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ABSENCE OF GEODESICS IN FIRST-PASSAGE
PERCOLATION ON A HALF-PLANE

BY JAN WEHR AND JUNG WOO

University of Arizona

An H-geodesic is a doubly infinite path which locally minimizes the
passage time in the i.i.d. first passage percolation model on a half-plane H.
Under the assumption that the bond passage times are continuously
distributed with a finite mean, we prove that, with probability 1, H-geo-
desics do not exist. As a corollary we show that, with probability 1, any
geodesic in the analogous model on the whole plane Z2 has to intersect all
straight lines with rational slopes.

1. Introduction. First passage percolation has been a subject of intense
� � � �research in recent years. References 1 and 6 are excellent general refer-

ences which also include big bibliographies. Among other recent papers on
� �first passage percolation of general interest, we mention 3 . Below we define

the model and state our main results as well as make some remarks about
their relation to other work.

The subset of R2 is Z2, consisting of the points with integer coordinates.
Elements of Z2 are called sites. A bond of Z2 is a line segment connecting two
sites with Euclidean distance 1. If L is a subset of Z2, a bond of L is a bond of
Z2, both of whose endpoints are in L.

Ž .A finite path is an alternating sequence x , b , x , b , . . . , x , b , x of0 1 1 2 n�1 n n
sites and bonds of Z2 such that for i � 1, . . . , n, b is the bond connectingi

Ž .x to x and, in particular, the distance from x to x equals one . Ani�1 i i�1 i
Žinfinite path is defined similarly, with i ranging through all integers posi-

.tive, negative and zero . Note that with this definition, an infinite path is
infinite ‘‘in both directions,’’ that is, it has no beginning and no end. A path in
L is a path all of whose sites and bonds are sites and bonds of L. A path can
naturally be considered as a subset of R2 and we will sometimes use the word
‘‘path’’ in this sense. For path � and x and y sites of � , � is called ax, y
segment of � if it is a path with two end sites x and y and it is a subset of � .
We say that two paths � and � � meet more than once if there exist
x, y � � � � � such that � � � � .x, y x, y

� 24Let t : b is a bond in Z be a family of independent identically dis-b
Ž .tributed shortly i.i.d. continuous positive real-valued random variables on a
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Ž .probability space �, P . For a finite path � , we define the passage time of � ,

n

1 t � � t ,Ž . Ž . Ý bi
i�1

where b runs through all bonds of � . For a given connected subset L, a firsti
� Ž .�passage time in L between two sites x and y of L denoted t x, y isL

defined as the infimum of passage times of all paths in L with two end sites x
Žand y. A path which achieves the infimum always exists and is unique see

.Lemma 8 below . It is called the finite L-geodesic connecting x to y and
Ž .denoted � x, y . Thus a finite L-geodesic minimizes the passage time in LL

between its two end sites in L, that is,

t � x , y � t x , y .Ž . Ž .Ž .L L

Ž .Note that any segment of � x, y is also a finite L-geodesic. We now defineL
what it means for an infinite path in L to be an L-geodesic. This is the main
object studied in this work.

ŽDEFINITION 1. An infinite path � in L is called an infinite L-geodesic or
. 2simply an L-geodesic if all its segments � are finite L-geodesics. Z -geo-x, y

desics will simply be called geodesics.
While finite geodesics always exist, existence of infinite geodesics is a

totally different matter. This question was, to the best of our knowledge, first
Ž � �.asked by H. Furstenberg see 1 . It is equivalent to the problem of existence

Ž .of nontrivial i.e., nonconstant ground states in the two-dimensional Ising
Žferromagnet with random exchange constants see the forthcoming lecture

� � .notes 6 and references therein . Ground states of higher-dimensional ran-
dom ferromagnets are similarly related to hypersurfaces with minimal ran-

Ž� � � �. 2dom weights 4 , 6 . It is believed that on Z infinite geodesics do not exist.
� � � � ŽPartial results in this direction have been obtained in 5 and 7 see also

� �.6 . It is proven there that, with the unverified uniform curvature hypothesis
of first-passage asymptotic shape, there cannot exist any geodesics other than

�those with asymptotic directions x and y at both infinities such geodesicsˆ ˆ
Ž . � Ž .are called x, y geodesics there . Furthermore, x, y geodesics were ruledˆ ˆ ˆ ˆ

Ž . � �out for almost all x and y . In 8 it is shown that the number of geodesics isˆ ˆ
either zero or infinity. This last result holds in all dimensions and applies
also to the case of minimal hypersurfaces. It is possible that the technique of
the present paper can also be generalized to minimal hypersurfaces in higher
dimensions.

THE MAIN ASSUMPTION. Throughout this paper we will assume that t areb
i.i.d. positive real-valued random variables with a continuous distribution

� �such that E t � �. It guarantees the following facts, which we will use inb
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the proof:

Ž .No two different L-geodesics finite or infinite meet more
than once.
Any event invariant under translation by some integer2Ž .
lattice vector has probability zero or one.
A large deviation estimate for the number of bonds of a

Ž .finite L-geodesic holds see Lemma 9 .

We now state our main results: let H denote the upper half-plane

H � x , x : x � 0 .� 4Ž .1 2 2

THEOREM 2. With probability 1 there exists no H-geodesic.

ŽIt follows from the above theorem that with probability 1 any geodesic i.e.,
2 .Z -geodesic has to intersect the horizontal coordinate axis. Moreover, given

any straight line, with probability 1 any geodesic intersects this line. Hence
Žthe following corollary for a more detailed proof, see the end of the next

.section .

COROLLARY 3. Given any straight line l in R2, consider a half-plane whose
boundary is l. We denote the intersection of this half-plane with the lattice Z2

by H . Then, with probability 1 there is no H -geodesic. As a consequence,l l
2 Ž .with probability 1 all Z -geodesics if they exist have to intersect all straight

lines with rational slopes.

2. Proof of main results. Let us introduce an event

� 4K* � there exists at least one H-geodesic .

Ž .Since K* is translation invariant under horizontal translations, by 2 K* is
a zero or one event. Hence in order to prove the main theorem, we only need

� � � �to rule out P K* � 1. Therefore we will assume P K* � 1 throughout this
�Ž . Ž .�section and reach two contradictory statements 23 and 24 , which will

imply Theorem 2.
Note that any H-geodesic � divides R2 � � into two components, say,

	 	Ž . � �Ž .R � R � , and R � R � , that is,

R	 � � R� � � �,Ž . Ž .
R	 � 
 R� � � R2 � � ,Ž . Ž .3Ž .

� R	� � R�� � ,
� Ž .where R is a region that contains 0, �1 and where �A denotes the usual

2 �Ž .boundary of a set A in R . Hence for any points x, y � R � , no bond b
Ž . 	Ž .belonging to the finite H-geodesic � x, y can be an element of R � ,H

because otherwise two different finite H-geodesics would meet more than
once. Now we are ready to prove the following proposition.
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� �PROPOSITION 4. Assume P K* � 1. Consider the sequence of finite H-geo-
Ž . Ž . Ž .desics � x , y , where x � �n, 0 , y � n, 0 , n � Z . With probability 1,H n n n n 	

this sequence has a limit:

� � lim � x , y .Ž .0 H n n
n��

Moreover, � is an H-geodesic and for any H-geodesic � ,0

4 � � R� � 
 � .Ž . Ž .0

The last statement says that � lies on or below any other H-geodesic.0

PROOF. Let us introduce rectangular boxes and events which are used in
the rest of this section:

B � B l � x , x � Z2 : �l � x � l , 0 � x � 2 l ,Ž . Ž .� 41 2 1 25Ž .
K � K l � At least one H-geodesic intersects B l ,� 4Ž . Ž .

where l is a positive integer. Take � � K*. Choose any H-geodesic � , and
pick l such that

6 B l � � � �.Ž . Ž .
Note that

7 � x , y is a subset of R� � 
 � ,Ž . Ž . Ž .H n n

Ž .since otherwise two H-geodesics � and � x , y would meet more thanH n n
Ž . Ž . Ž . Ž .once. It follows from 6 and 7 that all � x , y intersect B l . Hence thereH n n
Ž . Ž .exists a bond b in B l and a subsequence of � x , y , all elements ofH n n

which contain b. Continuing this procedure for consecutive bonds and choos-
ing further subsequences, by a standard diagonal argument there exist a

Ž .doubly infinite path � and a subsequence of finite H-geodesics � x , y ,0 H n nk k

which contain any fixed bond of � for all sufficiently large k. By construction0
Ž .of � any segment of � is a subset of � x , y for some k, which implies0 0 H n nk k

that any segment of � is a finite H-geodesic. Hence � is an infinite0 0
Ž .H-geodesic. Since the sequence � x , y is monotone in the sense that forH n n

Ž . Ž .n � m, � x , y lies above or on � x , y , it now follows that the wholeH n n H m m
Ž .sequence converges to � and from 7 it follows that � lies on or below any0 0

H-geodesic.

�Ž . 2 4LEMMA 5. Let n be a positive integer and let H� � x , x � R : x � n .1 2 2
With probability 1, for any infinite H-geodesic � intersecting the site z �
Ž .z , z with z � n,1 2 2

8 H� � R	 � is nonempty and all its components are bounded.Ž . Ž .

Boundary of each component is a self-avoiding loop, which is a bond-disjoint
union of segments of � and segments of the boundary of H�.



J. WEHR AND J. WOO362

PROOF. In order to prove the boundedness of each component of H� �
	Ž .R � , it is sufficient to prove that

�P There exists an H-geodesic with an infinite connected
9Ž . �part contained in H� � 0.

Since the distribution of t is continuous, for some 0 � � � 	 we haveb
� � � � Ž .P t � � � 0 and P t � 	 � 0. Take a positive integer m � 2n�
 	 � � .b b

Then
10 	 m � � � m 	 2n .Ž . Ž .

For each integer k, consider a rectangular box

C � C m, n � x , x : 2km � x � 2k 	 1 m , 0 � x � n .� 4Ž . Ž . Ž .k k 1 2 1 2

We say that a path in H crosses C if its segment connects the left and thek
right boundaries of C inside C , without intersecting the upper boundary ofk k
C . Consider the eventsk

� 4F � At least one H-geodesic crosses C ,k k

� 4E � t � � for all bonds b � � C � x � 0 and�k b k 211Ž .
t � 	 for all other bonds b � C .4b k

Note that E are independent with the same positive probability and that fork
Ž .the choice of m in 10 and for each k, E is disjoint with F . By thek k

Borel�Cantelli lemma

� �P E holds for infinitely many positive k � 1.k

Hence we get

� �12 P F holds for all sufficiently large k � 0.Ž . k

Similarly we get

� �13 P F holds for all sufficiently small k � 0.Ž . k

Ž . Ž . Ž .From 12 and 13 , we obtain 9 . The rest of the lemma follows immediately.
Ž . �Ž . 2 4Let us recall that B � B l � x , x � Z : �l � x � l, 0 � x � 2 l1 2 1 2

Ž .and that K is the event that at least one H-geodesic intersects B l . Define
Ž .translations of B � B l for 0 � i, j � k and L � 0,

B � B l , L � B 	 iL, jL .Ž . Ž .i , j i , j

Note that B are mutually disjoint for L � 2 l.i, j

PROPOSITION 6. Let
� �14 
 � 1 � P K .Ž .

Then
	15 P B � R � � 
 ,Ž . Ž .i , j 0

�16 P B � R � � 
 ,Ž . Ž .i , j 0

217 P � � B � � for all 0 � i , j � k � 1 � 2k 
 .Ž . 0 i , j
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PROOF. Let
H � x , x : x � jL ,� 4Ž .j 1 2 2

H low � x , x : x � jL 	 2 l .� 4Ž .j 1 2 2

Define the following events:

K � At least one H -geodesic intersects B ,� 4i , j j i , j

K low � At least one H low-geodesic intersects B .� 4i , j j i , j

Obviously the above events and sets depend on l and L. Since l and L
remain fixed throughout the proof, we will suppress this dependence in the
notation. Since our model is invariant under translations by integer vectors
and under rotations by 180�, we have

low� �18 P K � P K � P K .Ž . i , j i , j

Note that
� 4K � � intersects B .0

Let us introduce the following events:

E � � � B � � .� 4i , j 0 i , j

Ž . � 	Ž .4 � �Ž .4For each pair i, j , K* is a disjoint union of B � R � , B � R �i, j 0 i, j 0
and E , that is,i, j

19 K* � B � R	 � 
 B � R� � 
 E .Ž . Ž . Ž .� 4 � 4i , j 0 i , j 0 i , j

Ž . 	Ž . 	Ž . lowFirst we will prove 15 . Assume B � R � . Since the set R � � Hi, j 0 0 j
Ž .contains B , by Lemma 5 exactly one of its components bounded containsi, j

B . Hence there is no H low-geodesic intersecting B since otherwise twoi, j j i, j
low � Ž .�different finite H � H-geodesics would meet more than once see 2 .j

Therefore,

20 B � R	 � � � � K low .Ž . Ž .� 4i , j 0 i , j

Ž . Ž . Ž . Ž .Using 14 , 18 and 20 , we get 15 .
Ž . �Ž .To prove 16 , assume B � R � . By monotone convergence ofi, j 0

Ž . Ž .� x , y to � see Proposition 4 , for sufficiently large n, B lies insideH n n 0 i, j
Ž . � � � �the loop � x , y 
 x , y , where x , y is the horizontal line segmentH n n n n n n

Ž . Ž . Ž .connecting x � �n, 0 to y � n, 0 . Again by 2 , there is no H -geodesicn n j
intersecting B , that is,i, j

21 B � R� � � � � K .Ž . Ž .� 4i , j 0 i , j

Ž . Ž . Ž . Ž .Using 14 , 18 and 21 , we end the proof of 16 .
Ž . Ž . Ž . Ž . � �To prove 17 , from 15 , 16 and 19 we have P E � 1 � 2
 . Thus fori, j

k � 0,

222 P E � 1 � 2k 
 .Ž . � i , j
0�i , j�k

This completes the proof. �
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REMARK. In particular, for any k � 0, choose l sufficiently large to guar-
� Ž .� 2 Ž . Ž .antee 1 � P K l � 1
4k . For such a choice of l k and for any L, 22

implies the following estimate:

123 P E l k , L � .Ž . Ž .Ž .� i , j 2
0�i , j�k

Ž .Note that the intersection in 23 still depends on k and L.
Ž .The following proposition shows that 23 cannot be true for large k if L is

� Ž .�large enough depending on k and l k . This will be the desired contradic-
� �tion, which will imply P K* � 0.

� 4 � Ž .PROPOSITION 7. For any k � max 8c, 2 c is a constant in 33 ; see Lemma
�9 below and for any l, there exists an L � 4 l such that

124 P E l , L � .Ž . Ž .� i , j 2
0�i , j�k

ŽPROOF. Let us assume � � � E . Let L � 2 l B are mutually0 � i, j� k i, j i, j
.disjoint for such L . Then � intersects all sets B . Let x � B belong to0 i, j i, j i, j

Ž . � 24� for all pairs i, j where 0 � i, j � k. Let y : 1 � m � k denote the0 m
� 4points x listed in the order in which they occur along � . We have thei, j 0

Ž . Ž .2following decomposition of � y , y segment of � into bond-disjoint0 1 k 0
pieces:

� y , y 2 � � y , y .Ž . Ž .�0 1 k 0 m m	1
21�m�k �1

Note that y , y 2 � � B and, moreover, that y and y 2 belong to1 k i, j i, j 1 k
different sets B , which implies thati, j

� �225 y � y � L � 2 l.Ž . 1 k

Hence for such k � 2 and L � 4 l,

k 2L
2� �226 � y , y � k � 1 L � 2 l � .Ž . Ž . Ž . Ž .0 1 k 4

Ž . Ž .Therefore from 25 and 26 we get

k 2L
� �27 E � � x , y � ,Ž . Ž .� �i , j H½ 540�i , j�k � �x , y�� B , x�y �L�2 li , j i , j

Ž . 1where � x, y is a finite H-geodesic connecting x to y. The l -diameter ofH
Ž .2 2the set � B is less than 2kL and the set � B has exactly 2 l 	 1 ki, j i, j i, j i, j

Ž .sites. Hence from 27 ,

2k L22 2 � �P E � 2 l 	 1 k max P � x , y �Ž . Ž .� i , j H 4� �L�2 l� x�y �2 kL0�i , j�k
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Ž �Ž . �4. �Ž . �By taking k � 8c, a � 1
4 2 l 	 1 k , and L � ln 4 	 4 ln 2 l 	 1 k
Ž . Ž . Ž 2 .where c, a and L are constants in 33 see Lemma 9 , we get k L
4 �

� �c x � y for x, y � � B andi, j i, j

P E� i , j
0�i , j�k

4 � � � �� 2 l 	 1 k max P � x , y � c x � yŽ . Ž .H
� �L�2 l� x�y �2 kL

28Ž .

4 1� 2 l 	 1 k exp �L 	 a � ,Ž . Ž .Ž . 2

Ž .where in 28 we have used Lemma 9. Hence the proof is complete. �

� � Ž .PROOF OF THE MAIN THEOREM. Assuming that P K* � 1, we obtained 23
Ž . � �and 24 which leads to a contradiction. Hence by the zero�one law, P K* � 0.

This ends the proof of the main theorem. �

PROOF OF COROLLARY 3. The proof is very similar to the proof of the main
theorem and we will only sketch it. Following the proof of Proposition 4, we

Ž .construct an H -geodesic, denoted by � H such thatl 0 l

29 � H � R� � 
 �Ž . Ž . Ž .0 l

for any H -geodesic � . A small modification is necessary in the proof of thisl
new version of Proposition 4: we consider a sequence of finite H -geodesicsl

Ž .� x , y where x and y are sequences of points in H whose EuclideanH n n n n ll

distance to l is less than 1, such that x and y go to infinity along l inn n
opposite directions.

Ž .Corresponding analogs of Lemma 5, Proposition 6, Proposition 7, 23 and
Ž .24 follow immediately, which implies a contradiction. This shows that with
probability 1 any Z2-geodesic has to intersect any fixed line l. Using count-
able additivity of P, the rest of the corollary follows immediately. �

3. Proof of the auxiliary lemmas. In this section we prove two auxil-
iary results used above. While similar results can be found in the existing
literature, we state them here in the way suitable for our applications and,
for completeness, include short proofs.

LEMMA 8. For any connected set L and sites x, y of L with probability
one there exists a unique finite L-geodesic connecting x to y.

PROOF. Take any � � 0. Since L is connected, there exists a path in L, say
� , connecting x to y. Fixing such a path � , choose r � 0 so that

30 P t � � r � 1 � � .Ž . Ž .
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Since t is positive we can choose 
 � 0 such thatb

� � 231 P t � 
 � p Z ,Ž . Ž .b c

where p denotes the critical density of bond percolation. We say that a bondc
b is 
-open if t � 
 and 
-closed otherwise.b

Define

M � min Number of 
-closed bonds of � � : � � is a path�s
� �

connecting x to � B x ,4Ž .s

Ž . Ž . � Ž . � �where � B x is the boundary of the rectangle B x � x 	 y , y : y �s s 1 2 1
� � 4 Ž .s, y � s . Hence, since by 31 with probability 1 there is no 
-open infinite2

� Ž .�cluster, lim M � �. Therefore, for sufficiently large s � 0 P M � r

s�� s s
� Ž .4 Ž .� 1 � � . Note that M � r

 implies t � � � M 
 � r for any � � connect-s s

Ž .ing x to y which touches �B x . Hences

32 P t � � � r : for any � � connecting x to y by touching �B � 1 � � .� 4Ž . Ž . s

Ž . Ž .Hence by combining 30 and 32 , with probability greater than 1 � 2� the
number of self-avoiding paths with the end sites x and y in L with passage

Ž .time less than r is finite at least one . Therefore, it follows from the
continuity of the distribution of the t that with probability greater thanb
1 � 2� , there exists a unique finite L-geodesic connecting x to y. Since � � 0
is arbitrary, the proof is complete. �

ŽThe following is a large deviation estimate for the geometric length the
.number of bonds of the finite geodesic connecting two sites, used in the proof

� �of Proposition 7. An analogous estimate was used in 8 .

� �LEMMA 9. Let E t � �. Consider a half-planeb

L � x , x � Z2 : h x 	 h x � n .Ž .� 41 2 1 1 2 2

There exists a c � 0 such that for any a � 0 there exists an L for which,
� �whenever x, y � L and x � y � L,

� � � � � �33 P � x , y � c x � y � exp � x � y 	 a.Ž . Ž . Ž .L

1Ž . Ž .PROOF. Let b � E t and 
 � 0 be such that 4E exp �
t � . Take ab b 2
1 1
b
 c c�1Ž . Ž . Ž .constant c such that 4e E exp �
t � and � exp �1 .b 2 2

By the weak law of large numbers for independent random variables, for
any a � 0 there exists a constant L � 0 such that for all pairs of x and y in

� �L and x � y � L,

� �34 P t x , y � b x � y � a.Ž . Ž .L
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We have

� � � � � �P � x , y � c x � y , t x , y � b x � yŽ . Ž .L L

� �� P t � � b x � yŽ .Ý
� � � � ��� : x�y , � �c x�y

� �� P t � � b x � yŽ .Ý Ý
� � �� � � � �n�c x�y � �n , � : x�y

� �� E exp 
 b x � y � t �Ž .Ž .Ý Ý
� � �� � � � �n�c x�y � �n , � : x�y

35Ž .

nn � �� 4 exp 
b x � y E exp �
tŽ .Ž .Ý b
� �n�c x�y

n � �c x�y �11 1 � �� � � exp � x � yŽ .Ž . Ž .Ý 2 2
� �n�c x�y

Ž . Ž .By combining 34 and 35 , the proof is complete. �

� � tb �REMARK. If the variables t have a finite exponential moment E e forb
Ž .some � � 0, the right-hand side of 33 can be replaced by a more familiar

Ž � �.expression exp � x � y . We do not need this stronger estimate.
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