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PROBABILISTIC INTERPRETATION OF STICKY
PARTICLE MODEL

BY AZZOUZ DERMOUNE

Universite de Lille1´
This work presents a construction of a solution for the nonlinear

t � Ž . � �stochastic differential equation X � X � H � u X X ds, t � 0. Thet 0 0 0 0 s
random variable X with values in � and the function u are given. We0 0

Ž . � Ž . �denote by P the probability distribution of X and u x, t � � u X Xt t 0 0 t
� Ž Ž . .� x . We prove that P , u �, t , t � 0 is a weak solution for a system oft

conservation laws arising in adhesion particle dynamics.

1. Introduction and main results. Let us consider the system of con-
servation law

� P x , t � u x , t P x , tŽ . Ž . Ž .Ž .
� � 0,

� t � x
1Ž .

� u x , t P x , t � u2 x , t P x , tŽ . Ž . Ž . Ž .Ž . Ž .
� � 0

� t � x
with initial value P , u . This system was studied by E, Rykov and Sinai0 0
Ž . Ž .1996 , and they have defined weak solutions of system 1 as follows.

Ž .DEFINITION. Let P , I be a family of Borel measures, weakly continuoust t
with respect to t, such that I is absolutely continuously with respect to Pt t

Ž . Ž .Ž . Ž .for each fixed t. Define u x, t � dI �dP x . Then P , I , u is a weakt t t t t
Ž . Ž . 1Ž .solution of 1 with initial data P , u if, for any f , g � C � , the space of0 0 0

C1-functions on � with compact support, and any 0 � t � t ,1 2

t2 �D1 f x dP x � f x dP x � f x dI x dt ,Ž . Ž . Ž . Ž . Ž . Ž . Ž .H H H Ht t t2 1
t1

t2 �D2 g x dI x � g x dI x � g x u x , t dI x dt andŽ . Ž . Ž . Ž . Ž . Ž . Ž . Ž .H H H Ht t t2 1
t1

D3 P � P , I � I weakly and as t � 0�.Ž . t 0 t 0

Ž .E, Rykov and Sinai 1996 have constructed a weak solution under the
following hypothesis.

Ž .A1 The measure P is positive Radon measure, either discrete or absolutely0
continuous with respect to the Lebesgue measure. In the latter case,

Ž . Ž . Ž .they assume that dP x �dx � 0, for x � Supp P . If Supp P is0 0 0
x Ž . � �unbounded, they assume additionally H s dP s � � as x � �.0 0
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Ž .A2 The function u is continuous and for any z � 0,0

b zŽ .0
sup u x 	 b z and lim � 0.Ž . Ž .0 0 z� �z ��� �x 	z

Ž .Their construction is based on a connection between 1 and the following
Ž .‘‘sticky particle model’’ of Zeldovich 1970 . Let us consider a system of

� 04 � 04 � 04particles x on � with initial velocities v and masses m . The particlesi i i
move with constant velocities unless they collide. At collisions, the colliding
particles stick and form a new massive particle. The mass and velocity of this
new particle are given by the laws of conservation of mass and momentum.

Ž .This model was proposed by Zeldovich 1970 to explain the formation of large
scale structures in the universe. It was further developed by Kofman,

Ž . Ž .Pogosyan and Shandarin 1990 , Gurbatov, Malakhov and Saichev 1991 ,
Ž .Shandarin and Zeldovich 1989 , and Vergassola, Dubrulle, Frisch and Noullez

Ž .1994 .
The aim of the present work is to give a probabilistic interpretation of the

‘‘sticky particle model,’’ when P is the probability distribution of a random0
Ž .variable X defined on some probability space �, �, � . The following theo-0

rem is the main result of our work.

THEOREM 1.1. Let u be a map from � to �, with left and right limits,0
Ž� Ž . Ž .4. Ž Ž . .such that P x, u x � � u x � � 0, which satisfies lim u x �x0 0 0 � x � �� 0

Ž . Ž Ž . .� 0. Then there exists a process X on the probability space �, � X , � ,t t � 0 0
Ž .such that � almost surely t � � � X � is continuous, and for each fixed� t

t � 0,

t
�2 X � X � � u X X ds.Ž . Ž .Ht 0 0 0 s

0

As a consequence we obtain the following corollary.

COROLLARY 1.1. For each fixed t � 0, let P be the probability distributiont
Ž . � Ž . � �of X . We denote by u x, t � � u X X � x . Define the measure I byt 0 0 t t

Ž .Ž . Ž . Ž Ž ..dI �dP x � u x, t . Then P , I , u �, t is a weak solution for systemt t t t t � 0
Ž . Ž .1 with initial data P , u .0 0

We finish this section by the proof of the corollary. We have, for f, g �
1Ž .C � , 0 � t � t ,0 1 2

f x dP x � f x dP x � � f X � f XŽ . Ž . Ž . Ž . Ž . Ž .H Ht t t t2 1 2 1

and

g x u x , t dP x � g x u x , t dP xŽ . Ž . Ž . Ž . Ž . Ž .H H2 t 1 t2 1

� � g X u X � g X u X .Ž . Ž .Ž . Ž .t 0 0 t 0 02 1
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Ž .From 2 and the formula of change of variables, we have

t2 � �f X � f X � f X � u X X dtŽ . Ž .Ž . Ž . Ht t t 0 0 t2 1
t1

and

t2 � �g X u X � g X u X � g X u X � u X X dt .Ž . Ž . Ž . Ž . Ž .Ž . Ž . Ht 0 0 t 0 0 t 0 0 0 0 t2 1
t1

Ž Ž .. Ž . Ž .From that it is easy to show that P , I , u �, t satisfies D1 and D2 .t t t � 0
Ž .The proof of D3 is easy.

The next section presents some preliminary results in order to prove
Theorem 1.1.

2. Preliminary result. Let us consider a finite number of particles with
� 0 Ž 0. 0 4 N 0 0initial data x , u x , m : 1 	 i 	 N , where Ý m � 1. So, the location xi 0 i i i i i

can be seen as a realization of a random variable X , defined on some0
Ž . Ž 0.probability space �, �, � , with the distribution P given by � X � x �0 0 i

Ž� 04. 0P x � m . The latter particles move following the ‘‘sticky particle model’’0 i i
defined in Section 1. The center of mass at time t of a group of particles
belonging to a subset G of �, is given by

�3 C G , t � � X � tu X X � G .Ž . Ž . Ž .0 0 0 0

It is a linear function of t. If G is a group of particles glued to a single one
before or at time t, then from the conservation of mass and momentum, the

Ž .location at time t of this group is given by 3 . In the sequel we denote
� 0 4by 	 the partition of x : 1 	 i 	 N , defined by the ordered groupst i

Ž . Ž . Ž .G t , G t , . . . , G t , so that each group of particles is glued to a single one1 2 k
before or at time t, and different groups are at different locations at time t.

Throughout this section and Section 3 we shall assume that the probability
P is concentrated on a finite set. The following lemmas are due to E, Rykov0

Ž .and Sinai 1996 .

LEMMA 2.1. Let G and G be two neighboring groups of particles such1 2
Ž . Ž . Ž . Ž .that C G , t � C G , t for t � 
 , and C G , 
 � C G , 
 . Then for t � 
 ,1 2 1 2

C G , t � C G 
 G , t � C G , t .Ž . Ž . Ž .2 1 2 1

Ž . Ž .PROOF. Since both C G , t and C G , t are linear functions of t, we have1 2
for t � 
 ,

C G , t � C G , t .Ž . Ž .1 2

Ž . Ž .We have for � � � X � G �� X � G 
 G ,0 1 0 1 2

�C G 
 G , t � � X � tu X X � G 
 GŽ . Ž .1 2 0 0 0 0 1 2

� � C G , t � 1 � � C G , t .Ž . Ž . Ž .1 2

The latter equality achieves the proof. �
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� 0 � �4 � 0 � Ž 0 �� �LEMMA 2.2. Let G � x : j 	 i 	 j � 	 . If I � x , x and I � x, x ,i t 1 j 2 j
for x 0

� � x � x 0
� , thenj j

4 C I , t � C I , t .Ž . Ž . Ž .1 2

Ž . Ž . Ž .PROOF. Assume on the contrary that C I , t � C I , t . Since C G, t �1 2
Ž . Ž . Ž . Ž .� C I , t � 1 � � C I , t for some � � 0, 1 , we have1 2

5 C I , t � C G , t .Ž . Ž . Ž .1

Let us consider the evolution of the set of particles I . Each time, the set is1
hit from the right by a particle or a cluster of particles, we add them to our

Ž . � 0 � Ž .4set. In this way we obtain a growing family of sets I s � x : j 	 j 	 i s .1 j
From Lemma 2.1, we have, for all s 	 t,

C I s , s � C I , s .Ž . Ž .Ž .1 1

Ž . �From the assumption of Lemma 2.2 we have i t � j . Hence we have

C G , t � C I , t ,Ž . Ž .1

Ž .contradicting 5 .

LEMMA 2.3. A particle x is the left endpoint, respectively, the right end-
point, of an element of the partition 	 ifft

� � �6 max C y , x , t � min C x , z , t ,Ž . . Ž .Ž .
y�x z�x

Ž� � . ŽŽ � .respectively, max C y, x , t � min C x, z , t .y � x z � x

PROOF. The proofs of both cases are similar. Let x be a particle satisfying
Ž . � 0 04 06 , and belonging to the group G � x , . . . , x . Assume that x � x. Fromi j i
Ž .4 we have

0 0C x , x , t � C x , x , t ,.Ž . ž /i j

Ž .which contradicts 6 .
Assume now that x is the left endpoint of an element of 	 . For anyt

Ž� . . Ž� � .y � x � z, we want to show that C y, x , t � C x, z , t . Let I , . . . , I be1 l
� 0 4consecutive elements of 	 to the left of x, and y � I � x : i 	 i 	 i . Lett 1 i 1 2

J , . . . , J be the consecutive elements of 	 to the right of x, and x � J �1 r t 1
� �4 � 0 4x, . . . , x , and z � J � x : j 	 i 	 j .r i 1 2

We have first

C I , t � C I , t � ��� � C J , t � ��� � C J , t .Ž . Ž . Ž . Ž .1 2 1 r

From Lemma 2.1 and Lemma 2.2, we have

0�C y , x , t � C I , t � C x , y , tŽ .Žž / ž /i 1 i2 1

and
0 0C z , x , t � C J , t � C x , z , t .Ž .ž /ž / ž /j r j2 1
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Since

0�C y , x , t � � C y , x , t � � C I , t � ��� �� C I , tŽ . Ž ..Ž . ž /1 i 2 2 l l2

and

� 0� � � �C x , z , t � � C x , x , t � � C J , t � ��� �� C x , z , t ,Ž .Ž . Ž . ž /1 2 2 r j1

where Ý� � Ý� � 1, and � � 0, � � 0, we must havei i i i

� � �C y , x , t � C x , z , t .. Ž .Ž .

Some consequences. Let I , . . . , I , . . . be the successive groups of particles1 j
glued to a single one before or at time t. For x � I , we setj

� t , x � � X � tu X X � IŽ . Ž .0 0 0 0 j

Ž . Ž .and we extend the definition of  t, � to the whole line by putting  t, x �
Ž 0. 0 0 Ž . Ž 0. 0 0 Ž . t, x if x 	 x � x ,  t, x �  t, x if x � x � min x ,  t, x �i i i�1 1 1 i i

Ž 0 . 0 0 t, x if x � x � max x .N N i i
Ž .For all t � 0, the map x � � �  t, x is increasing. The map t � � ��

Ž . t, x , for x � �, is Lipschitz continuous and satisfies the following prop-
erty:

�7  t , x � � X � tu X  t , X �  t , x .Ž . Ž . Ž . Ž . Ž .0 0 0 0

THEOREM 2.1. If u is a function bounded on any compact set of � and0
Ž Ž . .such that lim u x �x � 0, then for all t � 0 and for all finite intervals� x � �� 0

Ž . Ž . � Ž . Ž .4a, b , which intercept the image of  t, � , the set x:  t, x � a, b is
uniformly bounded with respect to the class of probabilities P supported by0

� �finite sets, and t � 0, T , for all T � 0.

� Ž . Ž .4 � Ž .PROOF. Let x � min x:  t, x � a, b , and x � max x:  t, x �min max
Ž .4 Ž . Ža, b . Obviously x respectively, x has to be the left endpoint respec-min max

.tively, the right endpoint of an element I in the partition 	 . From Lemmaj t
2.2, we have

x � tu x �  t , x � a.Ž . Ž .min 0 min min

Now, using the hypothesis under u , we get that x is uniformly bounded0 min
� �from below with respect to t � 0, T and P belongs to the class of probabili-0

ties supported by finite sets. Similarly, we have

x � tu x 	  t , x 	 b.Ž . Ž .max 0 max max

Again the hypothesis under u yields an upper bound. �0

Ž .THEOREM 2.2. i Let I be an element of the partition 	 , x � min I andj t l j
x � max I ; thenr j

x � su x � x � su x for some s 	 t .Ž . Ž .l 0 l r 0 r
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If a � b, and T � 0, then:
Ž . Ž � �.ii The set  t, a, b is uniformly bounded with respect to the class of

� �probabilities P supported by finite sets, and t � 0, T .0
Ž . Ž � �.iii The set � t, a, b �� t, defined dt a.e., is uniformly bounded with

� �respect to the class of probabilities P supported by finite sets, and t � 0, T .0

Ž . � �PROOF. i From Lemma 2.2 we have, for all y � x , x ,l r

� � �C x , y , t � C y , x , t .Ž . ŽŽ .l r

We deduce that
x � tu x � x � tu x .Ž . Ž .l 0 l r 0 r

Since x 	 x , we havel r

�x � su x � x � su x for some s � 0, t .Ž . Ž . Žl 0 l r 0 r

Ž . Ž Ž . .ii Let a � b and T � 0. Since lim u y �y � 0, there exist y � a� y � �� 0 1
� �and y � b, such that for all t � 0, T ,2

8 y � tu y � �1 for y � y ,Ž . Ž .0 1

and
9 z � tu z � 1 for z � y .Ž . Ž .0 2

� �Let x � a, b and I be the element of 	 which contains x. Let x and xj t l r
Ž .be, respectively, the left and right endpoints of I . From the assertion i ofj

Ž . Ž . � � � �the theorem, and 8 , 9 , we have x , x � y , y . From that we have thel r 1 2
Ž .proof of assertion ii .

Ž . � � Ž .iii For x � a, b , we have from 7 ,

� t , xŽ .
�� � u X  t , X �  t , x dt a.e.Ž . Ž . Ž .0 0 0� t

Ž .It follows from assertion ii and Theorem 2.1, that

� t , xŽ .
	 max u y ,Ž .0� t y�K

where K is some compact set which depends on a, b, T and u . �0

3. Proof of Theorem 1.1 in the finite case. We will show that the
Ž Ž . . �process X �  t, X , t � 0 satisfies Theorem 1.1. Let T � min t � 0: q �t 0 1 i

Ž . Ž . 4tu q � q � tu q , for some i � j be the first time when collisions arrive.0 i j 0 j

Ž .From the definition of  we have, for 0 	 t � T , X � X � tu X . From1 t 0 0 0
the conservation of mass and momentum, we can show that

X � XT �� T1 1 �lim � � u X X � u X .Ž . Ž .0 0 T 1 T1 1���0�

Let T be the second time when collisions arrive. At t, such that T 	 t � T ,2 1 2
Ž . � Ž . � �X � X � t � T � u X X . By induction we construct the successivet T 1 0 0 T1 1

times of collisions T � T � ��� � T � T � �. The time T is the last1 2 M M�1 M
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time when collisions arrive.

PROPOSITION 3.1. At t, such that T 	 t � T and 1 	 n 	 M,n n�1

�� X � � X and X � X � t � T � u X X .Ž . Ž . Ž .Ž .t T t T n 0 0 Tn n n

� Ž . Ž .�PROOF. First for t � T the events  t, X �  t, q , 1 	 i 	 N do not1 0 i
Ž . Ž . � �intersect and span the �-field � X . Since � X is spanned by X � q ,t 0 0 i

Ž . Ž . Ž Ž .. Ž Ž ..1 	 i 	 N, � X � � X and card � X � card � X then both �-fieldst 0 t 0
coincide. The proof of the case T 	 t � T is the same and can be obtainedn n�1
by induction.

Let us prove the second part. We have, for T 	 t � T ,n n�1
n�1

X � X � T � T u X � t � T u X ,Ž . Ž .Ž . Ž .Ýt 0 i�1 i i T n n Ti n
i�0

Ž . � .where u X is the velocity of the system when time s � T , T . Thei T i i�1i

conservation of mass and momentum gives that

�u X � � u X X .Ž . Ž .i T i�1 T Ti i�1 i

Ž . Ž .From the fact that � X � � X , and by induction, we haveT Ti i�1

�u X � � u X X .Ž .Ž .i T 0 0 Ti i

Adding all terms, we obtain
�X � X � t � T � u X X .Ž . Ž .t T n 0 0 Tn n

Ž .Now from Proposition 3.1 we can show that the process X , t � 0 satisfiest
Theorem 1.1. �

4. The general case. In the general case, we will prove Theorem 1.1 via
discrete approximations. Let us consider a system of particles on � with
initial distribution P and velocity function u . Let X be a random variable0 0 0
with probability distribution P . Take a sequence of random variables X Žn.;0 0
each X Žn. takes its values in a finite set, such that a.s. X Žn. � X as n � �.0 0 0

Žn. Ž Žn..The initial velocity of the particle X is equal to u X . Using Section 2,0 0 0
Žn. Žn.Ž Žn..we construct the corresponding trajectories X �  t, X , t � 0. Thet 0

key of the rest of the proof is based on the following improvement of Lemmas
� Ž .4 and 4 in E, Rykov and Sinai 1996 .

Ž Žn. .THEOREM 4.1. As n � �, the sequence  ; n � 1 , converges uniformly
Ž Ž . .on compact subsets of � � � to some map  t, x , t � � , x � � .� �

PROOF. Assume to the contrary that  Žn. do not converge uniformly on
� � Ž .some bounded set, say 0, T � c, d . Then there exists � � 0 and sequences

Ž . Ž . Ž .t , y � 0, T � c, d such thatn n

Žn. Žm.10  t , y �  t , y � � .Ž . Ž . Ž .n n m m
Žn.Ž .From Theorem 2.2, we can choose y , t such that y � y, t � t,  t , yn n n n n n

Ž .� x, which contradicts 10 and achieves the proof. �
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Let  be the limit of  Žn.. We derive, from Theorem 4.1 and Theorem 2.2,
that the function  satisfies the following important properties.

� . Ž .P1. For all x � � the map t � 0, � �  t, x is Lipschitz continuous.
Ž .P2. For all compact set K there exists c K � 0 such that for all n � �;

x � K,

Žn.� t , x � t , xŽ . Ž .
11 � � c K dt almost everywhere.Ž . Ž .

� t � t

� Žn.Ž .P3. For all T � 0, and for all compact set K, the inverse images x:  t, x
4 � �� K are uniformly bounded with respect to n � 1 and t � 0, T .

Now we return to the proof of Theorem 1.1. We put, for each t � 0,
Ž . Ž .X �  t, X . To show that X , t � 0 satisfies Theorem 1.1, we need thet 0 t

following lemma.

Ž .LEMMA 4.1. i Let T be a sequence of continuous maps from � � �,n �
such that:

Ž .a T converges uniformly to 0 on any compact set of � .n �
Ž . Ž .b The weak derivative dT t �dt are measurable maps, uniformlyn

bounded on every compact set of � .�

Ž .Then for all G � C � , we have, as n � �,0 �

� dT tŽ .n
G t dt � 0.Ž .H dt0

Ž . Ž . Ž .ii For all f � C � , g � C � we have0 0 �

dXtŽn. Žn. Žn.�lim g t f X � u X X dt � g t f X dtŽ . Ž . Ž .Ž . Ž .H Ht 0 0 t t dtn��

and

dXt
g t � f X u X dt � g t � f X dt .Ž . Ž . Ž . Ž . Ž .H Ht 0 0 t dt

Ž . Ž . Ž .PROOF. i Let G � C � and G be a sequence such that for all0 � m
m � 1:

Ž . 1Ž� �.a G � C 0, L , for some L � 0.m
Ž . � � Ž . Ž . �b H G t � G t dt � 0.0 m

Ž .From b there exists c � 0, such that

dT t dT tŽ . Ž .n n
G t dt 	 c G t � G t dt � G t dt .Ž . Ž . Ž . Ž .H H Hm mdt dt

Ž . � Ž .Ž Ž . . �From a we have for all m, HG t dT t �dt dt � 0 as n � �. We con-m n
Ž .Ž Ž . .clude that HG t dT t �dt dt � 0 as n � �.n
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Ž . Žn.ii From the fact that  converges uniformly to , we can show, for all
Ž Žn..Lipschitz functions h, that a.s. the sequence of processes t � h X con-t

Ž .verges uniformly on compact subsets of � to the process t � h X . It� t
follows that a.s., t � X Žn. converges in the distribution sense to t � X .t t
Hence, dX Žn.�dt converges in the distribution sense to dX �dt.t t

Ž . Ž .Let us prove that for all g � C � and f � C � ,0 � 0

dX Žn. dXt tŽn.I n � f X g t dt � f X g t dt � I ,Ž . Ž . Ž . Ž .Ž .H Ht tdt dt

Ž .as n � �. From the triangular inequality and 11 we have for some constant
c � 0,

Žn.I n � I 	 c f X � f X g t dtŽ . Ž . Ž .ŽH t t

Žn.dX dXt t� g t f X � dt .Ž . Ž .H t ½ 5dt dt

Ž . Ž . Žn. Ž . Ž . Ž .Now we use assertion i , with T t � X � X and G t � g t f X . Wen t t t
get

dX Žn. dXt t
g t f X � dt � 0;Ž . Ž .H t ½ 5dt dt

� Ž Žn. Ž . � � Ž . �on the other hand, H f X � f X g t dt goes also to 0 as n � �, whicht t
Ž . Žn.yields I n � I as n � �. Now, from the fact that dX �dt �t

� Ž Žn.. � Žn.�� u X X , combined with the dominated convergence theorem, we0 0 t
have

dXt
g t � f X dt � g t � f X u X dt ,Ž . Ž . Ž . Ž . Ž .H Ht t 0 0dt

which achieves the proof of the lemma. �

Now we return to the proof of Theorem 1.1. From Lemma 4.1 we have that
� Ž . � � �Ž . � �� u X X � � dX �dt X dt � � almost everywhere. From the property0 0 t t t
Žn.Ž Žn.. Žn.Ž Žn.. Ž . Ž . s, X �  s � t, X ; t 	 s, we derive � X : t 	 s � � X . Now it0 t s t

Ž .is easy to see that dX �dt is � X -measurable. We conclude thatt t
�Ž . � � � Ž . � �� dX �dt X � dX �dt � � u X X , which yields Theorem 1.1. �t t t 0 0 t

Concluding remark. It is important at the end of this work to discuss the
Ž .connection with E, Rykov and Sinai 1996 . The first essential result of these

authors is the following principle for the construction, for each t � 0, of a
Ž .partition 	 of � using the initial data P , u .t 0 0
Ž .The generalized variational principal GVP : y � � is the left endpoint of

an element of 	 iff for any y�, y�� �, such that y�� y � y�, the followingt
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holds:

H � � � tu � dP � H � � � tu � dP �Ž . Ž . Ž . Ž .Ž . Ž .� y , y . 0 0 � y , y � 0 0
� .

� �H dP � H dP �Ž . Ž .� y , y . 0 � y , y � 0

Ž . Ž .They have constructed a weak solution of system 1 using 	 , t � 0 . In ourt
Ž .work we have proved the existence of a stochastic process X , t � 0 whicht

satisfies

t
�X � X � � u X X ds, t � 0Ž .Ht 0 0 0 s

0

Ž .and where X is such that P � law X . We have showed, for all probability0 0 0
measure P and without resorting to GVP at the continuous level, that0
Ž Ž . Ž . � Ž . � � .P � law X , u �, t � � u X X � � , t � 0 is a weak solution of systemt t 0 0 t
Ž . Ž .1 . If P satisfies the condition A1 given in the introduction, then our weak0

Ž .solution coincides with the weak solution given by E, Rykov and Sinai 1996 .
Our probabilistic interpretation can also be extended to the multidimensional

Ž .version of system 1 , and to the system

� P x , t � u x , t P x , tŽ . Ž . Ž .Ž .
� � 0,

� t � x

� u x , t P x , t � u2 x , t P x , t � gŽ . Ž . Ž . Ž .Ž . Ž .
� � � P x , t ,Ž .

� t � x � x

� 2 g
� P ,2� x

Ž .which already has been studied by E, Rykov and Sinai 1996 .

Acknowledgment. I am very grateful to the referees for their careful
reading of a first version of this work and for their remarks which improved
the presentation of this paper.

REFERENCES
Ž .E, W., RYKOV, YU. G. and SINAI, YA. G. 1996 . Generalized variational principles, global weak

solutions and behavior with random initial data for systems of conservation laws
arising in adhesion particle dynamics. Comm. Math. Phys. 177 349�380.

Ž .GURBATOV, S. N., MALAKHOV, A. N. and SAICHEV, A. I. 1991 . Nonlinear Random Waves and
Turbulence in Nondispersive Media: Waves, Rays and Particles. Manchester Univ.
Press.

Ž .KOFMAN, L., POGOSYAN, D. and SHANDARIN, S. 1990 . Structure of the universe in the two-dimen-
sional model of adhesion. Monogr. Nat. Astrol. Soc. 242 200�208.

Ž .SHANDARIN, S. and ZELDOVICH, YA. B. 1989 . The large scale structures of the universe: turbu-
lence, intermittency, structures in a self-gravitating medium. Rev. Modern Phys. 61
185�220.



STICKY PARTICLE MODEL 1367

Ž .VERGASSOLA, M., DUBRULLE, B., FRISCH, U. and NOULLEZ, A. 1994 . Burger’s equation, devil’s
staircases and the mass distribution function for large-scale structures. Astronom.
Astrophys. 289 325�356.

Ž .ZELDOVICH, YA. B. 1970 . Gravitational instability: an approximate theory for large density
perturbations. Astronom. Astrophys. 5 84�89.

UFR DE MATHEMATIQUES , BAT. M2, USTL´ ˆ
59655 VILLENEUVE D’ASCQ CEDEX

FRANCE

E-MAIL: Azzouz.Dermoune@univ-lille1.fr


