order 1.

Proof. (A) As before, let X_{1}, X_{2}, \ldots be i.i.d. with distribution G and $A_{n} \in$ $\mathbb{R}^{d}, B_{n}>0$ such that $\left(S_{n}-A_{n}\right) / B_{n} \rightarrow Z$ weakly, where Z is 1 -stable. Let $u \in \mathbb{R}^{d}$. It follows from Feldheim's theorem that $\langle u, Z\rangle$ has a onedimensional 1-stable distribution with parameters

$$
\begin{aligned}
\gamma_{u}^{\prime} & =\langle u, \mu\rangle-\frac{2}{\pi} \int_{S^{d-1}}\langle u, s\rangle \log (|\langle u, s\rangle|) \nu(d s), \\
c_{u}^{\prime} & =\int_{S^{d-1}}|\langle u, s\rangle| \nu(d s), \quad \beta_{u}^{\prime}=\frac{1}{c_{u}^{\prime}} \int_{S^{d-1}}\langle u, s\rangle \nu(d s) .
\end{aligned}
$$

By Theorem 2, the characteristic function $\psi(t u)$ of $\left\langle u, X_{1}\right\rangle$ has a form

$$
\begin{aligned}
\log \psi(t u)= & -|t| L_{u}\left(\frac{1}{|t|}\right)+i t \gamma_{u}+i t \frac{2 \beta_{u} C}{\pi} L_{u}\left(\frac{1}{|t|}\right) \\
& +i t\left(H_{1 u}\left(\frac{1}{|t|}\right)-H_{2 u}\left(\frac{1}{|t|}\right)\right)+o\left(|t| L_{u}\left(\frac{1}{|t|}\right)\right),
\end{aligned}
$$

where

$$
\begin{aligned}
H_{j u}(\lambda) & =\int_{0}^{\lambda} \frac{x L_{j u}(x)}{1+x^{2}} d x, \\
L_{j u}(x) & = \begin{cases}x\left(1-G_{u}(x)\right), & \text { if } j=1, \\
x G_{u}(-x), & \text { if } j=2,\end{cases}
\end{aligned}
$$

for some parameters γ_{u}, β_{u} and slowly varying functions L_{u} (normalized so that $c_{u}=1$), $L_{j u}$. Also note that, by Theorem 2, $L_{j u}(x)=\left(c_{j u}+o(1)\right) L_{u}(x)$ with $c_{1 u}+c_{2 u}=2 / \pi$. Set $H_{u}=H_{1 u}-H_{2 u}$.

From the assumed convergence of characteristic functions, we have that

$$
\operatorname{Re} n \log \psi\left(\frac{t u}{B_{n}}\right) \sim \frac{n L_{u}\left(B_{n}\right)|t|}{B_{n}} \rightarrow c_{u}^{\prime}|t| .
$$

As in the proof of Corollary 1, there exists a function L so that $c_{v}^{\prime} L \sim L_{v}$ for all $v \in \mathbb{R}^{d}$. Moreover, using (5) $\forall t \in \mathbb{R}$, as $n \rightarrow \infty$,

$$
\begin{aligned}
\operatorname{Im} n & \log \psi\left(\frac{t u}{B_{n}}\right)-\left\langle A_{n}, u\right\rangle \frac{t}{B_{n}} \\
= & \frac{n L_{u}\left(B_{n}\right)}{B_{n}}\left(c_{1 u}-c_{2 u}\right) t \log \frac{1}{|t|} \\
& +t\left(\frac{n \gamma_{u}}{B_{n}}-\frac{\left\langle A_{n}, u\right\rangle}{B_{n}}+\frac{n H_{u}\left(B_{n}\right)}{B_{n}}+\frac{2 C n \beta_{u} L_{u}\left(B_{n}\right)}{\pi B_{n}}\right)+o(1) \\
& \rightarrow t \gamma_{u}^{\prime}+\frac{2 \beta_{u}^{\prime} c_{u}^{\prime} t}{\pi} \log \frac{1}{|t|} .
\end{aligned}
$$

Equating coefficients of t, and $t \log 1 /|t|$, we see that

$$
\frac{n L_{u}\left(B_{n}\right)}{B_{n}}\left(c_{1 u}-c_{2 u}\right) \rightarrow \frac{2 \beta_{u}^{\prime} c_{u}^{\prime}}{\pi}
$$

and

$$
\frac{n}{B_{n}}\left(H_{u}\left(B_{n}\right)+\frac{2 C \beta_{u}}{\pi} L_{u}\left(B_{n}\right)+\gamma_{u}-\left\langle u, \frac{A_{n}}{n}\right\rangle\right) \rightarrow \gamma_{u}^{\prime}
$$

as $n \rightarrow \infty$.
Hence, $c_{u}^{\prime}\left(c_{1 u}-c_{2 u}\right)=c_{u}^{\prime} \beta_{u} 2 / \pi=c_{u}^{\prime} 2 \beta_{u}^{\prime} / \pi$ and $\beta_{u}=\beta_{u}^{\prime}$.
To conclude, we determine the conditions for H_{u} and γ_{u}. Since $c_{u}^{\prime} L \sim L_{u}$ and since L_{u} is slowly varying,

$$
\begin{aligned}
& H_{u}\left(B_{n}\right)+\frac{2 C \beta_{u}^{\prime} c_{u}^{\prime}}{\pi} L\left(B_{n}\right)+\gamma_{u}-\left\langle u, \frac{A_{n}}{n}\right\rangle \\
& \quad-\left\langle u, \frac{B_{n} \mu}{n}\right\rangle+\frac{2 B_{n}}{n \pi} \int_{S^{d-1}}\langle u, s\rangle \log (|\langle u, s\rangle|) \nu(d s)=o\left(\frac{B_{n}}{n}\right)
\end{aligned}
$$

or [because $\beta_{u}^{\prime} c_{u}^{\prime}$ is linear in u and $n L\left(B_{n}\right) \sim B_{n}$]

$$
H_{u}\left(B_{n}\right)=\left\langle u, \Gamma_{B_{n}}\right\rangle-\frac{2 L\left(B_{n}\right)}{\pi} \int_{S^{d-1}}\langle u, s\rangle \log (|\langle u, s\rangle|) \nu(d s)-\gamma_{u}+o\left(L\left(B_{n}\right)\right),
$$

where

$$
\Gamma_{B_{n}}=\frac{A_{n}}{n}+\mu L\left(B_{n}\right)-\frac{2 C L\left(B_{n}\right)}{\pi} \int_{S^{d-1}}\langle\cdot, s\rangle \nu(d s) .
$$

We obtain the expansion for $H_{u}(\lambda)$ ($B_{n} \leq \lambda<B_{n+1}$) from

$$
\begin{aligned}
H_{u}(\lambda)-H_{u}\left(B_{n}\right) & =H_{1 u}(\lambda)-H_{1 u}\left(B_{n}\right)-\left[H_{2 u}(\lambda)-H_{2 u}\left(B_{n}\right)\right] \\
& \sim \log \left(\frac{\lambda}{B_{n}}\right)\left(L_{1 u}(\lambda)-L_{2 u}(\lambda)\right)+o(L(\lambda))=o(L(\lambda))
\end{aligned}
$$

and

$$
\begin{aligned}
H_{u}(\lambda) & =H_{u}\left(B_{n}\right)+H_{u}(\lambda)-H_{u}\left(B_{n}\right) \\
& =H_{u}\left(B_{n}\right)+o(L(\lambda)) \\
& =\left\langle u, \Gamma_{B_{n}}\right\rangle-\frac{2 L(\lambda)}{\pi} \int_{S^{d-1}}\langle u, s\rangle \log (|\langle u, s\rangle|) \nu(d s)-\gamma_{u}+o(L(\lambda)),
\end{aligned}
$$

since

$$
1 \leq \frac{\lambda}{B_{n}} \leq \frac{B_{n+1}}{B_{n}} \sim \frac{(n+1) L\left(B_{n+1}\right)}{n L\left(B_{n}\right)} \rightarrow 1 .
$$

Equation (8) follows setting $\Gamma_{\lambda}=\Gamma_{B_{n}}$ if $B_{n} \leq \lambda<B_{n+1}$. Finally, (9) holds because

$$
\begin{aligned}
H_{u}(k \lambda)-H_{u}(\lambda) & \sim \log (k)\left(L_{1 u}(\lambda)-L_{2 u}(\lambda)\right) \\
& \sim \log (k)\left(c_{1 u}-c_{2 u}\right) L_{u}(\lambda) \\
& \sim \log (k)\left(c_{1 u}-c_{2 u}\right) c_{u}^{\prime} L(\lambda) \\
& =\frac{2}{\pi} c_{u}^{\prime} \beta_{u}^{\prime} \log (k) L(\lambda) .
\end{aligned}
$$

(B) Conversely, if the characteristic function ψ of G is as in (B), then for every $u \in \mathbb{R}^{d}$ the characteristic functions of

$$
Y_{n}^{(u)}=B_{n}^{-1} \sum_{k=1}^{n}\left(\left\langle u, X_{k}\right\rangle-\left\langle A_{n}, u\right\rangle\right)
$$

converge, where X_{1}, X_{2}, \ldots are i.i.d. with distribution G, where B_{n} is defined by $n L\left(B_{n}\right)=B_{n}$ and where

$$
A_{n}=n \Gamma_{B_{n}}+\frac{2 C n L\left(B_{n}\right)}{\pi} \int_{S^{d-1}}\langle\cdot, s\rangle \nu(d s) .
$$

Let $c_{u}^{\prime}=\int_{S^{d-1}}|\langle u, s\rangle| \nu(d s)$ be defined as before. We have that

$$
\begin{aligned}
& \log \left(\psi\left(\frac{t u}{B_{n}}\right)^{n} \exp \left[-\frac{i t\left\langle u, A_{n}\right\rangle}{B_{n}}\right]\right) \\
& \quad \rightarrow-|t| c_{u}^{\prime}-i t \frac{2}{\pi} \int_{S^{d-1}}\langle u, s\rangle \log |\langle t u, s\rangle| \nu(d s)
\end{aligned}
$$

Example. Let $0<p<2, \nu \in \mathscr{P}\left(S^{d-1}\right)$ be nondegenerate, and let L be slowly varying at ∞.

If $Y \in \operatorname{DA}(p, 1), Y>0$ with tails given by $P(Y>\lambda)=2 L(\lambda) / \pi \lambda^{p}$ and Z is a ν-distributed random variable on S^{d-1} independent of Y, then $X:=Y Z$ is in the domain of attraction of a nondegenerate stable law of order p on \mathbb{R}^{d} and with spectral measure ν.

This follows from (and illustrates) Corollaries 1 and 2. Indeed, using the notation $\psi_{U}(u):=-\log \left(E[\exp (i\langle U, u\rangle)]\right.$, we have that, for $u \in S^{d-1}$ and $t>0$,

$$
\begin{aligned}
\psi_{X}(t u) & =E\left(\psi_{Y}(\langle Z, t u\rangle)+O\left(\psi_{Y}(\langle Z, t u\rangle)^{2}\right)\right) \\
& =E\left(\psi_{Y}(\langle Z, t u\rangle)\right)+o\left(t^{p} L(1 / t)\right)
\end{aligned}
$$

as $t \rightarrow 0$, whence, by Ibragimov and Linnik (1971) for $p \neq 1$,

$$
\begin{aligned}
\psi_{X}(t u)= & i t \gamma\langle u, E(Z)\rangle \\
& -t^{p} L\left(\frac{1}{t}\right) \int_{S^{d-1}}|\langle u, s\rangle|^{p}\left(1-i \operatorname{sgn}(\langle s, u\rangle) \tan \left(\frac{p \pi}{2}\right)\right) \nu(d s) \\
& +o\left(t^{p} L\left(\frac{1}{t}\right)\right)
\end{aligned}
$$

as $t \rightarrow 0$, and, by Theorem 2 for $p=1$,

$$
\begin{aligned}
\operatorname{Re} \psi_{X}(t u)= & -t L\left(\frac{1}{t}\right) \int_{S^{d-1}}|\langle s, u\rangle| d \nu(s)+o\left(t L\left(\frac{1}{t}\right)\right) \\
\operatorname{Im} \psi_{X}(t u)= & t \gamma\langle u, E(Z)\rangle+t\left(H\left(\frac{1}{t}\right)+\frac{2 C}{\pi} L\left(\frac{1}{t}\right)\right) \int_{S^{d-1}}\langle s, u\rangle d \nu(s) \\
& +t L\left(\frac{1}{t}\right) \frac{2}{\pi} \int_{S^{d-1}}\langle s, u\rangle \log \frac{1}{|\langle s, u\rangle|} d \nu(s)+o\left(t L\left(\frac{1}{t}\right)\right)
\end{aligned}
$$

as $t \rightarrow 0$, where

$$
H(\lambda):=\int_{0}^{\lambda} \frac{2 x L(x) d x}{\pi\left(1+x^{2}\right)}
$$

and where

$$
\gamma:=E\left(\frac{Y}{1+Y^{2}}+\int_{0}^{Y} \frac{2 u^{2}}{\left(1+u^{2}\right)^{2}} d u\right)
$$

If, in the example, Y was not chosen positive, but satisfying (2) with constants c, c_{1}, c_{2}, then the spectral measure of X is given by

$$
\nu^{*}(A)=c_{1} \nu(A)+c_{2} \nu(-A), \quad A \in \mathscr{B}\left(S^{d-1}\right)
$$

Acknowledgment. The authors would like to thank I. A. Ibragimov for a helpful conversation.

REFERENCES

Araujo, A. and Giné, E. (1979). On tails and domains of attraction of stable measures in Banach spaces. Trans. Amer. Math. Soc. 248 105-119.
Araujo, A. and Giné, E. (1980). The Central Limit Theorem for Real and Banach Space Valued Random Variables. Wiley, New York.
Feldheim, E. (1937). Etudes de la stabilité des lois de probabilite. Thèse, Faculté des Sciences, Paris.
Feller, W. (1971). An Introduction to Probability Theory and Its Applications 2, 2nd ed. Wiley, New York.
Gnedenko, B. V. and Kolmogorov, A. N. (1954). Limit Distributions for Sums of Independent Random Variables (translated by K. L. Chung; with an appendix by J. L. Doob). Addison-Wesley, Cambridge, MA.
Gnedenko, B. V. and Koroluk, V. S. (1950). Some remarks on the theory of domains of attraction of stable distributions. Dopov. Nats. Akad. Nauk Ukraïni 4 275-278.
Ibragimov, I. A. and Linnik, Y. V. (1971). Independent and Stationary Sequences of Random Variables (J. F. C. Kingman, ed.). Wolters-N oordhoff, Groningen.
Kuelbs, J. and Mandrekar, V. (1974). Domains of attraction of stable measures on a Hilbert space. Studia Math. 50 149-162.
Lévy, P. (1954). Théorie del'addition des variables aléatoires, 2nd ed. Gauthiers-Villars, Paris.
Marcus, D. (1983). Non-stable laws with all projections stable. Z. Wahrsch. Verw. Gebiete I64 139-156.
Meerschaert, M. M. (1986). Regular variation and domains of attraction in \mathbb{R}^{k}. Statist. Probab. Lett. 4 43-45.

Parameswaran, S. (1961). Partition functions whose logarithms are slowly varying. Trans. Amer. Math. Soc. 100 217-240.
Rvac̃eva, E. L. (1962). Domains of attraction of multidimensional distributions. Sel. Trans. Math. Statist. Probab. 2 183-206.
SAmorodnitsky, G. and TaqQu, M. S. (1994). Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance Chapman and Hall, New York.

School of Mathematical Sciences Institut für Mathematische Stochastik
Tel Aviv University
69978 Tel Aviv
ISRAEL
E-MAIL: aaro@math.tau.ac.il
Universität Göttingen
Lotzestrasse 13
37083 GÖTTINGEN
GERMANY
E-MAIL: denker@namu01.gwdg.de

[^0]: Received J uly 1996; revised May 1997.
 ${ }^{1}$ This research was supported by a grant from G.I.F., the German-Israel Foundation for Scientific Research and Development.

 AMS 1991 subject classifications. 60E 07, 60E 10, 60F 05.
 Key words and phrases. Stable distribution, domain of attraction, expansion of characteristic function.

