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ON THE STOCHASTIC BURGERS’ EQUATION
IN THE REAL LINE

By ISTVAN GYONGY AND DAVID NUALART

University of Edinburgh and Universitat de Barcelona

In this paper we establish the existence and uniqueness of an L2(R)-
valued solution for a one-dimensional Burgers’ equation perturbed by a
space—time white noise on the real line. We show that the solution is
continuous in space and time, provided the initial condition is continuous.
The main ingredients of the proof are maximal inequalities for the
stochastic convolution, and some a priori estimates for a class of determin-
istic parabolic equations.

1. Introduction. In order to study the turbulent fluid flow, the model
equation (often called Burgers’ equation),

du  d%u du
at x x

has been investigated thoroughly in one space dimension by Burgers, Hopf
and others. (See, e.g., [2] and the references therein.) One can solve this
equation and investigate the behavior of its solution by the Hopf-Cole
transformation v = 2v,/v, which reduces it to the heat equation for v (see
[12]). In order to model the turbulent flow in the presence of random forces,
Burgers’ equation perturbed by some noise has become a popular subject of
recent investigations. (See, e.g., [1, 5, 6].) In [1], Burgers’ equation with
additive space—time white noise 92W /dtdx is solved by an adaptation of the
Hopf-Cole transformation. A different approach is used in [5] to prove the
existence and uniqueness of the mild solution of the Dirichlet problem in the
interval [0, 1] for Burgers’ equation with additive space—time white noise.
The method of this paper is based on a suitable property of the semigroup
corresponding to the Dirichlet problem for the heat equation in bounded
space interval. This property is derived from a known regularization property
of the semigroup via Sobolev’s embedding valid on bounded domains. The
results of [5] are generalized in [6] to the case of the multiplicative noise
oc(u)9?2W/dtdx), in place of the space—time white noise, where o is a
bounded function. In order to unify the theory developed separately for the
stochastic reaction-diffusion equations (see, e.g., [7, 8, 10, 14, 15, 17] and the
references therein) and for the stochastic Burgers’ equations, the class of
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equations,

du  d%u g
riale +7f(t, x,u(t,x)) + E(t’ x,u(t,x))
(1.1)
92

+o(t, x,u(t,x))

dtox’

is investigated in [9], where [ has linear growth and g has quadratic growth
in the third variable. Existence, uniqueness and comparison theorems for the
solutions are proved for the Dirichlet problem in bounded space interval.
Moreover, a large deviation principle is proved in [4]. These equations, with
colored noise in place of the space—time white noise are studied in [11], when
g has polynomial growth.

In the present paper we consider the above class of equations but in the
whole line, instead of a bounded interval for the space variable. We prove an
existence and uniqueness theorem for the Cauchy problem. Our method is
influenced by that of [5]. We derive the property we need for the semigroup
directly from well-known estimates on the heat kernel, which are valid not
only in bounded interval (with Dirichlet, or periodic boundary conditions), but
also in the whole real line. Using the corresponding estimates, we establish
the equivalence between the mild solution and the generalized solution
defined via test functions in the integral form of the equations. Moreover, we
get that the solution is continuous in the time and space variable (¢, x), if the
initial value u, is continuous.

For the standard definitions and tools of the theory of stochastic partial
differential equations, which we use in the paper, we refer to [7, 16] and [17].

2. Formulation of the problem and preliminaries. Let W =
{(W(¢, x),t €[0,T], x € R} be a Brownian sheet defined on a complete proba-
bility space (Q),.%, P). That is, W is a zero-mean Gaussian random field with
covariance

E(W(s,x)W(t,y)) =3(s At)(lxl + |yl =[x = yl),

x,y €R, s,t €[0,T]. For each ¢t € [0,T], we denote by Z the o-field gener-
ated by the family of random variables W = {W(s, x),s € [0,¢], x € R} and
the P-null sets. The family of o-fields {#,,0 < ¢ < T'} constitutes a stochastic
basis on the probability space (Q),.7, P). We will denote by % the correspond-
ing predictable o-field on [0, 7] X Q. For the definition of the stochastic Ito
integral with respect to the Brownian sheet, we refer to [3] (or see [17]).

We are interested in the following stochastic partial differential equation:

+f(t, x,u(t, x + t,x,u(t,x
2 » ’ s o ’
(2. ) Jt Jx Jx

2

+o(t, x,u(t,x)) PrEE
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t €[0,T], x € R, with initial condition u(0, x) = u,(x), where u, € L*(R).
Our purpose is to introduce a notion of solution and to find a solution with
paths in C([0, T']; L2(R)).

DEFINITION 2.1. We say that an L*(R)-valued continuous and .7-adapted
stochastic process u = {u(¢),¢t € [0,T]} is a solution to (2.1) if for any test
function ¢ € Cx(R), we have

Jautt: 2 0(x) de = fua(x) () de+ [[fu(s, 2)¢ () dds
# [ £sx (s, ) o) dxds
~ [ [ (s, u(s, 2))'(x) dxds

+f0tfRo-(s, x,u(s,x))e(x)W(ds,dx),

a.s., for all ¢ € [0, T'], where the last integral is an It6 integral.

We introduce the following hypotheses on the coefficients of Equation (2.1):

(A1) £:[0,T] X R?2 » R is a Borel function satisfying the following linear
growth and Lipschitz conditions:

(2.2) lf(t, x,r)| < a(x) + Klr|,
(2.3) lf(t,x,r) = f(¢t,x,8)| < (ay(x) + Lir| + Lisl)|r — sl,

forall t €[0,T], x,r,s € R, and for some constants K, L and nonnega-
tive functions a,, a, € L*(R).

(A2) The function g is of the form g(¢, x,r) = g,(¢, x,r) + g,(¢, r), where
g.:10,T] X R? » R and g,: [0,T] X R — R are Borel functions satisfy-
ing the following linear and quadratic growth conditions:

(2.4) lg.(t, x, ) < by(x) + by(x)lrl,
(2.5) lgao(t, ) < Klrl?,

for all t €[0,T], x,r € R, where K is a constant, and b, € L'(R) N
L*(R), b, € L*(R) N L*(R) are nonnegative functions. Moreover, g satis-
fies the following Lipschitz condition:

(2.6) lg(t,x,r) —g(t,x,s)l < (bs(x) + Lirl + Lls|)Ir — sl,

for all ¢t €[0,T], x,r,s € R, and for some constant L and nonnegative
function b; € L*(R).

(A3) 0:[0,T] X R2 » R is a Borel function satisfying the following linear
growth and Lipschitz conditions:

(2.7) lo(t,x,r) <c(x),

(2.8) lo(t,x,r) —o(t,x,s)| <Llr—s|,
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for all t €[0,T], x,r,s € R, and for some constant L and nonnegative
function ¢ € L2(R) N L?9(R), where 2 > q > 1.

Consider the heat kernel

1 lx — yl?
G(t,x,y) = ﬁexp —T .

THEOREM 2.2. Suppose that the coefficients f, g and o of (2.1) satisfy the
hypotheses (A1), (A2) and (A3). Then an L*(R)-valued continuous and -
adapted stochastic process u = {u(t),t € [0,T]} is a solution to (2.1) if and
only if u satisfies the following integral equation for all t € [0,T] and for
almost all x € R,

u(t,x) = LG(t,x,y)uo(y) dy + '/(‘)/[;{G(t —s,%,¥)f(s,y,u(s,y))dyds
t G
(29) _‘/;/[;?ﬁ(t _S7x7y)g(s7y’u(s?y)) dyds
+f0/[-RG(t —s,x,y)0(s,y,u(s,y))W(ds,dy) a.s.

THEOREM 2.3. Suppose that the coefficients f, g and o of Equation (2.1)
satisfy the hypotheses (A1), (A2) and (A3). Then there is a unique solution to
Equation (2.9) which is continuous with values in L*(R) and F-adapted.
Moreover, if u, is continuous, then the solution u(t, x) has a modification,
which is continuous in (¢, x).

3. Preliminaries. In this section we establish some L” and uniform
estimates for the convolution operators with the kernels G and dG/dy.
These estimates are given in Lemmas 3.1 and 3.2, respectively. In Lemma 3.3
a uniform estimate for the stochastic convolution with the kernel G is
obtained, and the corresponding L?” estimates are provided in Lemma 3.4.

We make use of the following estimates:

G lx — yI?
(3.1) ‘—(t,x,y) sKt‘g/zexp(—a—y ,
ot t
(3.2) AP o p2 ot
: —(t, x exp| —b———
ay ’ ’y — p t ’
3.3 ” Kt Gt
(3.3) &yﬂt(t’x’y) < Kt™"exp| —e——|.

for all 0 <¢t<T, x,y € R, where K, a,b,c are some positive constants.
Henceforth we use the notation ||, for the L?(R)-norm of a real function A.
Moreover, C will denote a generic constant that may be different from one
formula to another.
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Consider the linear operators defined by

(34) (J)(t, x) =f()tj[;gG(t—s,x,y)v(s,y) dyds,
t G
(3.5) (Jow)(t, x) = fo'/[;'«@(t —-s,x,y)w(s,y)dyds,

t €[0,T], x € R, where v and w are functions in L*(0, T']; L?(R)) for some
p=1

LEMMA 3.1. For all p >
L>([0,T]; LP(R)) into C(0,T

(3.6)(i) (T)(D)lp < [0(s)], ds,

1 and y > 1, the operator J, is bounded from
1; LP(R)), and the following estimates hold:

‘ 1/y
(3. 7))  I(Jw)(t) = (Jw)(s)l, < Clt — s|“(/()|v(s)|}, ds) ,

where a <1 —1/yand 0 <s <t < T. On the other hand, for all p > 1 and
v>2p/@2p — 1) the operator J, is bounded from LY([0,T]; L?(R)) into
C,([0,T] X R)), and the following estimate holds:
(Jw)(t, 2) < C[ (2 =5)"Plo(s)l, ds

0
(3.8)(ii1) t 1/
< c(/|v(s)|;ds) ,

0

Proor. Using Minkowski’s and Young’s inequalities, we have for all
te[0,T],

(1)) = [16( = 5,0, (s, ), ds

< fOtIG(t ~5,0,)1lv(s)l, ds = /Ot|v(s)|p ds.

This yields (). In order to show the estimate (ii) we introduce the decomposi-
tion,

(J10)(2) = (Jw)(s)l, <A+ B,

where

A=

[:(G(t —7,0,-)xv(r,")) dr

p
and

B =‘f:[(G(t —r,0,-) —G(s —r,0,)))*v(r,")] dr i
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Then
‘ 11 . 1/y
Asflv(r)lpdrslt—sl - M(/Iv(s)l%ds) .
s 0

On the other hand, by the mean value theorem, estimate (3.1) and using

Young’s and Holder’s inequalities, we obtain

ft ( 0 — r) -3/2
S

12

dr

BsCf

|
exp(—a )*Iv(r,‘)l de
0 4

SCLT[w—rYHMyMﬂbdr

s B
scn—ﬂﬁ(fke—m”hw)hmnudn
0 s
where « + 8 = 1. Hence,

B < Cl|t — slafs(s - r)Bfllv(r)lp dr
0

; 1/y
gcn—ﬂ%fw@ngw) :
0

provided o <1 — 1/vy. In order to prove estimate (iii) we make use of the
factorization method. By virtue of the semigroup property of the kernel G and
by the formula

[(t=9)(s=r)"ds, 0<a<1,

sin(7a) - r
we have
sin ma el
(Jw)(t, x) = [(t=9)"" [G(t = s,x,9)Y(s,y) dyds,
™ 0 R
where

Y(s,y) = fsf (s—r) “G(s—r,y,z)v(r,z)dzdr.
0'R
Using Holder’s, Minkowski’s and Young’s inequalities, we obtain

(Jw)(t, 0) < C[(t =) PI¥(s)l, ds
0
< C/t(t - s)a_l_l/@p)/s(s —r) “lo(r)l, drds
0 0

=c£u—+q*““mNnudn

which completes the lemma, since (J;v)(¢, x) is clearly continuous for step
functions v. O
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In a similar way we can establish the following technical lemma.
LEMMA 3.2. For all p>1 and y>4p/@p — 1), the operator J, is

bounded from L*([0,T]; L?(R)) into C(0,T]; L?(R)), and the following esti-
mates hold:

(Jyw)(8)lsp < Cfot(t — ) V2V EP gy (8)], ds

cofffuniaf”

' 1/v
(3.10)(i1) I(Jyw)(t) — (Jyw)(8)lzp < Clt — SI“([OIw(s)I; ds) ,

(3.9)(3)

where a+ 1/y<1/2 — 1/(4p). On the other hand, for all p > 1 and y >
2p/(p — 1), the operator J, is bounded from L*([0,T]; L*(R)) into C,(0,T]
X R)), and the following estimate holds:

(Jyw)(t, x)| < Cfot(t —8) VO (6], ds
(3.11) (iii) t U
SC(LIw(s)IZ ds) .

Proor. Using Minkowski’s and Young’s inequalities and the estimate
(3.2), we have for all ¢t € [0,T],

|- =yl
Y w(r,y)dydr

t—r

I(Tow)(8)], sK|/0tfR(t—r)1eXp(—b 2

1
exp(—b

t—r

dr

2p

stOt(t—r)f1 )*Iw(r,')l

<Cf (¢ =) (), dr

< c(foﬂw(sm, ds)w.

This shows the estimate (i). In order to show the estimate (ii), we write
I(Jow)(2) = (Jow)(s)lz2p < C(A + B),

where

2

j;tfR(t - r)lexp(—b|‘t_y| )Iw(r,y)l dydr

A=

- r

2p
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and

dr.

oG J
, ,y)—&—y(s—r, ;) lw(r, y)ldy

2p
For the term A we have, as in the proof of Lemma 3.1,

1/v
_ _ t

A <Clt —sV/2V/Ep 1M(/Iw(s)l}{, ds) .
0

On the other hand, by the mean value theorem, estimate (3.3) and using
Young’s and Holder’s inequalities, we obtain

f(f(@—r) exp(—c| nELN )de)lw(r y)dy| dr

BstO

2p
St -2 |'—y|2
SKLL(O—r) fRexp —c 0 lw(r,y)ldy| dodr

2p

<[ [0 V() dodr
07s

<C|t_8| j (/(0 ( 3/2-1/(4pN1/B d@) |w(r)|p dr,
where o + 8 = 1. Hence,

BSC|t_s|afs(s_r)ﬁ*3/271/(4p)|w(r)|p dr
0

. 1/
SCIt—sI”(/IU(s)IZ, ds) ,
0

provided @« <1/2 — 1/(4p) — 1/v. Finally, let us show the estimate (iii).
Given 1 > a > 0, we can write

()t ) = T gyt [ 2 )Y (s,3) dyd
w)(t, x) = —s —(t — s, x, s, s,
2 . o R Jy Y y)ay

where
Y(s,y) = fsf (s—r) “G(s—r,y,z)w(r,z)dzdr.
0'R
Using Holder’s, Minkowski’s and Young’s inequalities, we obtain

(Jow)(t, %)l < C[ (¢ =5) VY (s)ly, ds
0
< C[t(t _ s)a—1—1/(4p)j-5(s _ r)_a—1/2—1/(4p)|w(r)|p dr
0 0

- Cfot(t — ) VEV@P (), dr,

which completes the proof of the lemma. O
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LEMMA 3.3. Let ¢ = {¢(s,y),s €[0,T], y € R} be a progressively measur-
able process such that

T p/2
¢pq( @) = E/;) (‘[R|€0(3,y)|2q dy) ds < o,

for some ¢ > 1 and p > max(4dq/(q — 1),2q). Then

P
(3.12) E sup sup <Cc, ,(®).

te[0,T] xR

fotfRG(t —s,x,y)e(s,y)W(ds, dy)

REMARKS. Note that the assumption of the lemma holds provided

T
E lo(s, y)|" dyds < =
fo [le(s, 1)1 dy
for some r > 6, or
2
T
E lo(s, Ird)ds<00,
fo (fR e(s,y)I" dy
for some r > 4.
PrROOF. Define
t
(Ge)(t,x) = [ [ G(t =5, %, 9)e(s, y)W(ds, dy),
0’R
for t €[0,T] and x € R. Given a > 0, we can write

sin

(Ge)(t,x) =

TA ¢ a1
[(t=a)""[G(t—0,x,2)Y(0,2) dzdo,
0 R

ks

where

Y(o,2) = [ [(0-5) “G(o—s,2,5)e(s, y)W(ds,dy).
0 'R
Fix p > 1 such that « > 3/(2p). Using Holder’s inequality, we obtain

(Go)(t, x)| < Cfot(t — )TV )Y (), do

< C(fOTIY(a-)Iﬁda)l/p.

Henceforth C will denote a generic constant which may depend on the
parameters T, @, p and q. As a consequence of the above computations, we
obtain

T
E sup supI(Gc,o)(t,x)IpsCf ElY(0)2 do.
tel0,T] xR 0
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By Burkholder’s inequality for stochastic integrals, we can write

o DN P
E|Y(a)|g=EfRfO]R(a—s) G(o—s,2,y)e(s, y)W(ds,dy)| dz
p/2
oc—5) G(o—s,2z,y)0(s,y) dyds| dz
R
p/2

-2 )
exp(m) *¢(s,) » ds

-
S Eeen]

< C(O’ _ 8)1/(2§)|(p(s’ ')2|q’

where 2/p + 1 =1/q + 1/¢&. Notice that € > 1 because p > 2q. Finally,
applying again Young’s inequality, we get

< CE

fo"(o_ 8)720171

Using Young’s inequality, we have
—-?

exp| ——

8o —s)

=< |¢(S7 ')2|q
p/2

o(s,7)*

3

o p/2
B sup supl(Ge)(t,x)1" <CE["| [ (a—s)““V‘zfﬂas,-)ﬂqu) do
te[0.T] xR 0

< CEf le(s,)?I2/% ds,

provided —2a — 1+ 1/2¢)= —2a—-1/2+ 1/p — 1/2q > —1. That is, we
need the following conditions on «:

3 1 1 1
— <a<—+——-—,
2p 4 2p 4q’

and this condition can be fulfilled because p > 4¢ /(¢ — 1). O

LEMMA 3.4. Let ¢ = {¢(s,y),s €[0,T], y € R} be a progressively measur-
able process. Then the following estimates hold:

(i) Forany g > 1 and p > 2q, we have

P

E sup [[G(t s, 5 y)e(s, y)W(ds,dy)
te[0,T] P

p/2

< CE[OT(legp(s,y)|2q dy) ds.

(ii) For any p > 4, we have

/fG(t—s »y)e(s, y)W(ds, dy)|

P

E sup
te[0,T]

T ) p/2
sCEfO (leqo(s,y)l dy) ds.
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Proor. Using the same notations as in the proof of Lemma 3.3 and
applying Young’s inequality we obtain for any p > 1, y > 1 and a > 1/,

(Ge)(t)l, < cfot(t - 0)* Y (o), do

< c(fo"]Y(a)mda)lM.

Then assertion (i) follows by the same method as in the proof of Lemma 3.3
with y = p. On the other hand, in order to show (ii), we take p = 2 and y=p
and we apply Burkholder’s inequality for Hilbert-valued stochastic integrals
(see, e.g., in [16]). In this way we obtain

E sup [(Ge)(¢)l}
tel0,T]

sCEfOTIY(a)Ié’ do

T( ro 9a p/2
SCE/O (‘/0 ij[;g(o—s) ? G(a—s,z,y)qu(s,y)zdydzds) do
p/2

T ro —2a-1/2 2
<CE - s s, dyds d
[ =97 o500 dyas| ao
T 9 p/2
<CE s, d ds,
(Lot a)
provided « < 1/4. That is, we need p > 4. O

4. Proofs of the main results.

Proor oF THEOREM 2.2. Using the first estimates from Lemma 3.1, Lemma
3.2 and the estimate from Lemma 3.3, we can proof this theorem essentially
in the same way as the corresponding result is proved in [9]. O

We now proceed to the proof of Theorem 2.3. Let B(0, N) be the ball of
radius R centered at the origin in L?*(R). Consider the mapping 7y: L*(R) —
B(0, N) defined by

v, if vl < N,

_| N
7y (V) — v, iflvly > N.
|U|2
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Let us introduce the following integral equation for a fixed natural number
N:

u(t,x) = fRG(t, x,y)uo(y)dy

+/0tfRG(t — 5,2, 9) (s, 3, (myu)(s, y)) dyds

G

(4.1) g
_j;)'é@&_y(t_S’xay)g(s’y’(ﬂ-Nu)(S’y))dyds

+f0tfRG(t —s,%,5)0(s, 5, (myu)(s,y))W(ds,dy) as.

In order to prove Theorem 2.3, we first show the uniqueness of a solution for
Equation (4.1).

PROPOSITION 4.1. Suppose that the coefficients f, g and o satisfy the
hypotheses (A1), (A2), (A3) and assume that u, € L*(R). Then for any fixed
N > 0 there is a unique solution to (4.1) which is an L*(R)-valued F-adapted
continuous process such that E(sup, ¢, ri|u(¥)§) < = for any p > 2.

PrOOF. The proof will be done in several steps.

Step 1. Suppose that u = {u(t),t € [0,T]} is an L*(R)-valued, %-adapted
random process. Set

3
(4.2) = [GC,e, y)u(y) dy + Lo,

i=1

where

()1, %) = [ [ G(t = 5,%,9) f(5, 7, (myu)(s, ¥)) dyds,
¢ 0G
(Hyu)(t,x) = _/ofRE(t —s,%,y)8(s,y,(myu)(s,y))dyds,

(Hu)(t, x) = '/:/RG(t —s,x,y)o(s,y,(myu)(s,y))W(ds, dy).
We claim that

(4.3) E( sup IJa/u(t)Iéu) <o
tel0,T]

for any p > 2. Indeed, by assumption (A1) and Lemma 3.1, we have

() (t)]s < fotfRG(t — 5,2, y)(ay(y) + Kl(myu)(s, y)l) dyds 2

< t(la4l2 + KN),
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which implies that (4.3) holds for the operator .«/;. By assumption (A2) and
Lemma 3.2, we have

t G
j(-)fR‘W(t —s,x,y)‘
X (by(¥) + bo(y)(myu)(s, y)| + Kl(myu)(s, y)I”) dydsls

< [((t=5)"/4(1bshy + by, N + KN?) ds,
0

() (8)l2 <

which implies that (4.3) holds for the operator .«7,. Finally, using assumption
(A3) and Lemma 3.4, we get

p/2
EszW@Xﬂ@s@qTﬂﬂamhwwaDF@ ds
tel0,T] 0\"R
< Clelf,

which implies that (4.3) holds for the operator .«;.

Step 2. Fix A > 0. Let /# denote the Banach space of L?(R)-valued and
-adapted random processes u = {u(¢),t € [0, T]} such that u(0) = u,, with
the norm

T
ulp = [T MElu(t)l3 dt < .
0

Define the operator .# on .# by (4.2). From Step 1 it follows that . is an
operator mapping the Banach space /7 into itself. Fix two elements u,v € 7
By assumption (A1) and applying Young’s inequality, we can write

(oAu)(2) = () (22
K&GU—&-J)

X (ax(y) + Li(myu)(s, y)l

<

+ LI(myv) (s, y))(myu — myv)(s, y)ldyds )
< ! —sil/4us—vsza§ s
<Cf(t=s) u(s) = v(s)la(lasl; + 2N) d

- Oy [t =) u(s) = o(5)l.

On the other hand, using Lemma 3.2 and the Lipschitz condition on the
coefficient g, we obtain

() (2) = () (2)]3

sc(fot(t—s)‘s/“@g(s, ¥, (myu)(5,5)) —g(s, 3, (myv) (s, 9))l dyds

2
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< c]ot(t - s)sm(fR(bg(y) + Li(myu)(s, y)| + Li(myv) (s, ¥)))

2
X[(myu — myv)(s, y)ldy| ds

< ‘ —8) " Yu(s) —v(s 2 5 s
_Cj;)(t )4 lu(s) = v(s)I3(1bsls + 2N) d
_ CNj:(t —8) 7 *u(s) — v(s)l2 ds.

Finally, using the Lipschitz property of o and the isometry of the Ito
stochastic integral, we deduce

El(spu)(t) — (40)(1)]3
< LZE/ ft/ G(t —s,x,y) (myu — 7yv)(s, y)I* dydsdx
R70 'R
<C['(t—5) " Elu(s) — v(s)l3 ds.
0
From the previous estimates, we deduce
2 _ (T _x 2
7w —srvlz = [Ce MElwu(t) —srv(t)l; dt
0
< C/TeAt(ft(t —8) V?Elu(s) —v(s)l3ds| dt
0 0
< C(fooe)‘yyl/2 dy)Iu —vl2.
0
Then, taking A in such a way that
Cfooe*"yyfl/2 dy <1,
0

we have that the operator ./ is a contraction on .Z. Consequently, there exists
a unique fixed point for this operator and this implies the existence of a
unique solution for (4.1). O

Proposition 4.1 implies the uniqueness of a solution in Theorem 2.3 and a
local existence of a solution. The global existence will be proved using the
uniform estimate obtained in the following lemma.

LEMMA 4.2. Let n={n(t,x),t €[0,T],x € R} be a continuous and
bounded function belonging to C([0,T]; L*(R)). Let v € C([0,T]; LA([R)) be a
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solution of the integral equation,

v(t, x) = /(:G(t,x,y)uo(y)dy

(4.4) 1[Gt —s,2,9)F(s,3,0(s,3) + n(s, y)) dyds
0 R
PTe:
[ L5 s E (s v(s ) + ns,9)) dyds,

where u, € L>(R) and f and g satisfy assumptions (A1) and (A2). Then we
have

(4.5) ()13 < (g3 + Cy(1 + Ry(m)))exp(Co(1 + Ry(m))),
where the constants C, and C, depend only on T and on the functions a;, b;, c

1

and the constants K and L appearing in the hypotheses (Al) and (A2), and

Ry(n) = sup (In(s)3 +In(s)li+ In(s)l2),
s€[0,T]

Ry(n) = sup (In(s)2).
s€[0,T]

Proor. The proof will be done in several steps.

Step 1. Notice first that we can assume that u, € Cx(R). Indeed, the
Lipschitz properties of the functions f and g imply that if v; and v, are the
solutions to (4.4) corresponding to the initial conditions u{ and uZ, respec-
tively, then

04(2) = vy(8)l2 < lug(t) — uf(t)l

+‘/;)tfR(a2(y) + Llvy(s, y)l + Llvy(s, y)I + 2LIn(s, y)I)

X|vy(s,y) —vy(s,¥)IG(t —s,-,y)dyds

2

+ [ [ (ba(y) + Llvy(s, )| + Llog(s, y)| + 2Lin(s, )))
0“R

G
X|vy(s,y) — vg(s,y)lg(t —s,",y)dyds
<lug(t) — ud(t)le
! —8) Yo (s) = vo(s 9
+C[ (£ =5) i) = va(s)|
X (lagle + Llvy(s)lz + Llvy(s)le + 2LIn(s)lz) ds
! —8) v (s) = v.(s 9
+C[ (£ =5) " ls(s) = va(s)|

X (lbgle + Llvy(s)ls + Llvy(s)le + 2LIn(s)l2) ds.
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Now using that v, and v, belong to C([0, T']; L*(R)) (this is a consequence of
the growth conditions on the functions f and g), we deduce that

02() = vs(0)l2 < Clud(t) = ud(1)ls-

Step 2. We assume in the sequel that u, € Cx(R). Suppose first that the
functions f and g are uniformly bounded, globally Lipschitz in r, f has
compact support in x, and satisfy the Lipschitz conditions and the conditions
on growth (A1) and (A2). We will show that in this case there is a unique
solution to (4.4) in C(0,T]; L?(R)) for which the estimate (4.5) holds. By
the same argument as in the proof of Theorem 2.2 we can show that a
solution v(¢, x) of (4.4) is a weak solution of the stochastic partial differential
equation:

2

(46) 0= T e (0 M) + (w0 4 ) (1 3),

with initial condition u,.
There is a constant C such that

(4.7) [ ()8! (x) dx| <19 ()l (2)la,

(€8 |[ Ao mt ) o) d| < Clo(o)l,

(49 [[elt (s mt )9 (2) de] < Clo (2

for every ¢, i in the Sobolev space W1 2(R). Consider the operator A defined
by

CAE ), ) = = [0/ (2)@'(x) dx + [ (2, (4 + m)(£, 0)) b(x) dx

- [t %, (n+ )¢, ) ¢'(x) d.

From the inequalities (4.7), (4.8) and (4.9) we see that A(Z, ) maps V =
WL2(R) into its dual V* := W~ 12(R), and moreover,

lA(t, ¢)lve < C(1 + [¢ly),

for all £ € [0, T'] and for all ¢ € V. Thus we can see that the problem (4.6) can
be cast in the evolution equation

(4.10) v(t) = uy + /:A(s,v(s)) ds

in the triplet V- H = H* — V* of spaces based on the Hilbert space H :=
L*(R). From (4.7), (4.8) and (4.9), there exist constants C; and C, such that

<A(t’ (;b)? d)> =< Cl|¢|§ - %|¢|%7 + CZ’
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for all s € V. This means that the operator A is coercive. By the Lipschitz
conditions on the functions f and g, we obtain

<A(t7 (//) _A(t’ ¢)’ lﬂ_ ¢> < _|(l/j_ ¢),|§ + Cl"//_ ¢|§
+ Colyy — lal(p — ¢)'l2

< Cly - ¢lv,
for all , ¢ in V, and for all ¢# € [0,T], which means that the operator A

satisfies also the monotonicity condition. Consequently, by a well-known
result (see, e.g., [13]), the evolution equation (4.10) has a unique solution v in
C(0,T]; H) such that
T
[lo(e)ly dt < o,
0
Moreover, the energy equality

(4.11) lo(£)[% = lugld + 2/(:<v(s),A(s,v(s))>ds

holds for all ¢ € [0, T']. By uniqueness of the weak solution, we get that v is
also the unique solution to (4.4). Then by (4.11) we obtain

(615 = lugls — 2 [1o'(r)I5 dr + 2A(t) — 2B(t) — 2C(¢),
0
where

A(t) = /:'[Rf(s,x,v(s,x) + n(s, x))v(s, x) dxds,
B(t) = /:ng(s,x,v(s,x))v’(s,x) dxds,

C(t) = /:'[R(g(s,x,v(s,x) + (s, x)) —g(s,x,v(s,x)))v'(s, x) dxds.

By the linear growth condition (A1) on f, we have
1A()] < [To(s)la(layls + Llv(s)lz + Lin(s)lz) ds
0
< 2j()t(|v(s)|§(1 + L) + lay |} + L2In(s)I3 + 1) ds.
By the Lipschitz condition on the function g, we obtain
IC(¢)l < ft|U'(8)|2(|bg|2|7I(S)|oo + Llv(s)lz2In(s)l + Lln(S)IZ) ds
0

Clearly,
B(t) = By(t) + By(2),
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where

Bi(t) = fot/Rgl(s, x,v(s,x))v'(s, x) dxds,

B,(t) = fotngz(s,v(s, x))v'(s, x) dxds.

By the linear growth condition on g;, we can write

IB,(¢)] < fot|v'(8)|2(|bl|2 + 1by v (s)l2) ds

< 2/(:(50’(3)@ + 816,13 + 8lb,/2lu(s)I3) ds.

We are going to show that B,(¢) = 0 for each ¢ € [0,T]. We claim that for
each t € [0,T]

(4.12) limv(¢,x) =0,
(4.13) lim v(¢,x) =0.

We only show (4.12) and the proof of (4.13) is analogous. The limit (4.12) is a
consequence of (4.4) and the following limits:

(4.14) lim ['G(t,x, y)ue(y) dy =0,
x—®© /()
(4.15) lim /tf G(t—s,x,y)f(s,y,v(s,y) + n(s,y)) dyds =0,

o 0G
(4.16) hm/OJ‘RE(t—s,x,y)g(s,y,v(s,y) + n(s,y)) dyds = 0.

X —

Equation (4.13) holds because u, has compact support. The convergences
(4.15) and (4.16) are true by the dominated convergence theorem, taking into
account that the functions f(s, -, v(s,-) + n(s,-)) and g(s,-,v(s, ) + n(s,-))
belong to L(R).

Notice that for each s € [0,T1, g,(s,v(s,)) is in L*(R) because g,(s, r) is
bounded by C A K|r)?, and v(s,-) € L2(R). So, for each s € [0,T], we have,
using the convergences (4.12) and (4.13),

ngz(s, v(s,x))v'(s,x)dx

= limfn gs(s,v(s, x))v'(s, x)dx

= Tim [g,(s,0(s, 7)) ~ g(s,0(s, —n))] = £1(5,0) ~ gu(5,0) = 0.

Summing up, we get constants C; and C, depending on L, |a,ls, |bsl2, 1542
and |b,l., such that

[0(8)5 < luol} + C,(1+ Ry(m) + [[Ca(1 + Ro(m)lo(s)I3 ds,
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for all # € [0, T]. Hence by Gronwall’s lemma, we deduce the desired esti-
mate.

Step 3. Consider the sequence of functions defined by f, =[(fARn)V
(—n)g,(x)]* ¢, and by g, = [(g A n) vV (=n)l*¢,, where g, is an approxi-
mation of the identity with support included in [-1/n,1/n], and ¢,(x) is a
smooth function bounded by one together with its derivative, and such that
¢,(x) = 1if |x| < n, and ¢,(x) = 0if |x| > n + 1. Notice that f, has compact
support in x, f, and g, are uniformly bounded, globally Lipschitz in r and
satisfy the same Lipschitz conditions and the conditions on growth as f and
g, with constants independent of n. Then, if v,(¢, x) denotes the solution to
(4.4) with coefficients f, and g,, it is not difficult to show that lim,|v,(¢)|z =
lv(#)ly for each ¢ € [0, T'], and then the estimate for |v(¢)|; would follow from
that for |v, (). O

ProOF oF THEOREM 2.3. Note first that Proposition 4.1 provides a proof of
the uniqueness in Theorem 2.3. In fact, suppose that u and v are two
solutions to Equation (2.1). By Theorem 2.2, u and v satisfy the integral
equation (2.9). For every natural number, N, we introduce the stopping time

oy = inf{¢ > 0: inf(lu(t)l2, lv(¢)l2) = N} A T.
Set u™(t) = u(t A ) and v™(¢) = v(t A 7y) for all ¢ €[0,T]. Then the
processes u” and v? satisfy (4.1). Hence, u™V(¢) = v™(¢) a.s. for all ¢ € [0, T,
and letting N tend to infinity, we deduce u(¢) = v(¢) a.s. for all ¢ € [0, T'].

In order to construct a solution to (2.9), we denote by u, the solution to
(4.1) for any N > 0. Consider the stopping time

Ty = inf{¢ > 0: luy(¢)le = N} A T.
Notice that u,(¢) =uy(¢) for M > N and ¢t < 7y. Therefore we can set
u(t) = uy(®) if ¢ < 7y, and in this way, taking into account Theorem 2.2, we

have constructed a solution to (2.9) in the random interval [0, 7,), where
T, = supyTy-. Then it suffices to show that

(4.17) P(r,=T)=1.
Define
(4.18) n(t,x) = '/otfRG(t —s,x,5)0(s,y,u(s,y))l,.,,W(ds,dy).

It holds that

n(t, x) = ny(t, x) = '/:/”;G(t —s,x,y)o(s,y,un(s,y))W(ds,dy),

if ¢ < 7y. Applying Lemma 3.3 and hypothesis (A3), we obtain
p/2

T
E sup supln(t,x)|” < CE[ (/1{s<,x}|o(s,y,u(s,y))|2qdy ds
tel0,T] x€R o \/r

< C(ch(y)zq dy)p/Z.
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Thus, if p > max(4q/(q — 1),2q) we obtain

(4.19) E sup supln(t, x)|? < .
tel0,T] x<R

On the other hand, applying Lemma 3.4 we obtain

p/2
(4.20) E sup In(t)lf < C'(fc(y)2 dy) ,
tel0,T] R
2
(4.21) E sup In(t)li < C(fc(y)Zq dy) ,
tel0,T] R

provided 1 < g < 2 and p > 4.
Set v(t, x) = u(t, x) — n(¢, x) for ¢t < 7. By Lemma 4.2 there exist con-
stants C, and C, such that

sup loglu()ly < 2log((lu,l3 + Cy(1 + Ry(m))) + Cy(1 + Ry(m)).
te[0,T]

As a consequence, taking into account the estimates (4.19), (4.20) and (4.21),
we obtain

supE( sup 10g|uN(t)|2) < oo,
N tl0,T]

Since

P(ry <T) =P( sup loquN(t)IzzlogN)

tel0,T]
1 C(1 + lugls)
< E( sup loglu,(t)] ) < —-"
log N\, cio. 7] (D)l log N

for some constant C, we get 7, = T a.s. O
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