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HOW OFTEN DOES A HARRIS RECURRENT
MARKOV CHAIN RECUR?

By Xia Chen

Northwestern University

Let �Xn�n≥0 be a Harris recurrent Markov chain with state space
�E�� �, transition probability P�x�A� and invariant measure π. Given a
nonnegative π-integrable function f on E, the exact asymptotic order is
given for the additive functionals

n∑
k=1

f�Xk�� n = 1�2� � � �

in the forms of both weak and strong convergences. In particular, the fre-
quency of �Xn�n≥0 visiting a given set A ∈ � with 0 < π�A� < +∞ is
determined by taking f = IA. Under the regularity assumption, the lim-
its in our theorems are identified. The one- and two-dimensional random
walks are taken as the examples of applications.

1. Introduction. Let �Xn�n≥0 be a Harris recurrent Markov chain with
state space �E�� �, transition probability P�x�A� and invariant measure π; by
Harris recurrence, the invariant measure π uniquely (up to a constant multi-
pler) exists. Throughout, we always assume that the σ-algebra � is countably
generated. Without explanation, we adopt the notations which have already
become standard in Markov chain context, such as Pµ for the Markovian prob-
ability with the initial distribution µ, Eµ for correspondent expectation and,
Pk�x�A� for the k-step transition of �Xn�n≥0. The basic notions and facts of
Markov chain used in this work can also be found in almost every standard
book on Markov chains.

Recall that �Xn�n≥0 is called Harris recurrent if it is irreducible and for
any A ∈ � +, initial distribution µ,

Pµ�Xn ∈ A infinitely often� = 1�

where � + = �A ∈ � 
 π�A� > 0�.
Given a set A ∈ � with 0 < π�A� < +∞, the Harris recurrence tells us

that

�1�1� #�k
 1≤k≤n and Xk ∈A�=
n∑

k=1

IA�Xk� → +∞ a.s. �n→ +∞��

The random sequence given in (1.1) is called occupation time in the literature.
How fast does the occupation time grow? Or, how often does the Harris

recurrent Markov chain �Xn�n≥0 visit A? When �Xn�n≥0 is positive recurrent,
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that is, π is finite (otherwise �Xn�n≥0 is said to be null recurrent), the law of
large numbers shows that the occupation time has a linear growth rate.

We now consider the general situation. A well-known ratio limit theorem
[see, e.g., Theorem 17.3.2 in Meyn and Tweedie (1993)] states that if the
Markov chain �Xn�n≥0 is Harris recurrent then for any f�g ∈ � 1�E�� � π�
with

∫
g�x�π�dx� 
= 0,

�1�2� lim
n→∞

n∑
k=1

f�Xk�
/ n∑

k=1

g�Xk� =
∫
f�x�π�dx�

/∫
g�x�π�dx� a.s.

Without losing or gaining generality, therefore, the problem we raise is to
determine the growth rate of the additive functional defined by

n∑
k=1

f�Xk�� n = 1�2� � � �

for all f ∈ � 1�E�� � π� with
∫
f�x�π�dx� 
= 0. The results in the case∫

f�x�π�dx� = 0 will be reported elsewhere. From (1.2), we may focus our
attension to those with f ≥ 0.

To normalize our additive functional, we need the concept of D-set. Recall
[Orey (1971)] that a subset D ∈ � with 0 < π�D� < +∞ is called a D-set of a
Harris recurrent Markov chain �Xn�n≥0, if for any A ∈ � +,

sup
x∈E

Ex

( τA∑
k=1

ID�Xk�
)
< +∞�

where we define the hitting time of A as

τA = inf�n ≥ 1
 Xn ∈ A�� A ∈ � +�

In Revuz (1975) and Nummelin (1984), D-set is also called special set. Ac-
cording to Theorem 6.2 in Orey (1971), D-sets not only exist, but exist in
abundance.

The only reason we introduce D-set in this paper is the following ergodic
theorem [see, e.g., Theorem 2, Chapter 2, Orey (1971)]:

�1�3� lim
n→∞

n∑
k=1

µPk�C�
/ n∑

k=1

νPk�D� = π�C�
π�D� �

where C, D are D-sets and µ, ν are arbitrary probability measures on �E�� �.
We mention the fact [Example 1.1 in Krengel (1966)] that C and D in (1.3)
cannot be replaced by arbitrary sets with positive but finite invariant mea-
sures.

We now let the D-set D and the probability measure ν be fixed. Define

�1�4� a�t� = π�D�−1
�t�∑
k=1

νPk�D�� t ≥ 0�

Clearly, a�t� is a nonnegative, nondecreasing function (a�t� is called truncated
Green function in the literature). By the recurrence we have that a�t� → +∞
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as t → +∞. In view of (1.3), the asymptotic order of a�t� (as t → +∞) de-
pends only on the Markov chain �Xn�n≥0 [or its transition P�x�A�]. Hence
the following concept of regular chain comes in a natural way. Namely, a Har-
ris recurrent Markov chain �Xn�n≥0 is called regular, if the function a�t� is
regularly varying at infinity: the limit

lim
λ→+∞

a�λt�/a�λ�
exists for all t > 0. It is easy to see that there exists a real number p ≥ 0 such
that

�1�5� lim
λ→+∞

a�λt�/a�λ� = tp ∀ t > 0�

It is a standard fact [see, e.g., Chapter 18 in Meyn and Tweedie (1993)] that
the truncated Green function a�t� has a linear increasing rate if �Xn�n≥0 is
positive recurrent, or a sublinear increasing rate if �Xn�n≥0 is null recurrent.
Hence, we always have 0 ≤ p ≤ 1. We call p the regular index of �Xn�n≥0.
To emphasize its regular index, sometimes a regular Harris recurrent Markov
chain with index p is simply called p-regular. We notice that the regularity
adopted here is similar in spirit to hypothesis (C) introduced in Touati (1990).
It should also be pointed out (see the proof of Theorems 2.3 and 2.4 below)
that in the “atomic” context, a Harris recurrent chain is p-regular if and only
if the hitting time to an atom is in the domain of attraction of a stable law
with p being the stable index. A strengthened version of such a stability is
introduced in Csáki and Csörgő (1995) as a condition for a strong invariant
principle for null recurrent Markov chains given in their paper.

By definition, a positive recurrent Markov chain is 1-regular. We will see
in section 6 that an one-dimensional random walk is 1/2-regular and a two-
dimensional random walk is 0-regular, provided they are centered and square
integrable.

2. Main results. We first deal with the general situation without assum-
ing regularity.

Theorem 2.1. Let �Xn�n≥0 be a Harris recurrent Markov chain with state
space E, transition probability P�x�A� and invariant measure π. Then for
every nonnegative function f ∈ � 1�E�� � π� with

∫
f�x�π�dx� > 0 and every

initial distribution µ, both the sequences{ n∑
k=1

f�Xk�
/
a�n�

}
n≥1

and

{( n∑
k=1

f�Xk�
/
a�n�

)−1}
n≥1

are bounded in probability, where the random variables in the second sequence
are allowed to take the value ∞.

The normalizer for the strong limit theorems takes a different form. Define
the function L2λ �λ ≥ 0� by

L2λ = log log max�λ� ee�� λ ≥ 0�
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Theorem 2.2. Let �Xn�n≥0 be a Harris recurrent Markov chain with state
space E, transition probability P�x�A� and invariant measure π. Then there
exists a constant 0 < L < +∞ such that

�2�1� lim sup
n→∞

n∑
k=1

f�Xk�
/
a

(
n

L2a�n�
)
L2a�n� = L

∫
f�x�π�dx� a.s.

for every nonnegative function f ∈ � 1�E�� � π�.

Theorem 2.1 and Theorem 2.2 give the exact increaing rates for our additive
functionals in the weak sense and strong sense, respectively. According to
Theorem 17.3.2 in Meyn and Tweedie (1993), the algebra � of invariant sets
is a.s. trivial when �Xn�n≥0 is Harris recurrent: for every A ∈ � , P•�A� is
identically zero or one. Consequently, the statement of a strong limit law like
(2.1) is independent of the choice of the initial distribution.

With regularity assumption, one can also identify the limiting parameters
in our results.

Theorem 2.3. Let �Xn�n≥0 be a regular Harris recurrent Markov chain
with state space E, transition probability P�x�A� and invariant measure π.
Then for every nonnegative function f ∈ � 1�E�� � π�, the sequence of distri-
butions

�Pµ

( n∑
k=1

f�Xk�
/
a�n�

)
� n = 1�2� � � �

weakly converges for every initial distribution µ. Moreover, we have:

(i) When the regular index p = 0, the limit distribution is the exponential
distribution with parameter

∫
f�x�π�dx�.

(ii) When the regular index p satisfies 0 < p < 1, the limit distribution is

�

(
G−p
p

∫
f�x�π�dx�

)
�

where Gp is a stable random variable with Laplace transform

E exp�−tGp� = exp
{
− tp

��p+ 1�
}
� t ≥ 0�

(iii) When the regular index p = 1,

n∑
k=1

f�Xk�
/
a�n� →

∫
f�x�π�dx� in probability.

Theorem 2.4. Let �Xn�n≥0 be a p-regular (0 ≤ p ≤ 1) Harris recurrent
Markov chain with state space E, transition probability P�x�A� and invariant
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measure π. Then,

�2�2�
lim sup
n→∞

n∑
k=1

f�Xk�
/
a

(
n

L2a�n�
)
L2a�n�

= ��p+ 1�
pp�1 − p�1−p

∫
f�x�π�dx� a.s.

for every nonnegative function f ∈ � 1�E�� � π�, where we interpret pp = �1 −
p�1−p = 1 if p = 0 or 1.

The weak laws for the Markovian additive functionals of our type (where
f ≥ 0) have been studied in Darling and Kac (1957) by a method different from
what we propose in this paper. The special cases of random walks, Brownian
motions and Lèvy processes have been studied in a number of papers. A good
resource to find these results is the book by Révész (1990). Here we would
like to mention the work by Marcus and Rosen (1994b) on the strong laws for
local times of recurrent random walks and Lévy process, where they connect
trancated Green functions with the growth rate of the local times. A nice way
of computing truncated Green functions in the case of random walks is given
in Proposition 2.4 [and consequently, (2.j)] of Le Gall and Rosen (1991). In
Section 6, we will apply Theorems 2.3 and 2.4 to one-dimensional and two-
dimensional random walks by making use of their results.

Our method consists of three steps: regeneration, splitting and sampling.
The concept of split chain is independently introduced by Athreya and Ney
(1978) and Nummelin (1978). The idea is to construct an atom which allows
for regeneration. This powerful tool has been developed and utilized by quite
a number of works in the study of Markov chains with general state spaces.
We refer to the books by Nummelin (1984), Meyn and Tweedie (1993), Duflo
(1997) and some references quoted in these books as part of the literature. The
three-step scheme of regeneration, splitting and sampling is considerably ex-
ploited in Touati (1990). Our way of utilizing this method is slightly different,
which can also be found in de Acosta and Chen (1998) and Chen (1998). As
an important feature of this paper, our strong laws rely on a large deviation
estimation for Markov chains, which takes a form different from those known
in the literature. This progress is partially inspired by the observation made
in Csáki and Csörgő (1995) on the stability of the hitting times.

3. Some results related to an atom. The main idea of the regeneration
method is to analyze the Markov chain by dividing it into independent and
identically distributed (i.i.d.) random blocks, with which the concept of atom
plays a crucial role in this paper. A set α ∈ � + is called an atom of �Xn�n≥0
[or its transition P�x�A�] if

P�x� ·� = P�y� ·� for all x�y ∈ α�

Noticing that Px = Py for x�y ∈ α on the σ-algebra generated by �Xn�n≥1,
we denote the common value by Pα. Notations like P�α� ·� and Eα are also
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used in the obvious way. In the rest of the section we suppose that the Harris
recurrent Markov chain �Xn�n≥0 has an atom α. Let

�3�1� iα�n� =
n∑

k=1

Iα�Xk�� n = 1�2� � � � �

�3�2� ϕ�t� =
�t�∑
k=1

Pk�α� α�� t ≥ 0�

According to Proposition 5.13(iii) in Nummelin (1984), α is a D-set. In view of
(1.3) we have

�3�3� lim
t→+∞

ϕ�t�/a�t� = π�α��
Define

τα�0� = 0 and τα�1� = τα = inf�n ≥ 1
 Xn ∈ α��
τα�k+ 1� = inf�n > τα�k�
 Xn ∈ α�� k ≥ 1�

The assumption of Harris recurrence ensures that for each k, τα�k� < +∞ a.s.
Pµ for each initial distribution µ.

It is well known and easy to verify (via strong Markov property) that under
the law Pα, the random blocks �Bk�k≥0 given by

Bk = {
Xτα�k�+1� � � � �Xτα�k+1�

}
� k = 0�1�2� � � � �

is an i.i.d. sequence with the common distribution

�Pα

({
X1� � � � �Xτα

})
�

In particular, under Pα the real random sequence �τα�k�− τα�k− 1��k≥1 is an
i.i.d. with the common distribution

Pα�τα = n�� n = 1�2� � � � �

Lemma 3.1. For each n ≥ 1,

�3�4� Eα min�τα� n� ≥ n

1 + ϕ�n� �

Proof. By definition we have

�3�5� τα�iα�n�� = max�k
 0 ≤ k ≤ n and Xk ∈ α��
Therefore,

1 = Pα

{
0 ≤ τα�iα�n�� ≤ n

} =
n∑

k=0

Pα

{
τα�iα�n�� = k

}

=
n∑

k=0

Pα

{
Xk ∈ α� Xk+1 
∈ α� � � � �Xn 
∈ α

}

=
n∑

k=0

Pα

{
Xk ∈ α

}
Pα

{
τα ≥ n− k+ 1

}
�
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Hence,

n =
n−1∑
k=0

k∑
j=1

Pα

{
Xj ∈ α

}
Pα

{
τα ≥ k− j+ 1

}

=
n−1∑
j=0

Pα

{
Xj ∈ α

} n−j∑
k=1

Pα

{
τα ≥ k

}

≤ �1 + ϕ�n− 1��
n∑

k=1

Pα

{
τα ≥ k

}
≤ �1 + ϕ�n��Eα min�τα� n��

which gives (3.4). ✷

Lemma 3.2. (i) For each n ≥ 1 and t > 0,

Eα exp
{− (

logEα exp�−tτα�
)
iα�n�

} ≥ Eα exp�−tτα�ent�
(ii) For each n ≥ 1, t > 0 and λ > 0,

Eα exp
{− (

logEα exp
{− tmin�τα� λ�

})
iα�n�

} ≤ exp�t�λ+ n���

Proof. Consider the random sequence �Mn�n≥0 given by

Mn = exp
{− tτα�n� −

(
logEα exp�−tτα�

)
n
}
� n = 0�1�2� � � � �

Under the law Pα, �Mn�n≥0 is a Martingale w.r.t. the filtration

σ�Xk
 k ≤ τα�n��� n = 0�1�2� � � � �

On the other hand, by definition,

�3�6� iα�n� + 1 = min�k ≥ 1
 τα�k� > n��
Hence iα�n� + 1 is a stopping time w.r.t. �Mn�n≥0. By a well-known Doob’s
stopping rule,

Eα exp
{− tτα�iα�n� + 1� − �logEα exp�−tτα���iα�n� + 1�} = 1�

Hence the claim (1) follows from the fact that τα�iα�n� + 1� > n [see (3.6)].
With �τα�k� − τα�k− 1��k≥1 being replaced by the i.i.d. sequence �ξk�k≥1,

ξk = min
{
τα�k� − τα�k− 1�� λ}� k = 1�2� � � �

and with the similar argument, one can prove

Eα exp
{
−t

iα�n�+1∑
k=1

ξk −
(

logEα exp
{− tmin�τα� λ�

})(
iα�n� + 1

)} = 1�

Hence the claim (2) follows from the following observation:
iα�n�+1∑
k=1

ξk ≤ λ+
iα�n�∑
k=1

ξk ≤ λ+ τα
(
iα�n�

) ≤ λ+ n�

where the last step follows from (3.5). ✷
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Lemma 3.3. Assume that �bn�n≥1 is a sequence of nondecreasing positive
numbers such that

�3�7� ∑
k

Pα

{
iα�nk� ≥ bnk

} = +∞

for some subsequence �nk� satisfying

�3�8� bnk+1
≥ rbnk for sufficiently large k

with some r > 1. Then

�3�9� lim sup
n→∞

iα�n�
bn

≥ 1 a.s.

Proof. Although the situation is different, some of the ideas in the proof
come from Kuelbs (1981). We may assume that �bn�n≥1 are integers, for oth-
erwise we consider ��bn��n≥1 instead. For each k ≥ 1, define

σk = inf�n ≥ nk
 τα�bn� ≤ n��
Given ε > 0, from (3.8) there exists an integer s ≥ 1 such that

bnk+1
/bnk+s < ε ∀ k ≥ 1�

We have

Dk ≡ {
τα�bn� > n for all n ≥ nk+s� σk ∈ �nk� nk+1�

}
⊃ {

τα�bn� − τα�bσk� > n for all n ≥ nk+s� σk ∈ �nk� nk+1�
}
�

By independence,

Pα�Dk� ≥
∑

j∈�nk� nk+1�
Pα�σk = j�Pα

{
τα�bn − bj� > n for all n ≥ nk+s

}
≥ Pα

{
σk ∈ �nk� nk+1�

}
Pα

{
τα���1 − ε�bn�� > n for all n ≥ ns

}
�

From the definition of Dk, we easily see that at most s of the events Dk can
occur at a single time, so

s ≥ ∑
k

Pα�Dk�

≥ Pα

{
τα���1 − ε�bn�� > n for all n ≥ ns

}∑
k

Pα

{
σk ∈ �nk� nk+1�

}
�

Notice that ∑
k

Pα

{
σk ∈ �nk� nk+1�

} ≥ ∑
k

Pα

{
σk = nk

}
= ∑

k

Pα

{
τα�bnk� ≤ nk

}
= ∑

k

Pα

{
iα�nk� ≥ bnk

} = +∞�
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where the third step follows from the fact

�3�10� {
τα�k� ≤ n

} = {
iα�n� ≥ k

} ∀ n� k ≥ 1�

Hence,

Pα

{
τα���1 − ε�bn�� > n for all n ≥ ns

} = 0�

Since s ≥ 1 can be arbitrarily large, we have proved

Pα

{
τα���1 − ε�bn�� ≤ n i.o.

} = 1�

In view of (3.10) we have

lim sup
n→∞

iα�n�
bn

≥ 1 − ε a.s.

Letting ε→ 0+ gives (3.9). ✷

Lemma 3.4. Let �Xn�n≥0 be p-regular (0 ≤ p ≤ 1). Then

�3�11� logEα exp�−tτα� ∼ −(
ϕ�t−1���p+ 1�)−1

as t→ 0+�

Proof. By (8.10), page 177 in Meyn and Tweedie (1993), for each t > 0,
∞∑
n=1

Pn�α� α�e−tn = Eα exp�−tτα� +Eα exp�−tτα�
∞∑
n=1

Pn�α� α�e−tn�

Hence,

logEα exp�−tτα� = log
∑∞

n=1 P
n�α� α�e−tn

1 +∑∞
n=1 P

n�α� α�e−tn ∼ −
( ∞∑
n=1

Pn�α� α�e−tn
)−1

as t→ 0+, where the second step follows from the fact that
∞∑
n=1

Pn�α� α� = +∞�

Hence, (3.11) follows from Tauberian’s theorm. ✷

4. Proof of Theorems 2.1 and 2.2. We only prove Theorem 2.1 and The-
orem 2.2 in the case when �Xn�n≥0 posseses an atom α. We also assume that
�Xn�n≥0 starts from α. In the proof of Theorems 2.3 and 2.4 later we shall
show how the general situation can be reduced to this special case. Let iα�n�
and ϕ�t� be given in (3.1) and (3.2), respectively. By (1.2) and (1.3) we may take
f = Iα and D = α [Recall that D is given in the definition of a�t�.] Therefore
the boundedness in probability of �iα�n�/ϕ�n��n≥1 follows from the Chebyshev
inequality.

To prove Theorem 2.1 in the reduced case, it remains to show the bounded-
ness in probability of the sequence ��iα�n�/ϕ�n��−1�n≥1. That is, for any given
ε > 0 there exists a δ > 0 such that

�4�1� Pα

{
iα�n� ≥ δϕ�n�} ≥ 1 − ε



HARRIS RECURRENT MARKOV CHAINS 1333

for sufficiently large n. By (2.4) in Lemma 1 of Chen (1998), for any s > 0 and
n ≥ 1,

Eα

(
iα�n�I�iα�n�≥s�

) ≤ Pα

{
iα�n� ≥ s

}�s+ 1 + ϕ�n���
Taking s = δϕ�n� gives

�1 − δ�ϕ�n� ≤ Eα

(
iα�n�I�iα�n�≥δϕ�n��

)
≤ Pα

{
iα�n� ≥ δϕ�n�}��1 + δ�ϕ�n� + 1��

Therefore,

Pα

{
iα�n� ≥ δϕ�n�} ≥ �1 − δ�ϕ�n�

�1 + δ�ϕ�n� + 1
�

from which one can see how (4.1) is satisfied for small δ > 0.
To have Theorem 2.2 in the atomic case, we need to prove

�4�2� 0 < lim sup
n→∞

iα�n�
/
ϕ
( n

L2ϕ�n�
)
L2ϕ�n� < +∞ a.s.

We first establish the upper bound. Taking t = L2ϕ�n�/n and λ = n/L2ϕ�n�
in Lemma 3.2(ii) gives

Eα exp
{
−
(

logEα exp
{
−L2ϕ�n�

n
min

{
τα�

n

L2ϕ�n�
}})

iα�n�
}

≤ exp�1 +L2ϕ�n��
for every n ≥ 1.

On the other hand,

Eα exp
{
−L2ϕ�n�

n
min

{
τα�

n

L2ϕ�n�
}}

≤ 1 − L2ϕ�n�
n

Eα min
{
τα�

n

L2ϕ�n�
}

+ 1
2

(
L2ϕ�n�

n

)2

Eα

(
min

{
τα�

n

L2ϕ�n�
})2

≤ 1 − L2ϕ�n�
2n

Eα min
{
τα�

n

L2ϕ�n�
}

≤ 1 − L2ϕ�n�
2n

�n/L2ϕ�n��
1 + ϕ��n/L2ϕ�n���

�

where the last step follows from Lemma 3.1. Hence,

− logEα exp
{
−L2ϕ�n�

n
min

{
τα�

n

L2ϕ�n�
}}

≥ 1
4ϕ�n/L2ϕ�n��

for sufficiently large n. We have thus proved

Eα exp
{
iα�n�

/
4ϕ

(
n

L2ϕ�n�
)}

≤ e exp
{
L2ϕ�n�

}
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for sufficiently large n. Therefore,

�4�3�

Pα

{
iα�n� ≥ 12ϕ

(
n

L2ϕ�n�
)
L2ϕ�n�

}

≤ exp�−3L2ϕ�n��Eα exp
{
iα�n�

/
4ϕ

(
n

L2ϕ�n�
)}

≤ e exp
{− 2L2ϕ�n�

}
for large n.

Define the subsequence �nk� by

nk = inf
{
n
 ϕ(n/L2ϕ�n�

) ≥ 2k
}
� k = 1�2� � � � �

We hence have

�4�4� L2ϕ�nk� ∼ log k as k→ ∞�

In view of (4.3) we have

∑
k

Pα

{
iα�nk� ≥ 12ϕ

(
nk

L2ϕ�nk�
)
L2ϕ�nk�

}
< +∞�

By the Borel–Cantelli lemma,

lim sup
k→∞

iα�nk�
/
ϕ

(
nk

L2ϕ�nk�
)
L2ϕ�nk� ≤ 12 a.s.

So the upper bound in (4.2) follows from a standard argument.
It remains to establish the lower bound. Let

bn =
[
λϕ

(
n

L2ϕ�n�
)
L2ϕ�n�

]
� n = 1�2� � � � �

where the constant λ > 0 will be specified later. By (3.10),

Pα

{
iα�n� ≥ λϕ

(
n

L2ϕ�n�
)
L2ϕ�n�

}
= Pα

{
τα�bn� ≤ n

}
�

Let

pn = [
bn/L2ϕ�n�

]
and qn = �bn/pn�� n = 1�2� � � � �

Then for each n ≥ 1,

Pα

{
τα�bn� ≤ n

} ≥ Pα

{
τα�pn�qn + 1�� ≤ n

}
≥ Pα

( qn+1⋂
j=1

{
τα�jpn� − τα��j− 1�pn� ≤

n

qn + 1

})

=
(
Pα

{
τα�pn� ≤

n

qn + 1

})qn+1

=
(
Pα

{
iα

([
n

qn + 1

])
≥ pn

})qn+1

�
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Therefore,

�4�5�
Pα

{
iα�n� ≥ λϕ

(
n

L2ϕ�n�
)
L2ϕ�n�

}

≥
(
Pα

{
iα

([
n

qn + 1

])
≥ pn

})qn+1

�

Notice that

�4�6� pn∼λϕ

(
n

L2ϕ�n�
)
� qn∼L2ϕ�n� and

n

qn + 1
∼ n

L2ϕ�n�
as n→ ∞. By (4.1), for given 0 < u < 1 we can take λ > 0 so small that

Pα

{
iα

([
n

qn + 1

])
≥ pn

}
≥ e−u

holds eventually. Combining (4.4) and (4.5) gives

∑
k

Pα

{
iα�nk� ≥ λϕ

(
nk

L2ϕ�nk�
)
L2ϕ�nk�

}
= +∞�

By Lemma 3.3 we thus have

lim sup
n→∞

iα�n�
/
ϕ

(
n

L2ϕ�n�
)
L2ϕ�n� ≥ λ > 0 a.s.

which gives a desired lower bound. ✷

5. Proof of Theorems 2.3 and 2.4.

Step 1. We first prove Theorems 2.3 and 2.4 under the additional assump-
tion that �Xn�n≥0 possesses an atom α such that

�5�1� P�α� α� > 0�

Similarly, we take f = Iα and D = α. Hence, Theorem 2.3 is restated as:
(1′) When the regular index p = 0,

iα�n�
/
ϕ�n� → Exp in distribution,

where Exp is a random variable having the exponential distribution with pa-
rameter 1.

(2′) When the regular index 0 < p < 1, �iα�n�
/
ϕ�n��n≥1 weakly converges

to � �G−p
p �.

(3′) When the regular index p = 1,

iα�n�
/
ϕ�n� → 1 in probability.

An equivalent form of Theorem 2.4 in the atomic case is

�5�2� lim sup
n→∞

iα�n�
/
ϕ

(
n

L2ϕ�n�
)
L2ϕ�n� =

��p+ 1�
pp�1 − p�1−p a.s.
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We now prove (1′), (2′) and (3′). From (5.1), �Xn�n≥0 is aperiodic [see, e.g.,
Meyn and Tweedie (1993) for details]. By Orey’s convergence theorem [see, e.g.,
Theorem 18.1.2 in Meyn and Tweedie (1993)], we may assume that �Xn�n≥0
starts from α. Suppose 0 < p ≤ 1 and let ψ�t� be the inverse function of ϕ
(defined in the usual way). From Lemma 3.4 we have that for all t > 0,

Eα exp
{
−tτα�n�

ψ�n�
}
→ exp

{
− tp

��p+ 1�
}

as n→ ∞�

Hence,

�5�3� τα�n�
/
ψ�n� → Gp in distribution if 0 < p < 1

and

�5�4� τα�n�
/
ψ�n� → 1 in probability if p = 1�

From (3.10) one can see how (5.3) and (5.4) imply (2′) and (3′), respectively.
Suppose p = 0. Then, ϕ�t� is slowly varying at infinity,

lim
λ→+∞

ϕ�λt�/ϕ�λ� = 1 ∀t > 0�

By Lemma 3.4,

1 −Eα exp�−tτα� ∼
1

ϕ�t−1� as t→ 0+�

According to Tauberian’s theorem [see, e.g., Feller (1971) Section XIII. 5], this
is equivalent to

Pα�τα > λ� ∼ 1
ϕ�λ� as λ→ +∞�

Therefore [Darling (1952)],

ϕ
(
τα�n�

)/
n→ 1

/
Exp in distribution�

which, by (3.10), implies (1′).
We now prove (5.2). We first prove the following.

Claim 1. When p = 0,

lim
n→∞

1
L2ϕ�n�

logEα exp
{
tiα�n�

/
ϕ

(
n

L2ϕ�n�
)}

= 0

for every 0 < t < 1.

Claim 2. When 0 < p ≤ 1,

lim
n→∞

1
L2ϕ�n�

logEα exp
{
tiα�n�

/
ϕ

(
n

L2ϕ�n�
)}

= ���p+ 1�t�1/p

for every t > 0.



HARRIS RECURRENT MARKOV CHAINS 1337

Given s > 0 and ε > 0, taking t = sL2ϕ�n�/n and λ = εn in Lemma 3.2(ii)
gives

�5�5�
Eα exp

{
−
(

logEα exp
{
−sL2ϕ�n�

n
min�τα� εn�

})
iα�n�

}

≤ exp
{�1 + ε�sL2ϕ�n�

} ∀ n ≥ 1�

On the other hand,

Eα exp
{
−sL2ϕ�n�

n
min

{
τα� εn

}}

= Eα exp
{
−sL2ϕ�n�

n
τα

}
+ o�1�

= �1 + o�1��Eα exp
{
−sL2ϕ�n�

n
τα

}
� n→ ∞�

By regularity and Lemma 3.4, therefore,

�5�6�
− logEα exp

{
−sL2ϕ�n�

n
min

{
τα� εn

}}

∼ sp

ϕ�n/L2ϕ�n����p+ 1� � n→ ∞�

If p = 0, from (5.6) for given 0 < t < 1,

− logEα exp
{
−sL2ϕ�n�

n
min

{
τα� εn

}}
> t

/
ϕ

(
n

L2ϕ�n�
)

for sufficiently large n. By (5.5),

Eα exp
{
tiα�n�

/
ϕ

(
n

L2ϕ�n�
)}

≤ exp
{�1 + ε�sL2ϕ�n�

}
eventually holds, which gives

�5�7� lim sup
n→∞

1
L2ϕ�n�

logEα exp
{
tiα�n�

/
ϕ

(
n

L2ϕ�n�
)}

≤ �1 + ε�s�

Letting s→ 0+ proves Claim 1.
Suppose 0 < p ≤ 1 and let t > 0 be fixed. The similar argument gives (5.7)

for all s > ���p+ 1�t�1/p. Letting s→ ���p+ 1�t�1/p and ε→ 0+ gives

�5�8� lim sup
n→∞

1
L2ϕ�n�

logEα exp
{
tiα�n�

/
ϕ

(
n

L2ϕ�n�
)}

≤ ���p+ 1�t�1/p�
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On the other hand, taking t = sL2ϕ�n�/n in Lemma 3.2(i) gives

Eα exp
{
−
(

logEα exp
{
−sL2ϕ�n�

n
τα

})
iα�n�

}

≥ Eα exp
{
−sL2ϕ�n�

n
τα

}
exp�sL2ϕ�n��

= �1 + o�1�� exp�sL2ϕ�n�� as n→ ∞�

Applying Lemma 3.4 and regularity we see that for arbitrary 0 < s < ���p+
1�t�1/p,

Eα exp
{
tiα�n�

/
ϕ

(
n

L2ϕ�n�
)}

≥ �1 + o�1�� exp�sL2ϕ�n��

eventually holds, which gives

�5�9� lim inf
n→∞

1
L2ϕ�n�

logEα exp
{
tiα�n�

/
ϕ

(
n

L2ϕ�n�
)}

≥ ���p+ 1�t�1/p�

Hence, Claim 2 follows from (5.8) and (5.9).
We now prove (5.2) in the case 0 < p < 1. Note that Eαiα�n� = ϕ�n� �n ≥ 1�.

Given t ≤ 0, by Jensen’s inequality,

Eα exp
{
tiα�n�

/
ϕ

(
n

L2ϕ�n�
)}

≥ exp
{
tϕ�n�

/
ϕ

(
n

L2ϕ�n�
)}

for each n ≥ 1. Since p < 1, one can see that

ϕ�n�
/
ϕ

(
n

L2ϕ�n�
)
= o�L2ϕ�n�� as n→ ∞�

Hence we have

lim
n→∞

1
L2ϕ�n�

logEα exp
{
tiα�n�

/
ϕ

(
n

L2ϕ�n�
)}

= 0 ∀ t ≤ 0�

Combining this with the previous observation gives

lim
n→∞

1
L2ϕ�n�

logEα exp
{
tiα�n�

/
ϕ

(
n

L2ϕ�n�
)}

= 1�t� ∀ t ∈ R�

where

1�t� =
{ ���p+ 1�t�1/p� t ≥ 0�

0� t < 0�

By the Gärtner–Ellis theorem [Theorem 2.3.6 in Dembo and Zeitouni (1993)]
on the large deviations, the distribution sequence

�Pα

(
iα�n�

/
ϕ

(
n

L2ϕ�n�
)
L2ϕ�n�

)
� n = 1�2� � � �
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satisfies the large deviation principle governed by the rate function 1∗�λ�
given by

1∗�λ� = sup
t∈R

{
tλ− 1�t�} =



pp�1−p�−1�1 − p�

(
λ

��p+ 1�
)�1−p�−1

� λ ≥ 0�

+∞� λ < 0�

In particular, for every λ > 0,

�5�10�
lim
n→∞

1
L2ϕ�n�

logPα

{
iα�n� ≥ λϕ

(
n

L2ϕ�n�
)
L2ϕ�n�

}

= −pp�1−p�−1�1 − p�
(

λ

��p+ 1�
)�1−p�−1

�

Let r > 1 be fixed but arbitrary and define subsequence �nk�k by

nk = inf
{
n
 ϕ�n/L2ϕ�n�� ≥ rk

}
� k = 1�2� � � � �

One can see that L2ϕ�nk� ∼ log k as k → ∞. Since the right-hand side of
(5.10) is greater or less than −1 depending on

λ <
��p+ 1�

pp�1 − p�1−p or λ >
��p+ 1�

pp�1 − p�1−p �

the series ∑
k

Pα

{
iα�nk� ≥ λϕ

(
nk

L2ϕ�nk�
)
L2ϕ�nk�

}

diverges or converges accordingly. By Lemma 3.3,

�5�11� lim sup
n→∞

iα�n�
/
ϕ

(
n

L2ϕ�n�
)
L2ϕ�n� ≥

��p+ 1�
pp�1 − p�1−p a.s.

On the other hand, by the Borel–Cantelli lemma,

lim sup
k→∞

iα�nk�
/
ϕ

(
nk

L2ϕ�nk�
)
L2ϕ�nk� ≤

��p+ 1�
pp�1 − p�1−p a.s.

Notice that r > 1 can be arbitrarily close to 1. A standard argument gives

�5�12� lim sup
n→∞

iα�n�
/
ϕ

(
n

L2ϕ�n�
)
L2ϕ�n� ≤

��p+ 1�
pp�1 − p�1−p a.s.

Hence, (5.2) follows from (5.11) and (5.12) in the case 0 < p < 1.
It remains to prove (5.2) for p = 0 and p = 1, which takes the form

lim sup
n→∞

iα�n�
/
ϕ

(
n

L2ϕ�n�
)
L2ϕ�n� = 1 a.s.

Observing the previous proof we need only to show that for any 0 < ε < 1,

�5�13� lim sup
n→∞

1
L2ϕ�n�

logPα

{
iα�n� ≥ �1 + ε�ϕ

(
n

L2ϕ�n�
)
L2ϕ�n�

}
< −1�
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�5�14� lim inf
n→∞

1
L2ϕ�n�

logPα

{
iα�n� ≥ �1 − ε�ϕ

(
n

L2ϕ�n�
)
L2ϕ�n�

}
> −1�

The upper bound (5.13) is a direct consequence of Claim 1 and Claim 2.
We now prove the lower bound (5.14). Because of similarity we take the case
p = 0 for an example. In view of (4.5) and (4.6), in which we take λ = 1 − ε,
we have

Pα

{
iα�n� ≥ �1 − ε�ϕ

(
n

L2ϕ�n�
)
L2ϕ�n�

}
≥

(
Pα

{
iα

([
n

qn + 1

])
≥ pn

})qn+1

�

Notice that �iα�n�/ϕ�n��n≥1 weakly converges to the exponential distribution
with parameter 1. Therefore,

lim inf
n→∞

1
L2ϕ�n�

logPα

{
iα�n� ≥ �1 − ε�ϕ

(
n

L2ϕ�n�
)
L2ϕ�n�

}

≥ log
∫ +∞

1−ε
e−t dt = −1 + ε > −1�

Step 2. We now prove Theorem 2.3 and Theorem 2.4 under the assump-
tion that there exists a C ∈ � + such that

�5�15� P�x�A� ≥ bIC�x�ν�A�� x ∈ E� A ∈ �

for some b > 0 and probability measure ν on �E�� � with ν�C� > 0.

Our approuch is to create an atom by making use of so-called split chain
technique which initially belongs to Nummelin (1978, 1984) and Athreya and
Ney (1978). According to Section 4.4 in Nummelin (1984) [with s�x� = IC�x�],
under (5.15) one can embed �Xn�n≥0 into a larger probability space on which
a sequence �Yn�n≥0 of �0�1�-valued random variables is defined in such a way
that ��Xn�Yn��n≥0 becomes a Markov chain with state space E × �0�1� and
an atom α∗ given by

α∗ = E× �1��
Such a Markov chain is called split chain in the literature. By Proposition 4.8
in Nummelin (1984), ��Xn�Yn��n≥0 is Harris recurrent. We also have

�5�16� π∗�α∗� = bπ�C� and
∫
f�x�π∗�d�x�y�� =

∫
f�x�dx�

where π∗ is the invariant measure of ��Xn�Yn��n≥0 such that the marginal
of π∗ on E is π [see Section 4.4 in Nummelin (1984) for details]. Moreover
[(4.19), page 63, Nummelin (1984)],

P̃k�α∗� α∗� = bνPk−1�C�� k = 1�2� � � �

where P̃k is the k-step transition of ��Xn�Yn��n≥0. Taking k = 1, one can see
that the condition (5.1) applies to the split chain and its atom α∗. Further,
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from the first part of (5.16) we have

�5�17�
ã�n� ≡ π∗�α∗�−1

n∑
k=1

P̃k�α∗� α∗�

∼ π�C�−1
n∑

k=1

νPk�C� ∼ a�n�� n→ ∞�

where the second “∼” follows from (1.3) and the fact [Proposition 5.13(iii) in
Nummelin (1984)] that C is a D-set of �Xn�n≥0. In particular, ��Xn�Yn��n≥0 is
p-regular. Applying the result achieved at the previous step to the split chain
��Xn�Yn��n≥0, function f (viewed as a function on E×�0�1�) and the sequence
�ã�n��n≥1, and combining (5.16), (5.17) we have the desired conclusion.

Step 3. We now extend our results to the general situation. Because of
similarity we only prove Theorem 2.4. Let 0 < t < 1 be fixed but arbitrary.
Define the transition probability Pt�x�A� on �E�� � as follows:

Pt�x�A� = �1 − t�
∞∑
k=1

tk−1Pk�x�A�� x ∈ E� A ∈ � �

According to Proposition 8.2.13(1) in Duflo (1997), Pt�x�A� is Harris recur-
rent. One can directly verify that π is an invariant measure of Pt�x�A�. By
Proposition 5.4.5(ii) of Meyn and Tweedie (1993), Pt�x�A� satisfies the addi-
tional condition assumed at the second step.

Let �βn�n≥1 be an i.i.d. Bernoulli random variables with the common law,

P�β1 = 0� = t and P�β1 = 1� = 1 − t�

We always assume independence between �βn�n≥1 and �Xn�n≥0. Define a re-
newal sequence �σ�k��k≥0 as follows:

σ�0� = 0 and σ�k� = inf�n > σ�k− 1�
 βn = 1�� k ≥ 1�

One can easily see that �σ�k� − σ�k − 1��k≥1 is an i.i.d. sequence with the
common law given by

P�σ�1� = k� = �1 − t�tk−1� k = 1�2� � � � �

By (5.9) in de Acosta (1988), the random sequence �Xσ�n��n≥0 is a Markov
chain with the transition Pt�x�A�. On the other hand, we have

�5�18�
n∑

k=1

f�Xσ�k�� =
σ�n�∑
k=1

βkf�Xk�� n = 1�2� � � � �

In particular, taking expectation in (5.18) one can obtain

at�n� ≡ π�D�−1
n∑

k=1

νPk
t �D� = �1 − t�Ea�σ�n���
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By the law of large numbers, �σ�n�/n�n≥1 tends to �1 − t�−1 in each L-norm
as well as in the sense of almost sure convergence. By regularity and the
dominated convergence theorem,

�5�19� at�n� ∼ �1 − t�a�n�E
(
σ�n�
n

)p

∼ �1 − t�1−pa�n� as n→ ∞�

Notice that a D-set of P�x�A� is also a D-set of its resolvent chain Pt�x�A�.
Hence, the Markov chain Pt�x�A� is p-regular.

Applying the conclusion achieved in the second step to Pt�x�A� gives

lim sup
n→∞

σ�n�∑
k=1

βkf�Xk�
/
a

(
n

L2a�n�
)
L2a�n�

= �1 − t�1−p ��p+ 1�
pp�1 − p�1−p

∫
f�x�π�dx� a.s.

Given 0 < λ1 < 1 − t < λ2, by regularity we have

lim sup
n→∞

σ��λin��∑
k=1

βkf�Xk�
/
a

(
n

L2a�n�
)
L2a�n�

= λ
p
i �1 − t�1−p ��p+ 1�

pp�1 − p�1−p

∫
f�x�π�dx� a.s., i = 1�2�

On the other hand, by the law of large numbers

�5�20� σ��λ1n��/n→ λ1

1 − t
< 1 and σ��λ2n��/n→ λ2

1 − t
> 1 a.s.

Therefore,

λ
p
1 �1 − t�1−p ��p+ 1�

pp�1 − p�1−p

∫
f�x�π�dx�

≤ lim sup
n→∞

n∑
k=1

βkf�Xk�
/
a

(
n

L2a�n�
)
L2a�n�

≤ λ
p
2 �1 − t�1−p ��p+ 1�

pp�1 − p�1−p

∫
f�x�π�dx� a.s.

Letting λ1� λ2 → 1 − t gives

�5�21�
lim sup
n→∞

n∑
k=1

βkf�Xk�
/
a

(
n

L2a�n�
)
L2a�n�

= �1 − t� ��p+ 1�
pp�1 − p�1−p

∫
f�x�π�dx� a.s.
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With �1 − βk�k≥1 instead of �βk�k≥1 in (5.21) we obtain that

�5�22�
lim sup
n→∞

n∑
k=1

�1 − βk�f�Xk�
/
a

(
n

L2a�n�
)
L2a�n�

= t
��p+ 1�

pp�1 − p�1−p

∫
f�x�π�dx� a.s.

Finally, the desired conclusion follows from (5.21), (5.22) and from letting t→
0+ in the following decomposition:

n∑
k=1

f�Xk� =
n∑

k=1

βkf�Xk� +
n∑

k=1

�1 − βk�f�Xk�� n = 1�2� � � � � ✷

6. Applications. As an application of our results, we study the limit laws
for occupation times of Harris recurrent random walks. Recall that a sequence
�Sn�n≥0 of Rd-valued (d ≥ 1) random variables is called a random walk if
�Sn −Sn−1�n≥1 is an i.i.d. sequence. We assume that

�6�1� E�S1 −S0� = 0 and E�S1 −S0�2 < +∞
where � · � is the Euclidean norm. The limit theorems for occupation times
of recurrent random walks with lattice values have been extensively studied.
In this section we consider the random walks with nonlattice values. The
distribution F of the increment S1−S0, or the random walk �Sn�n≥0, is called
spread out, if there is an integer k ≥ 1 such that the kth convolution F∗k is
not singular to Lebesgue measure λ on Rd. “This class is much larger than
the class of absolutely continuous probability measures,” as pointed out in
Revuz [(1975), page 91]. Being spread out, �Sn�n≥0 is Harris recurrent (with
Lebesgue measure as its invariant measure) if and only if d = 1 or 2 [see, e.g.,
Chapter 3, Sections 4 and 5, Revuz (1975)].

So we focus on the case d ≤ 2 in the following discussion. Given a measur-
able set A ⊂ Rd with 0 < λ�A� < +∞, let ξn�A� be the occupation time of A
up to time n, that is,

ξn�A� =
n∑

k=1

IA�Sn� = #�k
 1 ≤ k ≤ n and Sn ∈ A�� n = 1�2� � � � �

By Harris recurrence ξn�A� → +∞ a.s. We intend to find the exact order for
the sequence �ξn�A��n≥1

Let D be a D-set of �Sn�n≥0. In particular, 0 < λ�D� < +∞. The argument
proving Proposition 2.4 [and therefore (2.j)] in Le Gall and Rosen (1991) gives

a�n� ≡ 1
λ�D�

n∑
k=1

Pk�0�D� ∼




√
2n

πE�S1 −S0�2
� if d = 1�

log n
2π���1/2 � if d = 2� n→ ∞�
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where � is the covariance matrix of S1 − S0. Notice that ��� > 0 and E�S1 −
S0�2 > 0 if �Sn�n≥0 is spread out. In particular, �Sn�n≥0 is regular in this case
with the regular index p = 1/2 when d = 1 and p = 0 when d = 2.

Notice the fact [see, e.g., Feller (1971), Section VI.2] that

G
−1/2
1/2 =d

√
π

2
�U��

where U is a N�0�1� normal random variable.
Applying Theorem 2.3 and Theorem 2.4 to �Sn�n≥0 gives the following re-

sults.

Theorem 6.1. Let �Sn�n≥0 be a random walk on R1, which is spread out
and which satisfies the condition (6.1). For each measurable set A ⊂ R1 with
0 < λ�A� < +∞,

�6�2� lim
n→∞P

{
ξn�A� ≤ x

√
n
} =

√
2σ2

√
πλ�A�

∫ x

o
exp

{
− σ2t2

2λ�A�2

}
dt ∀ x > 0�

�6�3� lim sup
n→∞

ξn�A�√
2n log log n

= λ�A�
σ

a.s.,

where σ2 = E�S1 −S0�2.

Theorem 6.2. Let �Sn�n≥0 be random walk on R2, which is spread out
and which satisfies the condition (6.1). For each measurable set A ⊂ R2 with
0 < λ�A� < +∞,

�6�4� lim
n→∞P

{
ξn�A� ≤ x log n

} = 1 − exp
{
−2π���1/2x

λ�A�
}

∀ x > 0�

�6�5� lim sup
n→∞

ξn�A�
log n log log log n

= λ�A�
2π���1/2 a.s.,

where � is the covariance matrix of S1 −S0.

Remark 6�3. Theorems 6.1 and 6.2 can be further generalized by dropping
the condition (6.1). Instead, we assume that �Sn�n≥0 is in the domain of at-
traction of a stable law G: there is a positive sequence �b�n��n≥1 such that
Sn/b�n� →d G. It is well known that the sequence �b�n��n≥1 must be regularly
varying with index 1/2 ≤ β < +∞. We also assume that it satisfies

∑
n

1
b�n�d = +∞�

Indeed, from (2.j) in Le Gall and Rosen (1991),

�6�6� a�n� ∼ p�0�
n∑

k=1

1
b�k�d → +∞� n→ ∞�
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where p�·� is the density of G. By Theorem 4.11 in Revuz (1975), �Sn�n≥0
is Harris recurrent. Although we cannot claim regularity conclusively, (6.6)
suggests that it is true most of the time.

Remark 6�4. In the case when �Sn�n≥0 take lattice values, all forms given
in Theorems 6.1 and 6.2 have been obtained under varous conditions, where
Lebesgue measure is replaced by counting measure. See, for example, Révész
(1990) for a collection of the results and Marcus and Rosen (1994a, b) for
some later developments. It should be pointed out that our results for Markov
chains contain and (in some cases) slightly modify these results. [The symme-
try assumed in Marcus and Rosen (1994a, b), for example, can be dropped by
utilizing our results.] The weak laws in (6.2) and (6.4) in the continuous value
case go back at least to Darling and Kac (1957). As far as we know, the strong
laws given in (6.3) and (6.5) are new in the nonlattice context.
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