
The Annals of Probability
1998, Vol. 26, No. 1, 377–398

CENTRAL LIMIT THEOREMS FOR QUADRATIC FORMS
WITH TIME-DOMAIN CONDITIONS

By Liudas Giraitis1 and Murad S. Taqqu2

Boston University

We establish the central limit theorem for quadratic forms
∑N
t� s=1 b�t−

s�Pm�n�Xt�Xs� of the bivariate Appell polynomials Pm�n�Xt�Xs� under
time-domain conditions. These conditions relate the weights b�t� and the
covariances of the sequences �Pm�n�Xt�Xs�� and �Xt�. The time-domain
approach, together with the spectral domain approach developed earlier,
yields a general set of conditions for central limit theorems.

1. Introduction. The bivariate Appell polynomials provide a helpful tool
for establishing both central limit theorems (CLT) and noncentral limit theo-
rems (NCLT) for quadratic forms in random variables G�Xt�, when �Xt� is a
linear or Gaussian process and G is a polynomial. These limit theorems can
be used to derive properties of statistical estimators that involve quadratic
forms, for example, the Whittle estimator (see [13]). Hermite polynomials suf-
fice when Xt is Gaussian, but Appell polynomials appear when Xt is a linear
process. The Hermite polynomials are Appell polynomials associated with the
Gaussian distribution.

In this paper we study central limit theorems for quadratic forms

QN �=
N∑

t� s=1

b�t− s�Pm�n�Xt�Xs�(1)

involving the Appell polynomials

Pm�n�Xt�Xs� =�Xt� � � � �Xt︸ ︷︷ ︸
m

�Xs� � � � �Xs︸ ︷︷ ︸
n

� �

Here Pm�n�Xt�Xs� is a bivariate Appell polynomial (Wick power) of the linear
variables Xt and Xs, m�n ≥ 0�m+ n ≥ 1 and

Xt =
∑
u∈Z

a�t− u�ξu� t ∈ Z(2)

is a linear process; that is, the random variables ξt� t ∈ Z are independent
and identically distributed, Eξ0 = 0, Eξ2

0 = 1 and the sequence a�t�� t ∈
Z of real-valued weights satisfies the condition

∑
s a

2�s� < ∞� We assume
E
ξu
2�m+n� < ∞ in order to ensure that QN has a finite variance. Our goal
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is to provide sufficient conditions for N−1/2QN to converge to a normal distri-
bution. The definition of multivariate Appell polynomials is given in Section
3. These polynomials are a multivariate generalization of the univariate Ap-
pell polynomials [or Hermite polynomials if �Xt� is Gaussian] and, like them,
they play an important role in the limit theory of quadratic forms of dependent
variables.

Central limit theorems involving Hermite or Appell polynomials have been
studied by Sun [21, 22], Breuer and Major [6], Giraitis [10], Giraitis and Sur-
gailis [11, 12], Fox and Taqqu [9], Ho and Sun [17, 18], Ho [16], Avram [2, 3],
Avram and Fox [4], Giraitis and Taqqu [14] and Arcones [1].

We will show, in particular, that the assumption∑
l1� l2� t∈Z

∣∣∣b�l1�b�l2�Cov�Pm�n�Xt�Xt+l1��Pm�n�X0�Xl2
��
∣∣∣ <∞�(3)

which ensures that the relation VarQN ≤ constN holds, yields the CLT. In
fact, the relation∑

t∈Z

∣∣∣Cov�Pm�n�Xt�Xt+l1��Pm�n�X0�Xl2
��
∣∣∣ <∞� l1� l2 ∈ Z�

turns out to be equivalent to the condition∑
t


r�t�
m+n <∞�

where r�t� = EXtX0 is the covariance function of the process �Xt� and m+n
is the order of the Appell polynomial Pm�n�Xt�Xt+l1�.

Assumption (3) underlines the similarities between the central limit
theorem for quadratic forms in linear or Gaussian variables with long-
range dependence and the central limit theorem for univariate sums
SN =N−1/2 ∑N

t=0G�Xt�. Breuer and Major [6] proved that if the covariance of
the Gaussian stationary process �Xt� satisfies the condition

∑
t∈Z 
r�t�
m <∞

where m is the so-called Hermite rank of the function G, EG�Xt� = 0 and
EG�Xt�2 <∞, then the CLT for SN holds. Giraitis and Surgailis [11] showed
that the asymptotic normality of N−1/2 ∑N

t=1G�Xt� can be established in
terms of the correlation function rG�t� = EG�Xt�G�X0�, without referring
specifically to the concept of Hermite or Appell rank (it plays an important
role in the proof). They showed that the CLT holds if

∑
t∈Z 
rG�t�
 < ∞ when

Xt is Gaussian. In addition, Giraitis [10] proved that if
∑
t∈Z 
rG�t�
 <∞, then

the CLT holds also for the linear process Xt (2) if the function G is sufficiently
smooth, for example, if G is a polynomial. Condition (3) thus extends the
univariate condition

∑
t∈Z 
rG�t�
 <∞ to quadratic forms. However, in contrast

to the CLT for univariate sums, it does not cover certain additional cases,
first discovered by Fox and Taqqu [8], where the CLT for quadratic form also
holds. Specifically, it excludes the possible compensation of the long-range
dependence of �Xt� by a fast decay of the weights b�t�. These cases, which do
not have a simple formulation in the time domain, are best characterized in
the spectral domain. Conditions for the CLT in these situations were obtained
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by Giraitis and Taqqu [14], under assumptions involving m and n and the
spectral density of (Xt). (For NCLT results, see [15].) The conditions of this
paper are stated in the time domain and are, in general, not equivalent to
those in [14].

The method of proof for establishing the CLT is also different in the time
domain. Whereas in [14] we use approximation methods, here we apply the
method of moments. This is because, in the spectral domain, one can approx-
imate the possibly unbounded spectrum by a bounded one. In the time do-
main, however, one has to deal directly with the covariances, which decrease
slowly.

More specifically, Theorem 2.2 uses conditions formulated in terms of the
Lp norms of the covariance r�t� and the weights b�t�. These conditions are
of a global nature and do not require the power (or regular variation) decay
of r�t� and b�t� as t→ ∞. Therefore, they do not imply the regular variation
of the spectral density f�x� [Fourier transform of the covariance r�t�], nor of
the Fourier transform b̂�x� of the weights b�t� as the frequency x→ 0. They
also do not imply the finiteness of the norms fLp′ and ̂bLq′ of the spectral
density f and the function b̂ in the spectral domain, with p′� q′ complemen-
tary to p�q�p′ = p/�1 − p�� q′ = q/�1 − q�� p� q ≥ 1�, if p �= 2 and q �= 2.
Therefore, our time-domain conditions require different methods of proof. The
CLT with spectral domain conditions was obtained in [14]. We considered long-
memory sequences and showed that their long-memory behavior, expressed in
the spectral domain (the spectral density blows up at the origin), can be com-
pensated by the decay of the Fourier transforms b̂�x� at the origin. We used
an approximation technique, essentially replacing the spectral density by a
bounded one, which allowed us to approximate the bivariate quadratic forms
by univariate sums of m-dependent random variables. Such an approximation
technique, however, does not work with time-domain conditions. We thus use
here diagrams and the method of moments. It was already well known that
certain diagram formulas can be used to bound the moments and cumulants
for functionals of a Gaussian process (see, [6], [11] and [9]). It was, in fact,
possible to select a special class of diagrams in such a way that the contribu-
tion of the rest was negligible. In the case of Appell polynomials, analogous
diagram formulas can be written down, but some additional, more complicated
diagrams appear. Hence, in this case, similar results can be expected. But to
bound the contribution of the additional diagrams is a hard technical prob-
lem. This is done in this paper under time-domain Lp-type conditions on both
the covariance r and the weights b. These time-domain conditions clarify the
underlying dependence structure and are easy to apply.

The paper is structured as follows: Section 2 contains the main results,
Section 3, a description of the Appell polynomials and Section 4, the proofs.
Multivariate extensions are given in Section 5.

2. Main results. Condition (3) ensures the finiteness of the limiting vari-
ance and implies the CLT. This fact is stated in the following theorem.
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Theorem 2.1. Suppose∑
l1� l2� t∈Z

∣∣∣b�l1�b�l2�Cov�Pm�n�Xt�Xt+l1��Pm�n�X0�Xl2
��
∣∣∣ <∞�(4)

If b�0� = 0, suppose in addition
∑
t∈Z 
r�t�
m+n <∞. Then the CLT holds:

N−1/2QN ⇒ � �0� σ2�� N→ ∞(5)

and the limiting variance is

σ2 = ∑
l1� l2� t∈Z

b�l1�b�l2�Cov�Pm�n�Xt�Xt+l1��Pm�n�X0�Xl2
���(6)

The next theorem provides a condition on r and b, under which (4) is sat-
isfied.

Theorem 2.2. If

r ∈ Lp� b ∈ Lq� p� q ≥ 1(7)

and

min�mp−1�1� + min�np−1�1� + 2q−1 ≥ 3(8)

then the CLT holds and the limiting variance is (6).

The next theorem makes use of Theorem 2.4 in [14] and shows that under
some rather restrictive conditions on the covariance r�t� and the weights b�t�,
the long-range dependence of the �Xt� can be compensated by the fast decay
of b�t� in such a way that the CLT holds. These conditions ensure, in fact,
that the sufficient assumptions in the spectral domain, provided in [14], are
satisfied. The theorem involves quasi-monotone sequences: a sequence a�t� is
quasi-monotonically convergent to 0 if a�t� → 0 and a�t+1� ≤ a�t��1+ c/t� as
t→ ∞ for some c > 0. The sequence a�t� has bounded variation if

∑∞
t=1 
a�t+

1� − a�t�
 <∞.

Theorem 2.3. Suppose r�t� = 
t
−γ1L1�
t
�� b�t� = 
t
−γ2L2�
t
� �0 < γ1�
γ2 < 3� and

min�mγ1�1� + min�nγ1�1� + 2γ2 > 3�(9)

wherem�n ≥ 1. Suppose in addition that both sequences �r�t�� and �b�t�� have
bounded variation and are quasi-monotonically convergent to 0; if 1 < γ1 < 3,
r�t� has the same sign for large t and satisfies

∑
t∈Z r�t� = 0; if 1 < γ2 < 3, b�t�

has the same sign for large t and satisfies
∑
t∈Z b�t� = 0. Then the CLT holds.

The limiting variance is expressed by (6) if 0 < γ1� γ2 < 1.

The assumptions in Theorem 2.3 were used in [7], Theorem 3.
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Remarks.

(i) Under the assumptions of the previous theorems, the finite-dimensional
distributions of �Q�Nt�/

√
N� t ≥ 0� converge to those of �σB�t�� t ≥ 0� where

B�t� is standard Brownian motion. The proof of this more general statement
is similar to the proof of the one-dimensional theorems.

(ii) Condition (4) is not as general as the spectral domain condition (2.5)
in [14] but it is formulated entirely in the time domain. Theorem 2.2 can be
viewed as the time-domain analogue of Theorem 2.3 of [14]. Relations (7) and
(8) correspond to (2.10) and (2.11) of [14] but one cannot, in general, pass from
one to the other. Note also that the direction of the inequalities (8) here and
(2.13) in [14] is reversed.

Theorems 2.1, 2.2 and 2.3 are proved in Section 4. The value of a constant
C that appears in the proofs may change from line to line.

3. Appell polynomials and their cumulants. Let µ be some probabil-
ity measure on R with mean

∫
xdµ�x� = 0. The (univariate) Appell polynomi-

als Pn�x� corresponding to the distribution µ generalize the ordinary “powers”
because they are defined by the differential equation

P′
n�x� = nPn−1�x�

with

EPn�X� =
∫
Pn�x�dµ�x� = 0� n = 1�2� � � � �

providing the constants of integration. Thus, Pn�x� is defined whenever µ has
moments of order n. We note that

P0�x� =
∫
dµ�x� = 1� P1�x� = x� P2�x� = x2 −

∫
x2 dµ�x��

The Appell polynomials are orthogonal only when µ is a Gaussian measure
[20]. In that case, they are identical to the Hermite polynomials. The Appell
polynomials Pn�x� can also be defined by the generating function

∞∑
n=0

zn

n!
Pn�x� =

exp�zx�∫
ezx dµ�x� �

If the moment generating function M�z� = ∫
ezx dµ�x� does not exist, this

relation has to be understood as a formal expansion that allows Pn�x� to be
obtained by formal differentiation:

Pn�x� =
dn

dzn
exp�zx�∫
ezx dµ�x�

∣∣∣∣
z=0
�

where one sets �dk/dzk�M�z�
z=0 = EXk� k ≥ 0. Finally, Pn�x� can also be
expressed as

Pn�x� =
r∑
k=0

( ∑
�V��n−k�

�−1�r
r∏
i=1

χ
Vi


)
xk
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(see [23]), where χk = χ�k�µ� is the kth cumulant of the measure µ, and the
sum is taken over all partitions �V1� � � � �Vr�, r ≥ 1 of the set �1� � � � � n − k�
such that 
Vi
 ≥ 2. We set

∑
�V��0� · · · = 1, so that the coefficient of xn is 1. See

also [5] and [12] for an introduction to Appell polynomials.
To define the multidimensional analog of the Appell polynomials it is useful

to first introduce the Wick products (also called Wick powers) (cf. [12], [23]).
These are multivariate polynomials

�y1� � � � � yn ��ν�

= ∂n

∂z1 · · · ∂zn

[
exp

( n∑
1

zjyj

)/∫
Rn

exp
( n∑

1

zjyj

)
dν�y�

]∣∣∣∣
z1=···=zn=0

corresponding to a probability measure ν on Rn. Interpret this again as
a formal expression if ν does not have a moment generating function, the
Wick products being then obtained by formal differentiation. A sufficient
condition for the Wick products �y1� � � � � yn ��ν� to exist is E
Yi
n < ∞,
i = 1� � � � � n. If Y1� � � � �Yn are random variables with joint distribution
ν�dx� = P��Y1� � � � �Yn� ∈ dx�, then

�Y1� � � � �Yn �=�y1� � � � � yn ��ν�
∣∣
y1=Y1�����yn=Yn

is also called the Wick product of the random variables Y1� � � �Yn. It is con-
venient to use the notation

� Yt1� � � � �Yt1︸ ︷︷ ︸
n1

� � � � �Ytk� � � � �Ytk︸ ︷︷ ︸
nk

�= Pn1�����nk
�Yt1� � � � �Ytk�

(the indices in P correspond to the number of times that the variables in “� �”
are repeated). The polynomials Pn1�����nk

can be defined also by the recurrence
relations

∂

∂yj
Pn1�����nk

�y1� � � � � yk� = njPn1�����nj−1�����nk
�y1� � � � � yk��

EPn1�����nk
�Yt1� � � � �Ytk� = 0�

setting P0 ≡ 1�
We can now relate Wick products to Appell polynomials. If Pn, n ≥ 1 is

the univariate Appell polynomial corresponding to the distribution µ�dx� =
P�Y ∈ dx�, defined earlier, then

� Y� � � � �Y︸ ︷︷ ︸
n

�= Pn�Y��

We provide below some properties of the Wick products (cf. [12], [23]). LetW be
a finite set and Yi, i ∈W be a system of random variables. Let YW = ∏

i∈WYi
be the ordinary product, �YW � the Wick product, and χ�YW� = χ�Yi� i ∈ W�
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be the cumulant of the variables Yi� i ∈ W, respectively. We now recall the
definition of the mixed cumulant

χ�Y1� � � � �Yn� =
∂n

∂z1 · · · ∂zn
logE exp

( n∑
i=1

zjYj

)∣∣∣
z1=···=zn=0

�

The following relations hold ([23], Prop. 1):

�YW �= ∑
U⊂W

YU
∑
�V�

�−1�rχ�YV1� · · ·χ�YVr��

YW = ∑
U⊂W

�YU �∑
�V�
χ�YV1� · · ·χ�YVr� = ∑

U⊂W
�YU �E�YW\U��

where the sum
∑
U⊂W is taken over all subsets U ⊂W� including U = �, and

the sum
∑

�V� is over all partitions �V� = �V1� � � � �Vr�, r ≥ 1 of the set W\U.
We define Y� =� Y� �= χ�Y�� = 1.

It follows that Wick products are multilinear in the sense that, if ξu� u ≥ 1,
are independent random variables, then for any N ≥ 1,

�
N∑
u1=1

λ
�1�
u1 ξu1

� � � � �
N∑
un=1

λ
�n�
un ξun �=

N∑
u1=1

· · ·
N∑
un=1

λ
�1�
u1 · · ·λ�n�un � ξu1

� � � � � ξun �

(see also [5]). In particular, QN defined by (1), (2) can be written

QN = ∑
u1�����um+n∈Z

dN�u1� � � � � um+n� � ξu1
� � � � � ξum+n ��(10)

where

dN�u1� � � � � um+n�
= ∑
t� s∈Z

b�t− s�a�t− u1� · · ·a�t− um�a�s− um+1� · · ·a�s− um+n��(11)

Relations of this type will be used implicitly in the sequel.
An important property of the Appell polynomials is the existence of simple

combinatorial rules for calculation of the (mixed) cumulants, analogous to
the familiar diagrammatic formalism for the mixed cumulants of the Hermite
polynomials with respect to a Gaussian measure [19]. Let us assume thatW is
a union of (disjoint) subsets W1� � � � �Wk. If �i�1�� �i�2�� � � � � �i� ni� represent
the elements of the subset Wi, i = 1� � � � � k, then we can represent W as a
table consisting of rows W1� � � � �Wk, as follows: �1�1�� � � � � �1� n1�

� � � � � � � � �

�k�1�� � � � � �k�nk�

 =W�(12)

By a diagram γ we mean a partition γ = �V1� � � � �Vr�, r = 1�2� � � � of the table
W into nonempty sets Vi (the “edges” of the diagram) such that 
Vi
 ≥ 1. We
shall call the edge Vi of the diagram γ flat, if it is contained in one row of the
table W; and free, if it consists of one element, that is, 
Vi
 = 1. We shall call
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the diagram connected if it does not split the rows of the table W into two or
more disjoint subsets. We shall call the diagram γ = �V1� � � � �Vr� Gaussian
if 
V1
 = · · · = 
Vr
 = 2. Suppose as given a system of random variables Yi�j
indexed by �i� j� ∈W. Set for V ⊂W,

YV = ∏
�i� j�∈V

Yi�j and �YV �=� �Yi�j� �i� j� ∈ V� � �

For each diagram γ = �V1� � � � �Vr� we define the number

Iγ =
r∏
j=1

χ�YVj��(13)

Proposition 3.1 (cf. [12], [23]). Each of the numbers

(i) EYW = E�YW1 · · ·YWk�,
(ii) E��YW1 � · · · �YWk ��,

(iii) χ�YW1� � � � �YWk�,
(iv) χ��YW1 � � � � � � �YWk ��

is equal to ∑
Iγ�

where the sum is taken, respectively, over (i) all diagrams, (ii) all diagrams
without flat edges, (iii) all connected diagrams, (iv) all connected diagrams
without flat edges. If EYi�j = 0 for all �i� j� ∈W, then the diagrams in (i)–(iv)
have no free edges.

It follows, for example, that E �YW �= 0 (take W =W1, then W has only 1
row and all diagrams have flat edges).

We shall now apply the proposition to linear random variables Xt, that is,
of the form (2). The cumulant of Xt can be expressed in the form

χ�Xt1
� � � � �Xtk

� = ∑
s1�����sk

χ�ξs1
� � � � � ξsk�a�t1 − s1� · · ·a�tk − sk�

= χk�ξ0�
∑
s

a�t1 − s� · · ·a�tk − s��

where

χk�ξ0� = χk�ξ0� � � � � ξ0︸ ︷︷ ︸
k

�

is the kth cumulant of ξ0. This formula holds in view of the multilinearity of
the cumulant and the fact that for i.i.d. variables �ξj�, χk�ξj1

� � � � � ξjk� = 0 if
ji �= jl for some i �= l. This fact, part (iv) of Proposition 3.1 and the definition
(13) of Iγ imply the following formula for the cumulants of the Wick products
of linear variables (2):

cum��Xt1�1
� � � � �Xt1�n1

�� � � � � �Xtk�1
� � � � �Xtk�nk

�� = ∑
γ∈3�n1�����nk�

dγJγ�(14)
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where 3�n1� � � � � nk� denotes the set of all connected diagrams γ = �V1� � � � �Vr�
of the table W (12) without flat edges, dγ = χ
V1
�ξ0� · · ·χ
Vr
�ξ0� and

Jγ =
∑

s1�����sr∈Z

k∏
j=1

[
a�tj�1 − sj�1� · · ·a�tj�n1

− sj�n1
� · · ·

a�tk�1 − sk�1� · · ·a�tk�nk − sk�nk�
]
�

(15)

where si� j ≡ sl if �i� j� ∈ Vl, l = 1� � � � � r. We refer to (14) as the diagram
formula.

4. Proof of the time-domain theorems. We start with the following
lemma, which relates the covariances of the polynomials Pm�n�Xt�Xt+l� to
those of the variables Xt.

Lemma 4.1.∑
t∈Z

∣∣Cov�Pm�n�Xt�Xt+l1��Pm�n�X0�Xl2
��∣∣ <∞ for any l1� l2 ∈ Z(16)

if and only if ∑
t∈Z


r�t�
m+n <∞�(17)

Proof. First we show that (16) implies (17). Recall that 3�m+ n�m+ n�
denotes the set of connected diagrams of the table

W=
(
�1�1�� � � � � �1�m+ n�
�2�1�� � � � � �2�m+ n�

)
=
(
�1�1�� � � � � �1�m�� �1�m+ 1�� � � � � �1�m+ n�
�2�1�� � � � � �2�m�� �2�m+ 1�� � � � � �2�m+ n�

)
without flat edges. Here W consists of two rows and m + n columns. By the
diagram formula (14), we have

R�t� l1� l2� �= Cov�Pm�n�Xt�Xt+l1��Pm�n�X0�Xl2
��

= ∑
γ=�V1�����Vr�∈3�m+n�m+n�

d�γ�rV1
�t� l1� l2� · · · rVr�t� l1� l2��

where

rVl�t� l1� l2� =
∑
u∈Z

∏
�i� j�∈Vl

a�vi� j − u��(18)

and vi� j = t if �i� j� ∈ ��1�1�� � � � � �1�m��; vi� j = t + l1 if �i� j� ∈ ��1�m +
1�� � � � � �1�m + n��; vi� j = 0 if �i� j� ∈ ��2�1�� � � � � �2�m��; vi� j = l2 if �i� j� ∈
��2�m + 1�� � � � � �2�m + n��. Rewrite 3�m + n�m + n� as the disjoint union
32 ∪ 3>2, where 32 denotes the Gaussian diagrams γ = �V1� � � � �Vr�� 
V1
 =
· · · 
Vr
 = 2 and the 3>2 the diagrams γ containing Vl ∈ γ such that 
Vl
 > 2.
Thus,

R�t� l1� l2� =
∑
γ∈32

+ ∑
γ∈3>2

=� R2�t� l1� l2� +R>2�t� l1� l2��(19)
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In the case l1 = l2 = 0, we have

R2�t�0�0� =
∑
γ∈32

d�γ�rV1
�t�0�0� · · · rVm+n�t�0�0� = r�t�m+n ∑

γ∈32

1

since rV�t�0�0� = r�t� if 
V
 = 2 and d�γ� = �Eξ2
0�m+n = 1. Using (16), we will

get [ ∑
γ∈32

1
]∑
t∈Z


r�t�
m+n ≤ ∑
t∈Z


R�t�0�0�
 +∑
t∈Z


R>2�t�0�0�
 <∞�

provided ∑
t∈Z


R>2�t�0�0�
 <∞�(20)

We shall now prove (20). By definition of 3>2, there is Vi such that 
Vi
 > 2.
Two cases are possible.

(a) Suppose Vi contains more than one element of both rows of the table
W. Using inequalities of the form a�t − u�a�t − v� ≤ 2�a2�t − u� + a2�t − v��
and (5), we have∑

t


rVi�t�0�0�
 ≤ 4 sup
t


a�t�

Vi
−4 ∑
t� u∈Z

a2�t− u�a2�−u� <∞

since
∑
t∈Z a

2�t� <∞. Therefore,∑
t


rV1
�t�0�0�
 · · · 
rVr�t�0�0�
 ≤ C

∑
t


rVi�t�0�0�
 <∞

since 
rVj�t�0�0�
 ≤ C
∑
u∈Z 
a�t − u�a�−u�
 ≤ C

∑
u∈Z 
a�u�
2 < ∞ uniformly

in t ∈ Z for any Vj ∈ γ.
(b) 
Vi
 > 2 and Vi is a “ triangle” of γ; that is, it contains only one element

from the first or second row of the table W. This time, we consider
∑
r2
Vi

instead of
∑ 
rVi 
. Estimating as above, we see that

∑
t

r2
Vi
�t�0�0� ≤ const

∑
t∈Z

[ ∑
u∈Z


a2�u�a�t− u�

]2

≤ const
∑

u�u′∈Z

a2�u�a2�u′�∑
t∈Z


a�t− u�a�t− u′�


≤ const
[ ∑
u∈Z

a2�u�
]2 ∑

t∈Z

a2�t� <∞�

In the case (b), γ contains at least two Vi�Vj ∈ γ such that 
Vi
 > 2, 
Vj
 > 2,
because W has the same number of elements in each row. Hence the Cauchy
inequality yields∑
t


rV1
�t�0�0� · · · rVr�t�0�0�
 ≤ C

∑
t


rVi�t�0�0�

rVj�t�0�0�


≤ C
(∑

t

r2
Vi
�t�0�0�

)1/2(∑
t

r2
Vj
�t�0�0�

)1/2

<∞�
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Combining cases (a) and (b), we get∑
t


R>2�t�0�0�
 ≤
∑
γ∈3>2


d�γ�
∑
t


rV1
�t�0�0�
 · · · 
rVr�t�0�0�
 <∞�

This proves (20) and hence (17).

We now prove the converse, namely that (17) implies (16). Observe that in
the first part of the proof, relation (20) was a consequence only of

∑
t a

2�t� <∞,
and that, in fact, it can be strengthened to∑

t∈Z


R>2�t� l1� l2�
 <∞ for any l1� l2 ∈ Z�

In view of (19), it is then sufficient to show that (17) implies∑
t∈Z


R2�t� l1� l2�
 <∞�

But ∑
t∈Z


R2�t� l1� l2�
 ≤
∑
γ∈32


d�γ�
∑
t


rV1
�t� l1� l2�
 · · · 
rVm+n�t� l1� l2�


≤ 4
∑
γ∈32


d�γ�
∑
t


r�t�
m+n <∞

by (17), since l1 and l2 are fixed and


rVi�t� l1� l2�
 ≤ max�
r�t�
� 
r�t− l2�
� 
r�t+ l1�
� 
r�t+ l1 − l2�
�� ✷

Proof of Theorem 2.1. We divide QN (1) into two parts:

QN �=
N∑

t� s=1

b�t− s�Pm�n�Xt�Xs�

=
N∑

t� s=1�
 t−s
>K
+

N∑
t� s=1� 
t−s
≤K

= Q�1�
N�K +Q�2�

N�K�

(21)

where K > 1 is a fixed constant. The CLT in Theorem 2.1 will be proved if we
show that

lim
N→∞

N−1 VarQ�1�
N�K ≤ δ�K� → 0� K→ ∞(22)

and

N−1/2(Q�2�
N�K −EQ�2�

N�K

) ⇒N�0� σ2
K�� N→ ∞�(23)

where the limit

σ2
K → σ2� K→ ∞(24)

exists and is defined by (6).
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(i) We first prove (22). Note that

N−1 VarQ�1�
N�K =

N∑
t� s� t′�s′=1

b�t− s��̌
t− s
 > K�b�t′ − s′��̌
t′ − s′
 > K�

× Cov�Pm�n�Xt�Xs��Pm�n�Xt′�s′ ��
Since X is strictly stationary,

Cov�Pm�n�Xt�Xs��Pm�n�Xt′�Xs′ ��
= Cov�Pm�n�Xt−t′�Xs−t′ ��Pm�n�X0�Xs′−t′ ���

Setting −l1 = t− s and −l2 = t′ − s′, and denoting t− t′ by t, we get

N−1 VarQ�1�
N�K

≤ ∑
l1� l2� t∈Z


b�−l1��̌
l1
 ≥K�b�−l2�Cov�Pm�n�Xt�Xt+l1���Pm�n�X0�Xl2
�
�

Relation (4) implies that this tends to 0 as K→ ∞ and hence yields (22).
(ii) We now establish the CLT (23) for Q�2�

N�K. Assume first that all the
moments of ξ0 exist. It is then sufficient to show that all the cumulants of
N−1/2Q

�2�
N�K of order higher than two converge to zero. We have

Q
�2�
N�K =

K∑
l=−K

b�−l�
N∑
t=1

Pm�n�Xt�Xt+l� +RN�K�

where the correction RN�K involves a finite number of terms indepen-
dent of N. Since VarRN�K < ∞ uniformly bounded in N ≥ 1, we have
N−1/2RN�K → 0 in probability as N → ∞ for any fixed K > 0. Set
UN�l� =

∑N
t=1Pm�n�Xt�Xt+l�. Since cumulants are multilinear, it is sufficient

to show

cum�UN�l1�� � � � �UN�lk�� = o�Nk/2�(25)

as N → ∞ for any l1� � � � � lk ∈ Z and k ≥ 3 and to show convergence of the
covariances

N−1 Cov�UN�l1��UN�l2��
→ σl1� l2

�= ∑
t∈Z

Cov�Pm�n�Xt�Xt+l1��Pm�n�X0�Xl2
��

(26)

asN→ ∞ for any l1� l2 ∈ Z. Observe that in view of Lemma 4.1, the conditions
of our theorem imply both (17) and (16).

The proof of the convergence (25) in the case l1 = · · · = lk = 0 is given
in [10], Proposition 6 and is based on the diagram formula (14). In that
paper it is shown that (17) implies the CLT for univariate Appell poly-
nomials Pm+n�Xt� �= Pm�n�Xt�Xt�. In the case li ∈ Z the cumulants of
Pm�n�Xt�Xt+l1� are also calculated by the diagram formula (14). Since the
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li’s are fixed, the proof of (25) turns out to be the same as in the case
l1 = · · · = lk = 0.

We now turn to relation (26):

N−1 Cov�UN�l1��UN�l2��

=N−1
N∑

t� s=1

Cov�Pm�n�Xt−s�Xt−s+l1��Pm�n�X0�Xl2
��

=
N−1∑

v=−�N−1�

[
N−1

N∧�N−v�∑
s=1∨�1−v�

1
]

Cov�Pm�n�Xv�Xv+l1�� Pm�n�X0�Xl2
���

The dominated convergence theorem applies by (16) and hence relation (26)
follows by letting N→ ∞. This completes the proof of the CLT (23) when ξ0
has all moments.

If ξ0 has only 2�m + n� moments, replace it by ξ<a0 + ξ>a0 , where ξ<a0 =
ξ0�̌
ξ0
 ≤ a� − Eξ0�̌
ξ0
 ≤ a� and ξ>a0 = ξ0�̌
ξ0
 > a� − Eξ0�̌
ξ0
 > a�. Use
the multilinearity of the Wick powers to decompose Q�2�

N�K = Q�2��<a
N�K +Q�2��>a

N�K

where Q�2��<a
N�K involves only ξ<aj and Q�2��>a

N�K involves at least one ξ>aj . (Note

that the definitions of Q�2��<a
N�K and Q�2��>a

N�K are not symmetric.) More precisely,
using the multilinearity property of the Wick powers,

Pn1� n2
�Xt�Xt+l� = ∑

u1�����um+n∈Z

a�t− u1� · · ·a�t− um�a�t+ l− um+1�

· · ·a�t+ l− um+n� � ξu1
� � � � � ξum+n

�= ∑�· · ·� � ξ<au1
� � � � � ξ<aum+n �

+∑�· · ·� � ξu1
� � � � � ξum+n ��̌∃s = 1� � � � �m+ n � 
ξus 
 > a�

�= Pn1� n2
�X<a

t �X
<a
t+l� +P>an1� n2

�Xt�Xt+l�
where Pn1� n2

�X<a
t �X

<a
t+l� denotes the first sum above and P>an1� n2

�Xt�Xt+l� =
Pn1� n2

�Xt�Xt+l� − Pn1� n2
�X<a

t �X
<a
t+l�. Here X<a

t = ∑
u a�t − u�ξ<au denotes

the linear process with truncated i.i.d. sequence �ξ<au �. Note that the Ap-
pell polynomials Pn1� n2

�Xt�Xt+l� and Pn1� n2
�X<a

t �X
<a
t+l� correspond to differ-

ent random variables �Xt�Xt+l� and �X<a
t �X

<a
t+l� and are different and that

P>an1� n2
�Xt�Xt+l� involves at least one ξ>aj . We define Q�2��<a

N�K and Q�2��>a
N�K by

replacing in Q�2�
N�K the polynomial Pn1� n2

�Xt�Xt+l� by Pn1� n2
�X<a

t �X
<a
t+l� and

P>an1� n2
�Xt�Xt+l� respectively.

It is sufficient to show that

lim sup
a

lim
N
N−1 VarQ�2��>a

N�K = 0�(27)

Indeed, we already know that

N−1/2Q
�2��<a
N�K ⇒N�0� σ2

K�a��(28)
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since all moments of Q�2��<a
N�K exist. Relation (27) also implies that σ2

K�a� → σ2
K

�a→ ∞�. Then (23) follows from (27) and (28).
We now establish (27). From

∑
t∈Z 
r�t�
m+n <∞, using the same argument

as in the proof of Lemma 4.1, we get∑
t∈Z

∣∣Cov�Pm�n�X<a
t �X

<a
t+l1��Pm�n�X<a

0 �X
<a
l2
��∣∣ <∞ for any l1� l2 ∈ Z�

∑
t∈Z

∣∣Cov�Pm�n�Xt�Xt+l1��Pm�n�X<a
0 �X

<a
l2
��∣∣ <∞ for any l1� l2 ∈ Z�

[Only d�γ� in Lemma 4.1 is modified.] It follows, as in the proof of (26), that
the following limits exist:

lim
N
N−1 VarQ�2��<a

N�K =� σ �1�1�
K �a��

lim
N
N−1 Cov�Q�2�

N�K�Q
�2��<a
N�K � =� σ �1�2�

K �a��

lim
N
N−1 VarQ�2�

N�K =� σ2
K�

Moreover,

lim
a→∞σ

�1�1�
K �a� = lim

a→∞σ
�1�2�
K �a� = σ2

K�

because

cum�ξs1
� � � � � ξsl � ξ

<a
sl+1
� � � � � ξ<asl+p� → cum�ξs1

� � � � ξsl+p� as a→ ∞�
which equals 0 if si �= sj for some i� j = 1� � � � � l + p by the independence of
the ξ’s. Then

lim
N
N−1 VarQ�2��>a

N�K

= lim
N
N−1[VarQ�2�

N�K − 2 Cov�Q�2�
N�K�Q

�2��<a
N�K � + VarQ�2��<a

N�K

]
= σ �1�1�

K �a� − 2σ �1�2�
K �a� + σ2

K → 0� a→ ∞�
Thus, (27), and hence the CLT (23) holds.

(iii) We now establish relation (24). Since

σ2
K =N−1 VarQ�2�

N�K =
K∑

l1� l2=−K
b�−l1�b�−l2�N−1 Cov�UN�l1��UN�l2���

(24) follows from (26) and (4). Theorem 2.1 is now proved. ✷

Lemma 4.2. Let p1 ≥ 1� � � � � pk ≥ 1, p−1
1 + · · · +p−1

k = k− 1. If bj ∈ Lpj for
j = 1� � � � � k then

∑
v1�����vk−1∈Z


b1�v1� · · · bk−1�vk−1�bk�v1 + · · · + vk−1�
 ≤
k∏
j=1

bjLpj �
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Proof. If

Bl�y� =
∑

v1�����vl−1∈Z


b1�v1� · · · bl−1�vl−1�bl�y− �v1 + · · · + vl−1��
�

then, after a change of variables,∑
v1�����vk−1∈Z


b1�v1� · · · bk−1�vk−1�bk�v1 + · · · + vk−1�
 =
∑
v

bk�v�Bk−1�v�

≤ bkLpk Bk−1Lrk−1 �

where p−1
k + r−1

k−1 = 1 by Hölder’s inequality. We shall now use Young’s in-
equality

f ∗ gLr ≤ fLpgLq� 1 + r−1 = p−1 + q−1� p� q� r ≥ 1�

Applying it k− 1 times gives

Bk−1Lrk−1 ≤ bk−1Lpk−1 Bk−2Lrk−2 ≤ · · · ≤
k∏
j=1

bjLpj �

where 1+r−1
k−1 = p−1

k−1+r−1
k−2� � � � �1+r−1

2 = p−1
2 +p−1

1 . Summing these relations
and relation 1 = p−1

k + r−1
k gives k − 1 = p−1

1 + · · · + p−1
k . (Observe also that

rj ≥ 1, j = 1� � � � � k.) ✷

Proof of Theorem 2.2. As in the proof of Theorem 2.1, it is sufficient to
show that the relations (22)–(24) are satisfied. Note, that

∑
t∈Z 
r�t�
m+n <∞,

since (7) and (8) imply that m + n ≥ p. Therefore, (23) holds by the same
arguments as in the proof of Theorem 2.1. Let us now verify (22). Observe
that if

S �= ∑
u1����uk∈Z

c�u1� � � � � uk� � ξu1
� � � ξuk �

with weights c�u1� � � � � uk� satisfying the condition c�·� ∈ L2�Zk�, then

VarS = ES2 = ∑
γ∈3�k�k�

∑
u1�����ur∈Z

c�u11� � � � � u1k�c�u21� � � � � u2k�d�γ�

by the diagram formula (14). Since the first sum involves only finitely many
diagrams, we can use the Cauchy formula to get

VarS ≤ C�k� ξ0�
∑

u1�����uk∈Z

c2�u1� � � � � uk��
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where the constant C�k� ξ0� depends only on k and on the distribution of ξ0�

Therefore, for Q�1�
N�K defined as (21), we get

VarQ�1�
N�K ≤ C�ξ0�

N∑
t1� s1� t2� s2=1

∣∣b�t1 − s1��̌
t1 − s1
 ≥K�b�t2 − s2�

× rm�t1 − t2�rn�s1 − s2�
∣∣

≤ C�ξ0�N
∑

v1� v2� v3∈Z

∣∣b�v1�1�
v1
 ≥K�b�v2�

× rm�v3�rn�v1 + v2 + v3�
∣∣ =�NVK�

(29)

Let m�n ≥ 1. By assumption, p−1
1 +p−1

2 +2q−1 ≥ 3 where p−1
1 = min�mp−1�1�

and p−1
2 = min�np−1�1�� (Since for sequences r ∈ Lp ⇒ r ∈ Lp′

with p′ ≥ p,
we can assume p−1

1 + p−1
2 + 2q−1 = 3, by increasing for example p1). We can

now apply Lemma 4.2 to get

VK ≤ C�ξ0�b �̌
v
 ≥K�LqbLqrmLp1 rnLp2 → 0� K→ ∞
since

rmLp1 ≤
(∑ 
r�t�
m�max�m−1p�1��

)1/p1 ≤
(∑ 
r�t�
max�p�m�

)1/p1

≤ C
(∑ 
r�t�
p

)1/p1
<∞�

since r ∈ Lp. Similarly, rnLp2 <∞.
Assume now that m ≥ 1, n = 0. Then condition (8), namely, min�mp−1�1�+

2q−1 ≥ 3 implies that q = 1 and m ≥ p. Therefore, again VK → 0 �K→ ∞�
since both b and rm in (29) are in L1. This establishes (22). It remains to
verify relation (24), namely, that σ2

K converges to σ2, given by (6), as K→ ∞.
Since Q�1�

N�K +Q�2�
N�K = QN and VarQ�2�

N�K = Var�Q�1�
N�K − 2 Cov�QN�Q

�1�
N�K� +

VarQ�1�
N�K, then


σ2
K − σ2

K′ 
 ≤ lim sup
N

N−1
VarQ�2�
N�K − VarQ�2�

N�K′ 


≤N−1(2�VarQN VarQ�1�
N�K�1/2 + 2�VarQN VarQ�1�

N�K′ �1/2

+ VarQ�1�
N�K + VarQ�1�

N�K′
)
�

Now, VarQ�1�
N�K ≤ CNVK by (29), VarQ�2�

N�K ≤ CN since Q�2�
N�K satisfies the

CLT [relation (23)], and hence VarQN ≤ 2 VarQ�1�
N�K + 2 VarQ�2�

N�K ≤ CN as
N→ ∞� Since VK → 0 as K→ ∞, we get


σ2
K − σ2

K′ 
 → 0� K�K′ → ∞�
Thus σ2

K → σ2 <∞ and hence (24) holds and the sum on the right-hand side
of (6) converges. This establishes the CLT with limiting variance σ2 given by
(6). ✷
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Proof of Theorem 2.3. The assumptions imply that f and b̂ satisfy the
assumptions f�x� ≤ C
x
−α, b̂�x� ≤ C
x
−β, x ∈ �−π�π� of Theorem 2.4 in [14]
with the α = 1−γ1 and β = 1−γ2. (For details see the proof in [7], Theorem 3).
Moreover, if 0 < γ1� γ2 < 1, then r ∈ Lp, b ∈ Lq with p > �γ1�−1� q > �γ2�−1.
Then assumptions (7) and (8) of Theorem 2.2 are satisfied as well and hence
the limiting variance can also be represented in the form (6). ✷

5. Multivariate generalizations. The following result is a multivariate
generalization of Theorem 2.2. Let

X
�i� l�
t = ∑

u∈Z

a�i� l��t− u�ξu� t ∈ Z� i = 1� � � � � k� l = 1�2

be a 2k stationary time series with the same mean 0 and finite variance
innovations sequence �ξu� u ∈ Z� and consider

Q
�i�
N �=

N∑
t� s=1

bi�t− s�Pmi�ni
�X�i�1�

t �X
�i�2�
s ��

i = 1� � � � � k. Assume E
ξ0
2�mi+ni� <∞, in order to ensure that Q�i�
N has finite

second moments for all i. Let r�i� l�� �i′� l′��t� = EX
�i� l�
t X

�i′� l′�
0 , 1 ≤ i� i′ ≤ k�1 ≤

l� l′ ≤ 2� denote the cross covariances.

Theorem 5.1. Suppose that each quadratic form

Q
�i�
N �=

N∑
t� s=1

bi�t− s�Pmi�ni
�X�i�1�

t �X
�i�2�
s �� i = 1� � � � � k

satisfies the assumptions∑
l1� l2� t∈Z

∣∣∣bi�l1�bj�l2�Cov
(
Pmi�ni

�X�i�1�
t �X

�i�2�
t+l1 ��

Pmj�nj
�X�j�1�

0 �X
�j�2�
l2

�
)∣∣∣ <∞� 1 ≤ i� j ≤ k

(30)

and ∑
t∈Z


r�i� l�� �i′�l′��t�
mi+ni <∞� 1 ≤ i� i′ ≤ k� 1 ≤ l� l′ ≤ 2�(31)

Then as N→ ∞,

N−1/2�Q�1�
N � � � � �Q

�k�
N � ⇒ �Z�1�� � � � �Z�k���(32)

where �Z�1�� � � � �Z�k�� is the Gaussian vector with zero mean and cross covari-
ances

σi�j ≡ EZ�i�Z�j�

�= ∑
l1� l2� t∈Z

bi�l1�bj�l2�

× Cov
(
Pmi�ni

�X�i�1�
t �X

�i�2�
t+l1 ��Pmj�nj

�X�j�1�
0 �X

�j�2�
l2

�
)
�

(33)
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Remark. In view of Lemma 4.1, condition (31) is automatically satisfied
for any i = i′ if X�i�1� =X�i�2� and bi�0� �= 0.

Proof of Theorem 5.1. It is sufficient to show that

SN =N−1/2
k∑
i=1

ciQ
�i�
N ⇒ S �=

k∑
i=1

ciZ
�i�� N→ ∞(34)

for any real numbers ci, i = 1� � � � � k. As in the proof of Theorem 2.1, we divide
Q

�i�
N (1) into two parts:

Q
�i�
N �=

N∑
t� s=1

bi�t− s�Pm�n�X�i�1�
t �X

�i�2�
s �

=
N∑

t� s=1� 
t−s
>K
+

N∑
t� s=1� 
t−s
≤K

= Q�i�1�
N�K +Q�i�2�

N�K�

where K > 1 is a fixed constant. Then the multivariate CLT (32) follows from
the relations

lim
N→∞

N−1 VarQ�i�1�
N�K ≤ δ�K� → 0� K→ ∞� i = 1� � � � � k�(35)

N−1/2
k∑
i=1

ciQ
�i�2�
N�K ⇒

k∑
i=1

ciZ
�i�
K � N→ ∞�(36)

EZ
�i�
KZ

�j�
K → EZ�i�Z�j�� K→ ∞� 1 ≤ i� j ≤ k�(37)

Since the cumulants are multilinear, the proof of relations (35), (36) and (37)
under assumptions (30) and (31) can be obtained in the same way as that of
relations (22), (23) and (24) in the proof of Theorem 2.1, respectively. ✷

Theorem 5.2. The statement of Theorem 5.1 remains true if condition (30)
is replaced by

r�i�1�� �i�1� ∈ Lp�i�1�� r�i�2�� �i�2� ∈ Lp�i�2��

bi ∈ Lqi� p�i�1�� p�i�2�� qi ≥ 1�
(38)

for 1 ≤ i ≤ k and

min�mip
−1
�i�1��1� + min�nip−1

�i�2��1� + 2q−1
i ≥ 3� 1 ≤ i ≤ k�(39)

In addition, a�i�1� ∈ L1 if k > 1, mi = 1� ni = 0 and a�i�2� ∈ L1 if k > 1,
mi = 0� ni = 1.

Remark. This extra condition was not required in the “univariate” version,
Theorem 2.2, where only one form was considered.
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Proof of Theorem 5.2. One has to prove (35), (36) and (37). An argument
similar to that of Theorem 2.2 shows that under assumptions (38) and (39),
relation (35) is valid. It remains to check limits (36) and (37).

Since the proof of (37) is similar to that of (24) in Theorem 2.2, we only
show here that (36) holds.

Set U�i�
N �l� = ∑N

t=1Pmi�ni
�X�i�1�

t �X
�i�2�
t+l �, i = 1� � � � � k. Since cumulants are

multilinear, it is sufficient to show, as in the proof of Theorem 2.2, that

cum�U�i1�
N �l1�� � � � �U

�ip�
N �lp�� = o�Np/2�(40)

as N → ∞ for any l1� � � � � lp ∈ Z, 1 ≤ i1� � � � � ip ≤ k and p ≥ 3, and to prove
convergence of the cross covariances

N−1 Cov�U�i1�
N �l1��U�i2�

N �l2��
→ σl1� l2

�= ∑
t∈Z

Cov�Pm�n�X�i1�1�
t �X

�i1�2�
t+l1 ��Pm�n�X�i2�1�

0 �X
�i2�2�
l2

��
(41)

as N → ∞ for any l1� l2 ∈ Z and 1 ≤ i1� i2 ≤ k. The convergence of the
cumulants (40) can be obtained similarly to relation (25) in Theorem 2.2, and
its proof is based on assumption (31).

The proof of (41) is more involved. Clearly, it is sufficient to check that∑
t∈Z


R�t� l1� l2�
 <∞�(42)

where

R�t� l1� l2� �= Cov�Pm�n�X�i1�1�
t �X

�i1�2�
t+l1 ��Pm�n�X�i2�1�

0 �X
�i2�2�
l2

��
= ∑

γ=�V1�����Vr�∈3�mi1
+ni1 �mi2

+ni2 �
d�γ�rV1

�t� · · · rVr�t��

Here
rV�t� ≡ rV�t� l1� l2�

= ∑
u∈Z

a�i1�1��t− u�n1�V�a�i1�2�

× �t+ l1 − u�n2�V�a�i2�1��−u�n3�V�a�i2�2��l2 − u�n4�V�

(43)

and n1�V� = 
V∩��1�1�� � � � � �1�mi1
��
� n2�V� = 
V∩��1�mi1

+1�� � � � � �1�mi1
+

ni1��
� n3�V� = 
V ∩ ��2�1�� � � � � �2�mi2
��
� n4�V� = 
V ∩ ��2�mi2

+
1�� � � � � �2�mi2

+ ni2��
� Relation (42) will follow if we show that∑
t∈Z


rV1
�t� · · · rVr�t�
 <∞(44)

for any γ ∈ 3�mi1
+ ni1�mi2

+ ni2�� Since 
V1
 + · · · + 
Vr
 ≡ 
W
 =mi1
+ ni1 +

mi2
+ ni2 , then by Hölder’s inequality,∑

t


rV1
�t� · · · rVr�t�
 ≤

r∏
i=1

(∑
t


rVi�t�

W
/
Vi

)
Vi
/
W


�(45)

Set qi =
∑
t 
rVi�t�

W
/
Vi
, i = 1� � � � � r.
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If 
Vi
 = 2, (“Gaussian” Vi), namely, Vi = ��i1� l�� �i2� l′��, then 
W
/
Vi
 =

W
/2 ≥ min�mi1

+ ni1�mi2
+ ni2�, and therefore,

qi ≤ C
∑
t


r�i1� l���i2� l′��t�
min�mi1
+ni1 �mi2

+ni2 � <∞

by assumption (31).
Recall that Vi is a “triangle” if 
Vi
 > 2 and if it contains only one ele-

ment from the first or second row of the table W. If Vi is non-Gaussian non-
“triangle,” then as in the proof of case (a), Lemma 4.1, we have that qi < ∞�
Thus, if γ = �V1� � � � �Vr� consists of either Gaussian or non-Gaussian non-
“triangle” V′

is, then (44) holds.
Suppose now that γ contains only one “triangle” Vi. (To simplify the nota-

tions, set i = 1 and suppose that it is the first row of the table W that contains
a single element of the “triangle” V1). In contrast to case (b) of Lemma 4.1,
we have to consider three scenarios.

(b1) Suppose all other Vj’s are “Gaussian,” j = 2� � � � � r and r ≥ 2. Then
r = mi1

+ ni1 and there are mi1
+ ni1 − 1 Gaussian Vj’s. Since r ≥ 2, by the

Cauchy inequality,∑
t∈Z


rV1
�t� · · · rVr�t�


≤ C
(∑
t∈Z


rV1
�t�
2

)1/2(∑
t∈Z


rV2
�t� · · · rVr�t�
2

)1/2

≤ C
(∑
t∈Z


rV1
�t�
2

)1/2

max
j=2�����r

(∑
t∈Z


rVj�t�
2�mi1
+ni1−1�

)1/2

<∞

since
∑
t∈Z 
rV1

�t�
2 < ∞ for the “triangle” V1 [see case (b) in the proof of
Lemma 4.1], and

∑
t∈Z 
rVj�t�
2�mi1

+ni1−1� < ∞ for j = 2� � � � � r “Gaussian”
Vj’s. Indeed, 2�mi1

+ ni1 − 1� ≥ mi1
+ ni1 and for Gaussian Vj, rVj is a cross

covariance, so we can use assumption (31).
(b2) Suppose r = 1, that is, γ consists of a single “triangle” V1. (Assume

without loss of generality mi1
= 1� ni1 = 0�� Then

q1 = ∑
t∈Z


rV1
�t�
 ≤ C ∑

t� u∈Z


a�i1�1��t− u�
max�
a�i2�1��u�
2� 
a�i2�2��u�
2� <∞

using the special assumption a�i1�1� ∈ L1, which holds in this case and the
standard assumptions a�i1�1�� a�i1�2� ∈ L2.

(b3) Suppose that γ contains more than one “triangle” (say V1�V2). Then∑
t∈Z


rV1
�t� · · · rVr�t�
 ≤ C

∑
t∈Z


rV1
�t�rV2

�t�


≤ C
(∑
t∈Z


rV1
�t�
2

)1/2(∑
t∈Z


rV2
�t�
2

)1/2

<∞�

Relation (42) is now proved. ✷
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In the next result, the weights are different, but the processes are identical.

Corollary 5.1. Suppose that

Q
�i�
N �=

N∑
t� s=1

bi�t− s�Pmi�ni
�Xt�Xs��

i = 1� � � � � k, where X�t� = ∑
u∈Z a�t− u�ξu� t ∈ Z is a linear process.

(A1). If mi + ni = 1 for some i = 1� � � � � k, assume

a ∈ L1 and
{
bj ∈ L1� for all j = 1� � � � � k such that mi = 0 or ni = 0�
bj ∈ L2� for all j = 1� � � � � k such that mj ≥ 1 and nj ≥ 1�

(A2). If mi + ni ≥ 1 for all i = 1� � � � � k, assume

r ∈ Lp� bi ∈ Lqi� qi ≥ 1� i = 1� � � � � k�

and

min�mip
−1�1� + min�nip−1�1� + 2q−1

i ≥ 3� i = 1� � � � � k�

Then the multivariate CLT (32) holds.
The proof of the corollary follows from Theorem 5.2.
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