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We show that independent percolation on any Cayley graph of a
nonamenable group has no infinite components at the critical parameter.
This result was obtained by the present authors earlier as a corollary of a
general study of group-invariant percolation. The goal here is to present a
simpler self-contained proof that easily extends to quasi-transitive graphs
with a unimodular automorphism group. The key tool is a ‘‘mass-trans-
port’’ method, which is a technique of averaging in nonamenable settings.

1. Introduction. The main long-standing open question in percolation
theory is to show that critical percolation in �d has no infinite components for

Ž . Ž .all d � 2. The work of Harris 1960 and Kesten 1980 established the
Ž .two-dimensional case; Hara and Slade 1994 proved it for d � 19. Recently, a

study of percolation on other graphs, such as Cayley graphs, was initiated.
The relevant definitions appear below. Here is our main theorem.

THEOREM 1.1. Let X be a Cayley graph of a finitely generated nona-
menable group, and consider either site or bond percolation on X. Then at the
corresponding critical value p � p , almost surely there is no infinite compo-c
nent.

In particular, there are no infinite components for critical percolation on
Ž .any lattice in hyperbolic space, nor on a k-regular tree � �. The latter was

� Ž .�previously known when k � 7 Wu 1993 . Wu’s proof goes along the lines of
the high-dimensional Euclidean proof and uses the triangle condition.

The key tool in our proof is a technique of ‘‘mass transport.’’ This tool is
especially valuable in nonamenable settings, where it can sometimes replace
the ergodic theorem for approximation of expectations by suitable spatial
averages.
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Ž .Early forms of the mass-transport method were used by Adams 1990 , van
Ž . Ž .den Berg and Meester 1991 and Haggstrom 1997 . The method was devel-¨ ¨

Ž .oped further in Benjamini, Lyons, Peres and Schramm 1999 . The latter
Ž .paper, denoted BLPS 1999 below, is a study of group-invariant, possibly

dependent, percolation models on transitive graphs. After completing the first
draft of that paper, we realized that combining two of the results there yields
Theorem 1.1.

The resulting proof of Theorem 1.1 was not the most direct possible; in this
note, we illustrate the technique of mass transport by presenting the simplest
proof we know for Theorem 1.1. Another advantage of the proof given here is
that it easily extends to the wider setup of quasi-transitive graphs with a
unimodular nonamenable automorphism group. Nevertheless, the present
proof still uses invariant percolation models.

In the study of percolation on nonamenable graphs, new phenomena, such
as a double phase transition, appear; the first example of this is due to

Ž .Grimmett and Newman 1990 , who considered percolation on the product of
Ž .a regular tree and �. Benjamini and Schramm 1996 present an introduction

to the subject and a list of problems, some of which have been recently solved;
see the final section of the present paper for an update. In that section, we
also survey some further results and conjectures concerning percolation on
nonamenable graphs.

Terminology. Let � be a finitely generated group. Given a finite symmet-
� �1 �14 Ž .ric set of generators S � g , . . . , g for �, the right Cayley graph of �1 n

Ž . Ž . � � �1is the graph X �, S � V, E with V � � and g, h � E iff g h � S. Thus,
Ž .the graph X �, S depends on the set of generators. Note that any two Cayley

Ž .graphs of the same group are roughly isometric quasi-isometric . More
generally, a graph X is called transitive if for any vertices x, y, there is a
graph automorphism mapping x to y. Clearly, any Cayley graph is transitive
by the action of left multiplication.

Let the edge-isoperimetric constant of X be

� �� KE
� X � inf ; K � V is finite ,Ž .E ½ 5� �K

� �where � K, the edge boundary of K, consists of all edges u, v with u � KE
and v � V � K. A finitely generated group is nonamenable if for some finite
generating set, the edge-isoperimetric constant of its Cayley graph is positive.
The isoperimetric constant of a graph is sometimes called the Cheeger
constant.

Ž Ž . Ž ..In p-Bernoulli bond percolation on a graph X � V X , E X , the edges
are open with probability p independently. Those edges that are not open are
closed. The corresponding product measure on the edge configurations is
denoted P . The percolation subgraph is the random graph whose verticesp

Ž . Ž .are V X and whose edges are the open edges. Let K v be the cluster of v,



CRITICAL PERCOLATION ON NONAMENABLE GROUPS 1349

that is, the connected component of v in the percolation subgraph. We write

� p � P K v is infinite .Ž . Ž .v p

Ž .On a Cayley graph or, more generally, on a transitive graph , the value of
Ž .� p is independent of the choice of v, whence the subscript v is dropped.v

Let
p � inf p ; � p � 0� 4Ž .c

be the critical probability for percolation. Bernoulli site percolation is defined
Ž .similarly with vertices replacing edges. See Grimmett 1989 for more infor-

mation about Bernoulli percolation.

2. Mass transport. Bernoulli percolation is one example of an invariant
percolation model. If a group � acts by automorphisms on a graph X, we call
a probability measure on the subgraphs of X a �-invariant percolation model
if it is invariant under the action of �. An invariant percolation model P is a

� Ž . Ž .�bond percolation model if P V � � V X � 1, where � denotes a subgraph
of X.

Ž .We now present the mass-transport principle. Let m x, y; � be a nonneg-
ative function of three variables: two vertices x, y and a subgraph � of X.

Ž .Intuitively, m x, y; � represents the mass transported from x to y when
Ž .the percolation subgraph is �. We suppose that m � , � ; � is invariant under

Ž . Ž .the diagonal action of �, that is, m x, y; � � m gx, gy; g� for all x, y, g
and �. The mass-transport principle asserts that for any invariant percola-
tion, the expected total mass transported out of any vertex x equals the
expected total mass transported into x, that is,

2.1 � x � V M x , y � M y , x ,Ž . Ž . Ž .Ý Ý
y�V y�V

Ž . Ž .where M x, y � Em x, y; � is also invariant under the diagonal action
of �.

Ž .On a Cayley graph, it is straightforward to verify 2.1 :

M x , y � M x , gx � M g�1 x , x � M y , x .Ž . Ž . Ž .Ž .Ý Ý Ý Ý
y�V g�� g�� y�V

The creative element in applying the mass-transport method is to make a
Ž .judicious choice of the transport function m x, y; � . This depends on the

particular application; three such applications are given in this note.
Ž .The identity 2.1 is valid on many transitive graphs that are not Cayley

Ž .graphs, provided their automorphism group is unimodular; see BLPS 1999 .
Ž .The proof of Theorem 1.1 below uses only transitivity of X and 2.1 , so it

applies to these graphs as well. With minor modifications, the proof also
Ž .applies to unimodular quasi-transitive graphs, that is, graphs X � V, E for

which there is some unimodular group � of automorphisms with finitely
many orbits in V.

Let S be a finite set of generators for a nonamenable group � and let
Ž .X � X �, S be the corresponding Cayley graph. For a finite subgraph K � X,
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set
1

� � deg x ,Ž .ÝK K� �V KŽ . Ž .x�V K

Ž .where deg x refers to the degree of x as a vertex in the graph K. LetK

� 4� X � sup � ; K � X is finite .Ž . K

Since every vertex of X has the same degree, it follows that

2.2 � X 	 � X � deg o ,Ž . Ž . Ž . Ž .E X

Ž .where o � V X is the identity of �.

THEOREM 2.1. Let X be a Cayley graph of a nonamenable group � with
Ž .respect to some finite set of generators. Let o � V X denote the identity of �.

Suppose that 	 is a random subgraph of X and the distribution of 	 is an
Ž . Ž .invariant bond percolation model on X. If E deg o � � X , then 	 has an	

infinite component with positive probability.

Ž . Ž . Ž .REMARK 2.2. It suffices that E deg o � � X . See BLPS 1999 for de-	

tails.

� � Ž . Ž . Ž .COROLLARY 2.3. If P e � 	 � � X 
deg o for all e � E X , then 	E X
has an infinite component with positive probability.

Ž .The proof follows immediately from Theorem 2.1 and 2.2 .

Ž . Ž .PROOF OF THEOREM 2.1. For each v � V X , let K v denote the compo-
nent of 	 containing v. Set

� �deg v 
 K v , if K v is finite and u � K v ,Ž . Ž . Ž . Ž .	m v , u; 	 �Ž . ½ 0, otherwise.

Thus,
m u , o ; 	 � � � � XŽ . Ž .Ý K Žo.

Ž .u�V X

Ž . Ž .whenever K o is finite, and Ý m u, o; 	 � 0 otherwise. On the otheru� VŽ X .
hand,

deg o , when K o is finite,Ž . Ž .	m o , u; 	 �Ž .Ý ½ 0, otherwise.Ž .u�V X

Ž .Since m � , � ; � is diagonally invariant, the mass-transport principle gives

� � � � �E deg o K o � 
 P K o � 
Ž . Ž . Ž .	

� �� E m o , u; 	 � E m u , o ; 	 � � X P K o � 
 .Ž . Ž . Ž . Ž .Ý Ý
Ž . Ž .u�V X u�V X

� � Ž . � � Ž . Ž .When P K o � 
 � 1, we get E deg o � � X , as required. �	
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3. Ruling out a unique infinite cluster.

PROOF OF THEOREM 1.1. For simplicity, we restrict our attention to critical
bond percolation; the proof for critical site percolation requires only minor
modifications.

The number of infinite clusters is invariant under the action of �. By
ergodicity, the number of infinite clusters is constant a.s. It follows that this

Ž .constant must be 0, 1 or 
; see Newman and Schulman 1981 . In this section,
we rule out a unique infinite cluster at p � p , and in the next section, wec
rule out infinitely many infinite clusters.

Denote the graphical distance in X by d , and let � be critical BernoulliX
bond percolation on X. Suppose that almost surely there is a unique infinite
cluster U of �. Let � be an �-Bernoulli bond percolation on X that is�

independent of �. We use � to define a bond percolation model 	 on X as� �

Ž .follows. For v � V, let U v � U be the set of vertices u � U such that
Ž . Ž . Ž .d v, u � d v, U ; that is, U v is the set of vertices of U that are closest toX X

� � Ž .v. Given two neighbors v, w � V, put the edge v, w in 	 iff d v, U � 1
� ,� X
Ž . Ž . Ž .d w, U � 1
� , and U v � U w is contained in a connected component ofX

� � � . If we fix �, then�

�� �lim P v , w � 	 � � 0,�
��0

because every pair of vertices in U is joined by some finite path in U that is
unlikely to intersect � when � is small. Consequently, the bounded conver-�

gence theorem gives

� �lim P v , w � 	 � 0.�
��0

By Corollary 2.3, it follows that for � � 0 sufficiently small, with positive
probability, there will be an infinite component of 	 . However, when there is�

an infinite 	 -component, there must be an infinite component in � � � . As� �

Ž .� � � is a 1 � � p -Bernoulli bond percolation, this contradicts the defini-� c
tion of p and proves that � cannot have a unique infinite cluster.c

4. Ruling out multiple infinite clusters. In this section, we continue
with the proof of Theorem 1.1, dealing with the case that critical percolation
produces more than one infinite cluster.

Ž .DEFINITION 4.1. Let G be an infinite graph. A vertex v � V G is an
encounter point if there are three or more neighbors of v that belong to

� 4distinct infinite connected components of G � v .

Suppose that with positive probability, � has more than one infinite
� Ž .�cluster. It is then well known Burton and Keane 1989 that the set Y of

encounter points of � is nonempty almost surely.
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We say that C has an �-neighbor of v if there is some x � C with
� �x, v � �.

LEMMA 4.2. Consider Bernoulli bond percolation � with p � p on ac
Cayley graph. With P -probability 1, for every encounter point v of � andp

� 4every infinite component C of � � v having an �-neighbor of v, there is some
encounter point of � in C.

Ž .PROOF. Let u, v � V. Set m u, v; � � 1 if u and v are in the same
cluster of � and v is the unique encounter point of � with minimal distance

Ž . Ž .to u where distances are measured in � . Otherwise, set m u, v; � � 0.
Ž .Then Ý m v, u; � � 1. By the mass-transport principle, it follows thatu� V

Ž .almost surely Ý m u, v; � � 
 for all v � V. This implies the lemma. �u� V

We now construct an invariant forest 	 whose vertices are Y, the en-
counter points of �. The edges of 	 will not necessarily be in E. For each

Ž . � �v � V, let x v be a uniformly distributed random variable in 0, 1 such that
Ž .� and all x v are mutually independent. Suppose that v � Y. For every

� 4infinite connected component Z of � � v having an �-neighbor of v, let
Ž . ŽY Z, v � Y  Z be the set of encounter points of � in Z that are closest in
. Ž . Ž . Ž .� to v, and let u Z, v be the vertex u � Y Z, v that minimizes x u . Let 	

� Ž .�be the set of all edges v, u Z, v , where v � Y and Z is an infinite connected
� 4component of � � v having an �-neighbor of v. It is clear that 	 is an

invariant graph on V. For every v � Y, the degree of v in 	 is at least 3 by
Lemma 4.2.

We now verify that 	 is almost surely a forest; that is, it contains no cycles.
Assume otherwise, and suppose that C is a cycle in 	 of length greater than

Ž . � �or equal to 3. When u � u Z, v , consider edges in 	 of the form v, u to be
� 4directed from v to u. Let v be a vertex in C and note that C � v is contained

� 4in some connected component Z of � � v , because v appears only once in C.
This shows that the number of edges in C that are directed away from v is at
most 1. Since the number of edges in C equals the number of vertices in C,
every vertex must have one edge directed toward it and one edge directed

� � � �away from it. If a, b and b, c are directed edges in C, then the distance in
� from b to c cannot be larger than the distance from a to b. As C is a cycle,
it follows that these distances must be the same. Let z be the vertex in C

Ž . � �that maximizes x z . Then there must be vertices a, b in C such that a, b
� �and b, z are directed edges of C and a � z. But a and z are at the same

Ž . Ž .distance from b and x a � x z . This contradicts the existence of the
� �directed edge b, z in C, and this contradiction proves that 	 is a forest.

Let � � 0 and let � be an �-Bernoulli bond percolation process. Since � is�

critical, almost surely � � � has only finite components. Now define an�

� �invariant bond percolation model 	 � 	 as follows. For any edge v, u � 	 ,�

� �let v, u � 	 iff v and u are in the same component of � � � . Then almost� �

surely 	 has only finite components.�

Ž .We now perform mass transport on V. For any v � V, let K v denote its
Ž . Ž .	 -connected component which is almost surely finite and let K v denote� �
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Ž . Ž .the set of vertices u � K v that have some 	-neighbor outside of K v . Set

� �1
 K v , if v � Y and u � K v ,Ž . Ž .� �m v , u; 	 �Ž . ½ 0, otherwise.

By the mass-transport principle, we know that

4.1 E m v , u; 	 � E m u , v ; 	 .Ž . Ž . Ž .Ý Ý
u�V u�V

Note that

� � � �K v 
 K v , when v � Y  K v ,Ž . Ž . Ž .� �4.2 m u , v ; 	 �Ž . Ž .Ý ½ 0, otherwise.u�V

Because 	 is a forest and each vertex in Y has 	-degree at least 3, it easily
� Ž . � � Ž . � Ž . Ž .follows that 2 K v � K v . Consequently, 4.2 shows that Ý m u, v; 	� u� V

Ž .� 2 almost surely. On the other hand, Ý m v, u; 	 is 1 if v � Y and 0u� V
Ž . Ž .otherwise. Therefore, 4.1 and 4.2 give

� �4.3 P v � Y � 2P v � Y , v � K v .Ž . Ž .�

If we fix �, 	 , and e � 	 , then the probability that e � 	 tends to 0 as�

� � 0: there is some finite path in � joining the endpoints of e, and when �
is small, this path is unlikely to meet � . From the bounded convergence�

theorem, it therefore follows that for any v � V, the probability that v has
some edge in 	 � 	 tends to 0 as � � 0. In other words,�

lim P v � Y , v � K v � 0.Ž .�
��0

Ž . � �This contradicts 4.3 since P v � Y is positive and does not depend on � .
Hence the proof of Theorem 1.1 is complete. �

5. Further results and problems on percolation in nonamenable
d Ž .groups. Recall that for percolation on � , if � p � 0, then there exists

�with probability 1 a unique infinite open cluster. See Aizenman, Kesten and
Ž . Ž . �Newman 1987 and the elegant proof in Burton and Keane 1989 . As was

Ž . Žshown by Grimmett and Newman 1990 , for percolation on a k-regular
.tree � �, this is not the case if k is sufficiently large: for some values of p,

uniqueness holds, while for others, there are infinitely many infinite clusters.
Ž .Benjamini and Schramm 1996 defined

� �p � inf p ; P there is exactly one infinite cluster � 1� 4u p

and conjectured that p � p for percolation on nonamenable Cayley graphs.c u
Ž .This was established by Lalley 1996 for certain planar Cayley graphs, then
Ž .by Benjamini and Schramm 1998a for all nonamenable planar Cayley
Ž .graphs. Haggstrom and Peres 1998 , in response to another question from¨ ¨

Ž .Benjamini and Schramm 1996 , showed that for any p � p , uniquenessu
Ž .holds almost surely. Benjamini and Schramm 1996 also asked whether

there is uniqueness at p in transitive nonamenable graphs. This is trueu
� Ž .�when the graphs are planar Benjamini and Schramm 1998a , but Schon-

Ž . Ž .mann 1998 has shown it to be false for k-regular tree � � when k � 3. We
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note that for Cayley graphs of finitely presented groups with one end, Babson
Ž .and Benjamini 1999 showed that p � 1. A brief description of some recentu

developments concerning percolation on general graphs is presented by Ben-
Ž .jamini and Schramm 1998b .

REMARK 5.1. Lemma 4.2 has the following consequence. Consider
Bernoulli percolation � with p � p on a Cayley graph, and suppose that �c
has more than one infinite cluster a.s. Then with probability 1, any infinite
cluster C of � has infinitely many encounter points. Consequently, the space

Ž .of ends of C is topologically a Cantor set in particular, it is uncountable .
The same proof works for unimodular quasi-transitive graphs. The result for
all quasi-transitive graphs was conjectured by Benjamini and Schramm
Ž . Ž .1996 and first established by Haggstrom and Peres 1998 in the unimodu-¨ ¨
lar case, using a more complicated argument. Very recently, this result on
ends was extended to the nonunimodular case by Haggstrom, Peres and¨ ¨

Ž .Schonmann 1998 . Their argument is based on different principles; in partic-
Ž .ular, it is not known in the nonunimodular case whether for p � p , p ,c u

every infinite cluster must contain infinitely many encounter points.

Theorem 1.1 extends easily to some other percolation models; for example,
Ž .if different positive retention probabilities are assigned to different genera-

tors in a nonamenable Cayley graph X, then for parameter values on the
corresponding critical submanifold, there are no infinite clusters in X.

To analyze the Ising model on nonamenable groups, it would be useful to
know whether Theorem 1.1 also extends to the FK random cluster model for

Ž .q � 2; see, for example, Grimmett 1995 for definitions and background. For
Ž .q � 2, the wired random cluster model on a regular tree has infinite clusters

Ž .at criticality; see Haggstrom 1996 .¨ ¨
Ž .Combining Theorem 1.1 with a result of Haggstrom and Peres 1998 gives¨ ¨

Ž . � Ž . �that for nonamenable Cayley graphs, the function � p � P K o is infinitep
� �is continuous for all p � 0, 1 . One may wish for quantitative versions of this

result, for example as in the following.

Ž .PROBLEM 5.1. Bound the modulus of continuity of �  for nonamenable
Ž .Cayley graphs. Is sup � � p � 
?p� pc

Ž . Ž . � Ž . �Since � p � 0, the component K o satisfies lim P diam K o � Rc R �
 pc

� 0.

PROBLEM 5.2. For a nonamenable Cayley graph X, find a bound for
� Ž . �P diam K o � R that tends to zero as R � 
.pc

It seems reasonable that such a bound would involve only the isoperimetric
constant of X and perhaps the degree of the vertices.

Ž .Let � o, v denote the connectivity function, that is, the P -probabilityp p
that o and v are in the same cluster.
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PROBLEM 5.3. For a nonamenable Cayley graph X, find a bound for
Ž . Ž .� o, v that goes to zero as d o, v � 
.p Xc

Ž . d X Žo, v .We expect that � o, v � � for some � � 1. Lyons and Schrammpc
Ž . Ž .1998 have recently shown that on Cayley graphs, inf � o, v � 0 whenv p

Ž .there is no uniqueness at p. Schramm unpublished has also shown that for
Ž . d X Žo, v .every nonamenable Cayley graph G, there is an � � 1 with � o, v � �pc

for infinitely many v.
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