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SUB-BERNOULLI FUNCTIONS, MOMENT INEQUALITIES AND
STRONG LAWS FOR NONNEGATIVE AND SYMMETRIZED
U-STATISTICS!

By CuN-HUI ZHANG

Rutgers University

This paper concerns moment and tail probability inequalities and the
strong law of large numbers for U-statistics with nonnegative or sym-
metrized kernels and their multisample and decoupled versions. Sub-
Bernoulli functions are used to obtain the moment and tail probability
inequalities, which are then used to obtain necessary and sufficient con-
ditions for the almost sure convergence to zero of normalized U-statistics
with nonnegative or completely symmetrized kernels, without further regu-
larity conditions on the kernel or the distribution of the population, for nor-
malizing constants satisfying a simple condition. Moments of U-statistics
are bounded from above and below by that of maxima of certain kernels,
up to scaling constants. The multisample and decoupled versions of these
results are also considered.

1. Introduction. This paper concerns moment and tail probability in-
equalities and the strong law of large numbers (SLLN) for U-statistics with
nonnegative or symmetrized kernels and their multisample and decoupled
versions.

1.1. Overview. Let {X, X,,n > 1} be a sequences of iid random variables
with a common distribution F. For real Borel functions A(x, ..., x;), the U-

statistics with kernel % are defined by S\ /() with

(1.1) = Y KX, ....X;),

(i1nip)eAR]

where AV = {(iy,...,i}): 1 <i; <ig<--- <ij <nb}

Our investigation is motivated by two problems. The first one is the order
of E@(S%k]): given a nondecreasing nonnegative function ® satisfying certain
regularity conditions [e.g., ®(x) = x™], find functionals w, (F, i, ®) such that

(12) /k,cI)I“Ln(Fﬂ hv (I)) = E(D(SLk]) = /I;,Q)Mn(F’ h’ (I)) vn = 17

where C), 4, and Cj , are universal constants. The second problem is the
SLLN: given a sequence of normalizing constants {b,,} satisfying certain reg-
ularity conditions (e.g., b, = n'/? for some 0 < p < 2), find necessary and
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sufficient conditions (nasc) on F and & for

(1.3) St =6 Y WX,;,....X;,)—>0 as.

l1<ig<-<ip<n

We find that the concept of sub-Bernoulli function, defined in (1.10) for
k = 2 in a special case and formally defined in Section 2.1, is very useful in
our investigation of the preceding two problems and some additional prob-
lems. Basically, a nonnegative Borel function ¢(x4, ..., x;) is a sub-Bernoulli
function of (X, ..., X;) with parameter (04, ..., 0;) if its conditional expec-
tations, given subsets of the X’s, are no greater than the corresponding con-
ditional expectations of a product of independent Bernoulli variables with the
same parameters. We connect sub-Bernoulli functions to nonnegative kernels
h > 0 through some normalizing kernels ¢, = ¢,(x, ..., x;), positive Borel
functions given in Section 3.1 for general £ and in (1.9) and (1.11) for £ = 2,
such that ¢, (xq,...,x;) = h/¢, are sub-Bernoulli functions with parame-
ters (k/n, ..., k/n). It will be shown in Theorem 3.4 in Section 3.2 that, for
all 2 > 0, nondecreasing nonnegative functions g(-) and integers m > 1 and
n >k,

SHEN™ E+ N\

k n k k

(1.4) Eg(él ])(gyﬂ) < Eg(&! ])E< . ) ,

where §,[1k] = max; ;.\l ,(X;,..., X;,) and N, is a Poisson variable
with EN, = k. It will also be shown in Theorem 3.4 that for n > &,

(1.5) PleR > ¢} < C,P{SIH > ¢/2},

for some universal C,. These inequalities provide crucial elements in our so-
lutions to (1.2) and (1.3). Moment inequalities for sub-Bernoulli functions also
imply an extension of the Bernstein inequality from & = 1 to general &, Corol-
lary 2.4 in Section 2.3, for decoupled symmetrized bounded kernels. The sym-
metrized, multisample and/or decoupled versions of the strong law and mo-
ment inequalities are also given. Some basic inequalities for sub-Bernoulli
functions are provided for general independent (not necessarily identically
distributed) variables.

The paper is organized as follows. In the rest of this section, we discuss
in detail the case & = 2, after giving our notation. In Section 2, we describe
sub-Bernoulli functions and some basic inequalities. In Section 3, we consider
inequalities of type (1.4) and (1.5). In Section 4, we provide the SLLN. Section 5
contains examples about moment conditions for SLLN.

1.2. Notation. Let {X®, X", n > 1} be independent sequences of iid ran-
dom variables from possibly different distributions. The multisample version
of (1.1) is defined by

ny ny
S (1) (k)
(1.6) Sp = '21..- 'Zlh(Xil S ¢}
i1= ip=
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where n = (nqy,...,n;) gives the sample sizes. The normalized sums

Sn/]_[f”:1 n; are the k-sample U-statistics with the kernel h. For ny=---=n,=n,
s(k 1 k

(1.7) SP= 3y ax?...xP),

where A¥ = {(iy,...,i3): 1<i;<n,1<l<k} When {X, XD, ..., X} are
identically distributed, SSL’Q) becomes the decoupled version Sng] in (1.1). Let

f(x, y) be a real Borel function with f2(x, y) = h(x, y), and {s, ¢,, gﬁ,”, n >

1,7 > 1} be iid Rademacher variables independent of {X,,, Xg), n>1,1>1}
P{e =1} = P{e = —1} = 1/2. Define

(18) TH=Y af(X), T =Y &f(X).

icAll ieA
They are the symmetrized versions of (1.1) and (1.7). Here and in the sequel,
Xi=(Xipsos X)) K= (X, X)), & = T1fy &, and & = [T}, & for
i=(i,...,0).

In addition to the variables introduced above, we shall use the following
notation throughout. Let {Y,, Ygf), n > 1,1 > 1} be independent variables,
{6, aﬁf), n > 1,1 > 1} be constants in [0, 1], and {§,, 52”,;1 > 1,1 > 1} be
independent Bernoulli ones with P{Bg) =1} = 6 and P{5, = 1} = 0,.
For i = (iy,...,1), set 3 = (¥ip>--->93,), Y5 = (Y;,...,Y; ) and Y; =
(Y, ..., V"), Set 6, = (6;,,...,6,) and §; = (6, ..., 6"). Set & =1} 5,

IS i’ S
and §; = [1~, 855), in the same manner as ¢; and &; in (1.8). Let N, , be a
binomial variable with parameters (n, #) and N, be a Poisson variable with
EN, = A. Also, for all real {qa;}, [[;caa; =1if A=0.

The distributions of X® [ > 1, are not assumed to be identical, to cover
the multi sample case. The variables {Y;, Ygl)} are not assumed to have the
same distribution (neither between different i nor between different /), to
be used to describe basic inequalities for sub-Bernoulli functions. The condi-
tional expectations and moments of sub-Bernoulli functions are dominated by
those of products of {§;, SEZ)}, with nonidentical {6; 0(~l)} in general (between

different [ as well as different i). The Rademacher variables {¢, ¢,, ag), n >

1,I > 1} are assumed to be independent of {X,, Xsll), Y., Yﬁf), 8,5 8£Ll),
n > 1,1 > 1} throughout. Also, x; V --- V x,, = max(xq,...,%,,), ] A -+ A
X, =min(xqy,..., xX,,).

1.3. Case k = 2. Let us discuss £ = 2 in more detail. Let A(x,y) =
h(y,x) > 0. For 6 > 0 and n > 1, define
X, y)

Cl(y; 0) = Sup{c > 0: E(m

)z@}, supd =0,

MX,, Xy) )=
X1, Xo) Ve (Xy;0) Ve (Xg;0)ve) ™

co(0) = sup{c > 0: E(
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and

(1.9) P(x, y;0) = h(x, y) v e1(x; 0) v ¢1(; 0) V ¢o(0).

It can be easily seen (also cf. Lemma 3.1) that for ¢ = h(X, X9)/¥ (X1, X5; 0),
(1.10) 0=<¢ <1, E[¢|X;]<E[5:5,]9;], j=1,2, E¢ < E[6,6,],

if 8; are iid Bernoulli variables with mean 6. In other words, the conditional
expectations of ¢ in (1.10) are dominated by their 6,8, versions. In this sense,
we call ¢ a sub-Bernoulli function of (X, X5).

The function c¢;(y;1/n) as in (1.9) is the same as m,(y) = sup{m:
nE{h(X,y) A m) > m}, a quantity whose essence has been used to ap-
proximate the center of the distribution of a sum of iid nonnegative ran-
dom variables [each distribution in this case is A(X, y)]. In fact, Lemma 2.3
of Klass and Zhang (1994) shows that P{S,(y) > c¢(y;1/n)/3} > 0.2 and
P{S,(y) <3c(y;1/n)} > 0.3 with S, (y) = X1 (X, ). In this paper,

&t =  max p(X;, X j32/n)
(1.11) o
= max[gljagl hMX;, X;), max c1(X;;2/n), cO(Z/n)}

are used to approximate the center and moments of (1.1) for 2 = 2. The maxi-
mum of 4(X;, X ;) represents the extreme term; the maximum of ¢,(X;;2/n)
represents the extreme term of }>_; h(X;, X ;) in the sum over i; while
co(2/n) represents the overall center of the double sum. For more discussions,
see Klass and Nowicki (1997).

It will be shown in Theorems 3.2 and 3.4 that (1.4) and its two-sample
version

(1.12) E(SP/EP)"g(EP) < Eg(EP)EQ + NV,

and their extensions to general %, hold for all nondecreasing nonnegative func-
tions g and m > 1, where &\° = max; jepz J/(Xgl), X(jz); 1/n) with ¢ being
the (X, X®)-version of i (cf. Section 3.1). These theorems also assert that
(1.5) and its two-sample version

(1.13) P{EP > t) <24P({SP > t/2),

and their extensions to general %, hold for all positive ¢. Let ® be a function
satisfying

(1.14) ®(x) 1 in x, P(x) > 0, P(cx) < Mc*D(x), c>c,>1,x>0
for some « > 0. This includes ®(x) = x“. It follows from (1.12) and (1.13) that

(1.15) Cly ED(EY) < Eo(SY) < Cy [ED(ED),
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with C'y, , = 1/(24M(2V¢,)*) and CY; , = M[c? + {E(1 + N;)™}?], where
m — 1 < o < m. The upper bound above follows from (1.12) as <I>(S’,(12)) <M
max{{S? /P, 1)D(£P) and ¢* < ¢™ for ¢ > 1. Inequality (1.15) for general
k and its one-sample version [based on (1.4) and (1.5)] are given in Corollar-
ies 3.3 and 3.5. Via different methods, Klass and Nowicki (1997) obtained
(1.15) in the independent but non-iid case, using functions A;;(x, y) > 0 in
place of a fixed A(x, y). Their results involved the construction of different
constants.

Let b, = n'/P. Sufficient moment conditions for the SLLN (1.3) were given
by Hoeffding (1961), Serfling (1980), Sen (1974), Teicher (1992) and Giné and
Zinn (1992). By the Kolmogorov and Marcinkiewicz—Zygmund strong laws,
(1.3) holds for 2 = 1 if and only if EA(X) = 0 for p < 1 and E|h(X)|? < oco.
However, the case & > 2 is quite different. Giné and Zinn (1992) gave an
example to exhibit that the condition E|X|? < oo is not necessary for (1.3)
when A(x, y) = xy. In Example 5.2 below, (1.3) holds for b, = n*/? and some
symmetric 2 but E|h(X,..., X;)|?1"® = oo for all £ > 0, where 0 < p < 2
and p; = p/{k — p(k — 1)/2} < p. For the special case A(x, y) = xy and
EX = 0 whenever E|X| < oo, Cuzick, Giné and Zinn (1995) obtained nasc for
the SLLN (1.3) under certain regularity conditions on the distribution of X
(e.g., X symmetric, P{| X| > x} regularly varying), and Zhang (1996) obtained
nasc without regularity conditions on X. Some extensions of these results for
k > 2 are also available in these papers. The SLLN in this paper give nasc for
(1.3) for general nonnegative kernels and its symmetrized and/or multisample
versions.

THEOREM 1.1. Let S'2 and S? be asin (1.1) and (1.7) and c1(+; 0) and cy(6)
be as in (1.9). Suppose h(x,y) = h(y,x) > 0, {X, X, X®} are identically
distributed, and sup,., n=2b2 Y 7>, m/b?, < occ. Then the SLLN (1.3) holds iff

T2 b, — 0 as., iff &8/62 > 0 as., iff S22 /62 — 0 as., iff TP /b, — 0 a.s.,
iff “éz) /b,% — 0 a.s., iff the following three conditions hold:

(1.16) co(1/n) /b2 — 0,
(1.17) > P{ey(X;1/n) > b2} < oo,
n=1

(1.18) Y nP{h(Xy, Xy) > b2 > c(X151/n) Ve (Xg;1/n)} < oo.

n=1
REMARK. Condition (1.18) can be replaced by

(1.19) Y nP{h(Xy, Xo) > b2 Ve (X151/n) Vey(Xy;1/n)} < 0.

n=1

The proof of Theorem 1.1 and its extensions for general 2 and multisample
versions are given in Section 4.
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2. Sub-Bernoulli functions. In the following three subsections, we shall
(1) define sub-Bernoulli functions and describe the motivation, (2) provide
upper bounds for conditional expectations of products and moments of sums
of sub-Bernoulli functions and (3) provide some exponential inequalities.

2.1. Sub-Bernoulli functions. A random variable qb(Yl, cees Yk) is called

a sub-Bernoulli function of a random vector (Y,,...,Y,) with parameter
(61,...,0,)if0<¢p <landforall AcC{l,...,k},
(2.1) E[¢(Yq,....,Y Y, le A] <[] 6.

leA

From this definition, sub-Bernoulli functions are nonnegative functions of
(Y4, ...,Y;) whose conditional expectations given subsets of {Y{,...,Y .} are
uniformly bounded from above by the products of the 6’s in the complementary
subsets of {6, ..., 0,}.

Consider the case of £ = 1. By definition ¢; = ¢,(Y;) are sub-Bernoulli
functions of Y, iff 0 < ¢; < 1 and E¢; < 6;. Such variables ¢, are dominated
in moments by Bernoulli variables §; with E§; = 6; in the sense that E¢]" <
E87 = 6; for all m > 1. Although this does not imply stochastic dominance
(i.e., P{¢; > t} < P{8, > t} may not hold for all ¢), it is strong enough to
assure

n m m
E(Z@-) - Y E[l4
i=1 (itremrim)eAm  j=1
(2.2) . . .
<y Ells, -5 La)
Am =1 i=1
for all integers m > 1. Thus, as far as moments of sums are concerned,
Bernoulli variables are the optimal ones among all sub-Bernoulli variables.
We shall show below that products of independent Bernoulli variables are
optimal for general k2 among all sub-Bernoulli functions.

2.2. Expectations of products and moments of sums.

PROPOSITION 2.1.  Suppose ¢;(Y;) and ¢; ((Y;), 1 < s < m, are sub-

Bernoulli functions of Y; = (Ygll), e Yéf)) with parameters 0; = (053), ce

6\7) fori=(iy, ..., i) € AL Then, for all iy = (i1, ..., i5,) € AL, 1 < s <m,
and A C A%,

m m k
Fac| = T IT 6 = B[ T 1155 = 1],

s=11leA, s=1i=1

(2.3) E[ﬁ i (Y5)
s=1

where 73 = o(Y\, (Li) e A), Ay ={l < ki, # i, Vs <t <m, (i, €
A}, A°= A%\ A, and 5 = TI{8\: (I, i ) ¢ A}. Moreover, for all A, C A%,
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(2.4) E ﬁ( > ¢i,s(Yi)> <E ﬁ( 2 ﬁ 55?)'

s=1 VieA, s=1 VieA =1
Consequently, for A, =1, A,ILZ with n = (nqy,...,ny),

(2.5) B( ¥ 0uty) < I B(xa)

icA, I=1 i=1

REMARK. Since {Ygl)} are independent (between different / as well as dif-
ferent i), the indeces i are allowed to have ties.

PROOF. Set ¢; = ¢;(Y;). By (2.1),
E[¢isiyit,8<tfm,g'tAc]=E[¢is|Y§f),l¢As]§ 1_[ OEIZ)
* leA,

Repeated applications of this inequality for s = 1, ..., m give the inequality
in (2.3). The identity in (2.3) follows from
P{Sis = 1|Sit =1l,s<t<m,& = 1}
—P{§ =18 =1,1¢4,) =TT 6
- {IS_ILLS—’Q/ s}_l_[ is"
leA,

Finally, similarly to (2.2), (2.4) is proved by first writing the product of sums
as sum of products and then applying (2.3) with A = A%, (trivial %4.) to each
(product) term in the sum to allow substitution of ¢; ; by 5;. O

For the single sequence {Y, }, we have the following analogous result.

PROPOSITION 2.2. Suppose ¢;(Y;) and ¢; (Y;), 1 < s < m, are sub-
Bernoulli functions of Y; with parameters 6; for i = (i1,...,1;) € A Then,
for all iy = (iy g ..., ip,) € AL, 1<s<mand A AL,

& = 1],

where Ag ={l < ki ;#i;,Vs<t<mand 1< j<ki e A}, Ty =
a(Y;,i € A), A° = AL\ A, and & = ]_[{Sil’s: i; s & A}. Moreover, for all

AycAB 1<s<m,

FAB} < ﬁ [16,,= E[ﬁ ﬁ‘sil,s

s=11leA; s=1[=1

(2.6) E[ﬁ $i. (Y1)
s=1

(2.7) E ﬁ( > d’i,s(Yi)) <E

s=1 VieAg
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Consequently, with T,, = Y7, 8;,

(2.8) B(  aero) <)

ieAll!

REMARK. The symmetrized versions of (2.5) and (2.8) can be easily pro-
duced using the Khintchine inequality.

REMARK. For all nondecreasing nonnegative g,
EN, 48(N, ¢) =™0Eg(N, ¢+1)
and
EN,g(N,)=AEg(N, +1).
These and Corollary 2.1 of Gleser (1975) imply

<EN", E(T.”> < E(N": é”) < E(N.A") :

" J J J
where 0, = A,/n =3",6,/n and T, is as in (2.8). Thus, the T, in (2.8) and
the sums on the right-hand side of (2.5) can be replaced by Poisson variables.

The proof of Proposition 2.2 is omitted as it is nearly identical to the proof
of Proposition 2.1

2.3. Exponential inequalities. There are several ways of obtaining expo-
nential inequalities for the tail probabilities of U-statistics from moment in-
equalities. Here we shall only present one for symmetrized and decoupled
U-statistics.

PROPOSITION 2.3. Let 0 < 6 < 1. Suppose ¢;(Y;) = fi(Y;) are sub-

Bernoulli functions of Y; with a common parameter (0,...,0) for all i =
(i1,...,13) € A*. Then,

3 &fi(Ys)

1/k
T > <2Eexp(*N, ,/(2n)),

(2.9) Eexp (t

icAk
icAf

where N, g is binomial (n, §). Consequently,

1/k 2
—t%/2
zt} §2exp< / )

gifi(Yi)
2 0+1t/(24/n)

(2.10) P{ e

icAk
icAf

COROLLARY 2.4. Suppose ||fi(Yi)|o < ¢ and Ef3(Y;) < o? for all i =
(i1, ...,1}) € AR Then

&f:i (¥l —t2/2
2 nk/2 ztj=2Zexp o2k 4+ te/ (20 DIk /n) )

ieAk

(2.11) P{
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For £ =1, (2.11) becomes the Bernstein inequality. For iid {X,} and com-
pletely degenerate kernels f with ||f||. < c and Ef? < o2, Arcones and Giné
[(1993), page 1501] obtained the inequality

COl . —cjt?
P{ Z >t < C, exp 02/k+(tc/ﬁ)2/(k+l)

nk/2
and its symmetrized and/or decoupled versions with implicitly specified uni-
versal constants ¢}, and c}. Their inequalities give smaller upper bounds for
oDk /n/(ct) = o(1) than (2.11) although the breakdown point ¢ = o(*+1)/%
J/n/c is the same. For related exponential inequalities for the Rademacher
chaos, we refer to Ledoux and Talagrand (1991).

icAk

PROOF OF PROPOSITION 2.3. Set T, = Ycn &f3(Y;) and S, =Y
f3(Y;). Let Z be a N(0, 1) variable independent of N n,0- By the Khintchine
inequality and (2.5) of Proposition 2.1,

E(T,*" < (EZ*™)*E(S,)" < (EZ*"ENT ,)".

By the Jensen inequality E|T,|*"/* < E(Z,/N,,. 0)2m‘ Since el*l < e*+e7*, the
left-hand side of (2.9) is bounded by

00 ()\|Tn|1/k)2m - 0 )\2m om
E{2 mzzo T } < 2m=0 —(2m)!E(Z\/Nn79)

=2E exp()\Z\/Nn, 9) = 2E exp(t>N,_,/(2n)),

with A = ¢//n. Thus, (2.9) holds.

The proof of (2.10) from (2.9) is nearly identical to the proof of the Bernstein
inequality in Chow and Teicher [(1988), page 111]. By (2.9) and the Markov
inequality,

(T [V 2 "

(2.12) P{ y AEoE > t} < 2exp(—)\t)(1+ 6{exp(12/(2n)) — 1})
icAk n

for all A > 0. Take A = ¢/{6 + t/(2y/n)}. Since A?/(2n) < 2 and e* — 1 <
x/(1—x/2) for 0 < x < 2,

9 02%/(2n) 0A%/(2n)  tA

OlexpO/2m) =1} = T35 /0y = T-a/aym) — an’

Thus, the right-hand side of (2.12) is bounded by 2exp(—tA){1 + tA/(2n)}" <

2 exp(—tA/2) and the proof is complete. O

PROOF OF COROLLARY 2.4. Let 6 = 02/c? <1 and ¢; = ¢;(Y;) = 0 1c 2.
f4(Y;). Then ¢; are sub-Bernoulli functions of ¥; with parameter (9, ..., 6),
as the ¢; version of (2.1) holds for j > 0 due to |¢;||, < 6! < 6%/ and for
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Jj =0 due to E¢; < 6%. Set A = (v/0c)"*//6. It follows from (2.10) that the
left-hand side of (2.11) is bounded by

Vk —12/2
= 3220 (o vm )

ok/2 5 F.(Y-
P{ Z alflk(/Z l)
«/EC‘ ieAk n

Hence, (2.11) holds as A20 = (0c?)V* = ¢%* and A = oY% //6 = ¢/ VD/k O

3. Moments of maxima and sums. In this section we provide moment
and tail probability inequalities for maxima and sums of products [e.g., (1.4),
(1.5), (1.12) and (1.13)]. We shall provide the normalizing kernels in Sec-
tion 3.1, the inequalities in the iid and multisample cases in Section 3.1 and in-
equalities for independent not identically distributed variables in Section 3.3.
Section 3.4 contains the proofs of Theorems 3.2 and 3.4 in Section 3.2.

We shall use the following notation to shorten expressions: O, = {1, ..., k},
agjy=(ay,...,a;), and for all a(;) and A C (), with size |A| = j, (a;:l € A) =
(az>---» alj) with [; < ...[; being the ordered labels in A.

3.1. Construction of normalizing kernels. Let h(y)) be a nonnegative
Borel function and Y = (Yy,...,Y}) be a random vector with joint dis-
tribution Fy . Given 6 = (64,...,0;), we shall find a normalizing kernel
lp(y(k)) such that q’)(y(k)) = h(y(k))/lﬁ(y(k)) is a sub-Bernoulli function of Y(k)
with parameter 6. In addition, the normalizing kernels should be small
enough to be used in the proof of inequalities in both directions such as (1.4)
and (1.5).

We shall classify the 2* inequalities of (2.1) according to |A|, the size of A,
and consider those with |A| = & — j, j = &, ..., 0. The normalizing kernel is
defined by

(3.1) b(Ywy) = (Y ) Orys s Fy,)) = ggjﬁ?k hi(yxy) = ho(y(1))s

32) iy = hi(y) v { ¢; alyi ¢ A)},

max
|Al=k—j, A0,
j =k - 1, ...,0, hk(y(k)) = h(y(k)) = ck,@(y(k))’ and for A - Qk and |A| =
k— j7
cjalyrle A
= Cj,A(yl: le AC, 0(k)’ h, FY(k))

h(Y (1))
hj1(Y@y)ve

(3.3)
= inf{c > 0: E[

Y, =y, le Ac] <11 el}.
leA



442 C.-H. ZHANG

Note that ¢, does not depend on y ;). Define ¢; 4(yx) = b a(¥r); Oy B
Fy, ) by
®

h(y(k))
hivi(ym) Ve alyiel g A)

(3.4) dia(ym) =

LEMMA 3.1. Let 6, h and Fy, be as in (3.1)~(3.4). For all fixed (y;: | &
A), the function ¢; A(y)) in (3.4) is a sub-Bernoulli function of (Y;: l € A)
with the parameter (0;: 1 € A), and E[d; (Y )| Y, 1 & Al = [lica 0, for

c;a(Y;: 1 ¢ A) > 0. In particular, ¢(y) = /b = do0,(Yr)) is a sub-
Bernoulli function of Y ;) with the parameter 0.

PROOF. It immediately follows from (2.1), (3.2) and (3.3) that qu,A(y(k))
is conditionally sub-Bernoulli. Its mean is given by (3.3) as the conditional
expectation on the right-hand side is continuous in ¢ for ¢ > 0. O

3.2. Moment inequalities in the iid and multisample cases. We shall pro-
vide moment inequalities involving maxima and sums, extended (1.4) and (1.5)
with iid {X;} and their multisample versions with independent iid sequences

(xVy, 1> 1.
Let A(xq, ..., x;) be a fixed kernel. For A, C A and A, C ®f:1A,1LZ define
(3.5) Sy, = 2 MXy), Si, = X MXy).
iEAn iEAn
Let 6(z) = (01, ..., 6;) and 6 be fixed parameters. Let F g be the joint distri-

bution of X = (XM, ..., X®) and Fy, be the joint distribution of X =
(X4,...,X};). Define

(36) gAn, 0= I};%X l/j(Xv (0> e 6)> h7 FX(k))> fglk] = gALk],k/n’

(37) g/‘\n’ O0r) = III’GI%X l/I(Xl, O(k), h, FX)
and
~ ~ ~(k) ~
(3.8) En = Eof AL (Unynl/ny)> = EAE (ns/n)

where ¢(+) is given by (3.1).

THEOREM 3.2. Let g be an nondecreasing nonnegative function. Then, for
all A, C ®f:1A,1ll and integers m > 1,

=

(3.9) E(SAn/éAn, e(k))mg(éz'\n, e(k)) = Eg(&m o(k)) E(1+N,, 9l)m'

=1
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Furthermore, for all n = (ny,...,n;) and real numbers t > 0and 0 < & < 1,
5 N 3k _ Zk 5

As in (1.15), we have the following corollary.

COROLLARY 3.3. Let ® be a function satisfying (1.14) for some o < m. Then,

(M(2Ve,)) ' ED(&y)

(GF—ohjar2h) = E®(S,) < M(c* + {E(1+ N,)"}")Ed(&,).

THEOREM 3.4. Let g be an nondecreasing nonnegative function. Then, for
all A, C A%k] and integers m > 1,

k

Furthermore, there exists a function C), , such that for all n > k and real
numberst >0and 0 <e <1,

(3.12) Plel >t} <€), P{SI > et}
For n > k(k+1), (1.13) holds with

=~ J

m k Nn :
(3.11) E(Sy,/én,.0) g(fAn,e>ng(§Am9)E( ' ’6) '

REMARK. If n is a multiplier of %!, (3.12) holds for
2
k EMN=1) —1
k (%)
A e e
e =2\ (1 ep
COROLLARY 3.5. Let ® be a function satisfying (1.14) for some a < m. Then,

E®(&)
M@2Ve,)*Cy )9

< ED(SIH < MEcp(g;Lkl){c: + E(k +kN k) }

Theorems 3.2 and 3.4 are proved in Section 3.4.
3.3. General independent variables. In this section, we consider the ex-
pectations of the product of a maximum and several sums for independent

variables {Y;, Yy), i > 1,1 > 1}, which may have different distributions.

PROPOSITION 3.6. Suppose §;(Y;) are measurable functions of Y; and
¢ +(Y;) are sub-Bernoulli ones with parameters 0; for i € A% Let A% =



444 C.-H. ZHANG

®F I % for some I O c QL . Then, for all nondecreasing nonnegative functions
g(-), ACA* and m > 1,

m k m
(3.13) Ea(éy) H( 5 ¢i,s<f’i)) < Eg(é) TTETT{1+T0.),

s=1 NieAks =1 s=1

where £, = max;_, ¥;(Y;) and T,,=" 5.

et %

PROPOSITION 3.7. Suppose ;(Y;) are measurable functions of Y; and
¢; 5(Y;) are sub-Bernoulli ones with parameters 60; for i € A Let Alks) =
{I¢*} N Al for some I, € QL. Then, for all nondecreasing nonnegative func-

tions g(-), A C A([,Ié] and m > 1,

e Esenll( > e.0) = BeenE 1] (*1).

s=1 VNjeAlk s

where &\ = max;cy P3(Y;) and Ty =31 6;.

REMARK. For general A, € {i € A% i; # i; V j # [}, we may apply
Proposition 3.7 to ¢;(Y;) = Y=gy ¢(Yy)/k! and #;(Y;) = max{y; (Yy): 1 €
A, {i'} = {i}}, where {i} = {i1,..., i3} is regarded as a set.

PROOF OF PROPOSITION 3.6. Set ¢; = ¢;(Y;) and ¢; , = ¢; (Y;). Before
providing the full proof of (3.13), we shall first take a look at the case where
k=1and m = 2. Let (¢,,, ¥,,), n > 1, be independent random vectors with
0 <¢, <1and E¢, = 0,. Let i* be the index at which max,_, g(¢;) is
reached. We have

E(I‘Iilglxg(‘//i)>< % d’h)( % d)jz)

Ji=1 J1=1

<Eg(i)dh+ Y Eg(i)bidhj I(j i
J1=1

(3.15) .
+ 2 Eg(i)bidj i),
Jo=1

ny N

+ 2 X Eg(i )b b1 4iv jyrivy-

J1=1j1=1

Since g(-) is nondecreasing and nonnegative,

Eg((i )b, b5, 115,40, jprivy < E{#J_I’Ill(ljj?;isn g(¢i)}E¢jl¢j2

< Eg(y;)ES

(3.16)

j18j2'
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Similarly, Eg(¢;-)$;- b1 {jziry < Eg(;-)ES; and Eg(y;.)¢7. < Eg(i;.) as
0 < ¢; < 1. Inserting these inequalities into (3.15), we obtain

Eg(‘ﬂL*)( Z ('bjl)( Z d)jz)
(3.17) J1=1 J1=1
’ <Eg(y;.)(1+ET, +ET, +ET,T,)

<Eg(y;)E(1+ Tnl)(l + Tnz),

where T, = Y7 ;6;. This is (3.13) for £ =1 and m = 2.
To proof (3.13) with general £ and m, we shall compare the indices iy, =
(i1,50-+»lps), 1 < s < m, with i* = (i],...,7}) in products of the form

g(hi ) [Tty ¢5, s where i* € A is the index at which the maximum &, is
reached. Let Q ={(l,s): 1<l <k, 1 <s<m}. Given A C Q and (iy,...,1,,),
define iy = (i; 4 (/,s) € A) as an | A|-dimensional vector of positive integers.

Set Ay = ®, s)eal (sl), which is the space of combined labels in A. Define
TpA = 7TA(i1, im,i*) = I{il,s = l}k < (l, S) (S A},
which indicate different patterns of match between iy, ...1i,, and i*. This facil-

itates the calculation of sums involving different patterns of match between
i and i*. Since Y 4. 74 = 1, we have, as in (3.15),

Ee@0T1( X d)= = % Beo)| [T, fmactiosi)

s=1 VigeA, ACQij, el s=1
(3.18) ot )
AgQiAej\A s=1
where (iy, ...1,) =i and iy = (i} , ..., i} ;) with i} =1, ; for (/,s) € A and
i, =1; for (I,s) ¢ A, given i* and i,. Given A and iy, let i° = (if,...,i})

be the index at which the maximum of ; is reached over the set A(A,i,) =
{Gy,oosip) € Aviyp # 0, , V(L k) € A}, and iy = (i 4, ..., 1} ) with i) =i
for (I,s) € A and i}”s = 1; for (/,s) ¢ A. Note that A(A,i,) is the space of
combined indices which do not involve the specified i,. We have

Eg({s) [ by, s < Eg(dhi0) [ ] dir,s-

s=1 s=1
Let F(A,i4) be the o-field generated by {Y'\": (1,i) # (L, i, ,) (I, s) € A}.

Since i° is Z (A, i,) measurable, for all i = (i1, ..., i) € A(A,iy),

B o) 1190, 74,10 | = 2 B[ [] 01,V (15) £ 4]

s=1 s=1
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" =111 -/

on the event {i® = i}, where i/’ = = (] gl With i)' =1, ;for (I,s) € A
and i)', = i; for (I, s) ¢ A. Since ¢; ; are sub-Bernoulli functions of Y;, by (2.3),

B[ 11 4.

s=1

lls

(1, s)eA

Y”> ,(1,8) ¢ A} <E [] V.
Thus, for the given A and i, we have as in (3.16),
l l
Eg(y) n b1, = Bei)E ] &) <Egyi)E [] o).
= (L, s)eA (1, s)eA
Inserting this into (3.18), we find as in (3.17),

Eg(fu'rn[( )3 «ms,s) <Y Y Egi)E ] &

=1 VigeA, AcCQijeA, (1,s)eA

(3.19) <EgW)E Y ] Tus

ACQ(l, 5)eA

kE m

=EgENET][I(1+T, ).

I=1s=1

Hence (3.13) holds for general 2 and m. O

PROOF OF PROPOSITION 3.7. Let i* € A be the location of the maximum &,.
Similarly to the proof of Proposition 3.6, we find via Proposition 2.2 that

Eee) 1 T )= ¥ BeenET]( T o)

s=1 NieAlks] AcCQ s=1 NjeAls:sl

eais 5 (1)

AcQs=1

where j, = #{I: (I,s) € A}. Since there are (’;) subsets of {1, ..., k} of size

k—J,
A0 -1x( )05 -1(")

This completes the proof. O

3.4. Proofs of Theorems 3.2 and 3.4. We shall use Propositions 3.6 and 3.7
to prove (3.9) and (3.11). The Cantelli inequality below is applied to sums of
sub-Bernoulli variables in Lemma 3.1 in the proof of (3.10) and (3.12).

LEMMA 3.8 (Cantelli inequality). Let W be a random variable with EW =
w and Var(W) = o2. Then P{W > &} > (u — &)?/{0? + (u — €)%} for all & < p.
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PROOF OF THEOREM 3.2. Let ¢; = h(X;)/¢(X;; 0., h, Fz). By Lem-
ma 3.1, ¢; are sub-Bernoulli variables with parameter 0(x)- By (3.5) and (3.7),
S A,/ é R Oy = 2ich, $;, so that (3.9) follows directly from Proposition 3.6.

Let us prove (3.10). Let n = (n4,...,n;) and A € Q,, be fixed with |A| =
k — j. Define

(3.20) € ; a=max{c; o(X\: ¢ A)i; e AL VIe A%,

where ¢; A(y(j)) = ¢ a(¥j;(1/ny, ..., 1/ny), h, Fg) as in (3.3). Let (i7: [ €
A°) be the index at which the maximum in (3.20) is reached. Define

(3.21) Dy a= Y b;a(X5)

ieAr 4
with ¢ A(y) = ¢ a(¥r); (1/n1, ..., 1/ny), h, F x) as in (3.4), where
Ay a={G1, ... i) 0 € A,lll VieA,ij=i;Vie A%}

By Lemma 3.1, E[®,, j,A|§~n, j.a]l =1 for g-:n, j.a > 0, and by Lemma 3.1 and
(2.5),

E[® ; alén j.a] < [1 ENZ, 1), = (END)" ™ =287,

n, ny, 1/n,
leA

Thus, by Lemma 3.8 with W = ®,, ; 4,

o (-ep
@ -1 +(1-e)2

P{®, j o > ¢lén j a

on the set {én j,a > 0}. Since Sn/fn, j.oa =Py ;4 by (3.4), this implies

(2k7 — 1)+ (1 — &)?
(1-e)

P{rfn,j,A > t} < P{S’n > at}.

Since &, is the maximum of £, ; 4 over all A € Q, and there are (]Je) of these
with [A| =k — J,

. - kR (2F T — 1) 4+ (1 - ¢)?
P{§n>t}§P{Sn>at}Z<J,>( (1)_*;)(2 )y

Jj=0

This completes the proof. O

PrOOF OF THEOREM 3.4. Let ¢; = h(X;)/v(X;; (6,...,0), A, Fx,) By
Lemma 3.1, ¢; are sub-Bernoulli variables. By (3.5) and (3.6), S, /§x, ¢ <
Yiea, Pi> s0 that (3.11) follows directly from Proposition 3.7.

We shall only prove (3.12) for n > k(k + 1) with the explicit C;, .. The

proof of (3.10) can be used to prove (3.12) if f%k] can be decoupled. Let us
divide {1, ..., n} into £ + 1 blocks B, as evenly as possible. Let A C Q, with
|A| = k — j and j blocks, say By, ..., B}, be fixed. Let & a be the maximum
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of ¢; 4(X;) overice A A (Ul_, B,)®/, reached at (i%, ..., i*), and ®* , be the

sum as in (3.21), with fixed first j components of i = (i1, ..., 1), i; =i],1 < J,
over (ii1,..-,13) € A A (Uf;’lerl B))®*=7) Then, by Lemma 3.8 and (2.8)
(n5 — &)

Plo* « V< 77
{ Az 8‘§J,A} —= Uj+(Mj—8)2
. 2
where u = (k/n)k‘f(k”_fj) and v < E(:’_E) — (u%)?, with n; being the size
of U;’:}H B; and A = nj(k/n). Consider the smallest possible n’; with n =
s(k+1)+jand n; = s(k+1-j), |B;| = s+1forl < j, for some s. In this case,
(k/n){n;/(k— j)} = 1 by algebra for s > k£ — j, which holds as n > k(% + 1).
Thus, u* > (k/n)*{n;/(k — j)}*77 = 1. In the case of largest possible A%,
withn; = (s+1)(k+1-j)and n = s(k+1)+(k+1—j) and then the smallest
possible s = k, n > k(k + 1), we have A, = n;(k/n) < k+ 1 — j. Therefore,
1+0v% < E(N]:iljif)z = 1+v;, say. As in the proof of Theorem 3.4, by Lemma 3.8,

U.
P{g; 4 >t} < {1+ ﬁ}P{SL’“] > et}

k+1

Now, §Lk] is the maximum of & 4 over totally ( ; ) ways to select these j

blocks and then over j =0,..., k&, so that

P{ek > ¢} < P{SIH > at}é(kjl>{1+ (li—Js)Z}

The proof is complete. O
4. SLLN. Let f(xq,...,x;) be a real Borel function. Let f2(xq,...,x;) =

h(xy,...,x;). In this section we give nasc for the SLLN (1.3), its multisample
version

(4.1) SP/pE -0 as.
and their symmetrized versions

(4.2) T k2 5 0 as.,
(4.3) TP k2 5 0 as.,

where S%° is given by (1.7), and T and 7 are given by (1.8). We shall
assume throughout this section that

bfi 00 mk—l
(4.4) sup — >

n>1 n m=n bfen

< Q.

We shall also assume that the function f is permutation invariant, f(x;, ...,
%) = f(x1, ..., %) for all (i, ..., 0;) € AL



STRONG LAWS FOR U-STATISTICS 449
THEOREM 4.1. Let S\ be given by (1.7) and & by (3.8). Let &; > 0, 1 <
i < 3. Let n; be a sequence of positive integers such that 1 < y; <nj. /n; <

Y9 < 00, j > 1. Then (4.1) and (4.3) are equivalent to each other and to each
and all of the following statements:

(4.5) ED bk 50 as.;

(4.6) > PS> e1bf } < oo;
j=1

(4.7) Y PITY) > bk} < oo;
j=1

(4.8) P{&)) > e3bf } < oo,
j=1

REMARK. These are the multisample versions of the SLLN, since X, ...,
X®) are allowed to have different distributions.

THEOREM 4.2. Let S be given by (1.1) and §Lk] by (3.6). Let &; > 0 and n
be as in Theorem 4.1. Suppose {X, xO ., X(k)} are iid random variables.
Then, (1.3), (4.2) and (4.6) (and other statements in Theorem 4.1) are equivalent
to each other and to each and all of the following statements:

(4.9) ErpE 50 as,;

(4.10) 3 P{Sij] > slbﬁj} < o0;
j=1

(4.11) > P{TH > eb3/?) < oo;
Jj=1

(4.12) > P{EM > e3b) | < oo

=1

We state Lemma 3.5 and Proposition 4.2 of Zhang (1996) here as it is applied
in some crucial parts in the proofs.

LEMMA 4.3. Let m; be nonnegative random variables and A ; be events.
Then

oo o0 oo o0
>omida, =1y, Z mit+ 2 Laca,, Z ;-

J=Jo i=Jo J=Jo i=j+1
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For disjoint sets of positive integers A, ..., A;, define the sum of “cross-
block” terms

k .
SEAE@---@AZ =Y MXDIicAi® - ® Al

ieAl®

where A; ® --- ® A; is the set of vectors (iy,...,i;) such that {i{,...,i,} C
Uis1Ajand {iy,...,i,} NA; # @ forall 1 < j <. For example, SEf]/(“,:‘) is
the U-statistic based on the set of variables {X;,i € A}, where |A] is the size
of the set A.

PROPOSITION 4.4. Let A, 0 < j <, be disjoint sets of positive integers and
a; be real numbers indexed by vectors i = (iy,...,13). Then

YaIllie (A4 - QA)U(A)® A ® - ®A)}
ieA

!
=Y (-1 3 Yoail{{iy, ..., i} SAGUA, U---UA, |
Jj=0

O<my<--<m;<l ieA

for all sets A of finitely many vectors. In particular,

k
(%] k—j [%]
SA1®~--®A,, =2 (- > SAouAmluu-uAmj'

Jj=0 O<my<--<m;<k

Note that ([T, [A,]) ' SY]

A,9-0A, aT€ multisample U-statistics.

PrOOF OF THEOREM 4.1. We shall prove (4.7) = (4.6) = (4.8) = (4.3) =
(4.7), (4.8) = (4.1) = (4.6) and (4.8) = (4.5) = (4.8). We use M to denote an
arbitrary positive constant. We may choose any value of ¢; (large or small),
since (4.1) has nothing to do with the scaling.

(i) (4.7) = (4.6). By Lemma 3.8 with W = (Tﬁ,’?)%SEﬁ? given Sﬁf? and the
Khintchine inequality,

= (k)\2
P{ (TS”)) >1/2
S(k) -

gmw| . _1/4
YT a4+ 14

See the proof of (3.10) and Giné and Zinn [(1994), page 122] for details.

(ii) (4.6) = (4.8). See (3.10) in Theorem 3.2.

(iii) (4.8) = (4.3). This part is very close to the proof of Theorems 2.2
(sufficiency) and 3.1 in Zhang (1996). Let ¢5 = 1 and ¢ > 0. By the Doob
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inequality for the reverse martingale Tslk) /nk n>n j» conditionally on fsl]i),

(14)?

P{ max

nj<n<nj ﬁ
T\ o _
=, mox (o), may (G) né =)

) (k) AB)
J+ k
< Zbk < ) nj = bnj}

4y2E N2 AR
= Sglfk.E(T”j) I{ nj Sbr}ij}
2k &

_Ayn (%)
£2bF —o EMEXDI(E] <b] ),

k
> 8 gAk ,(1/nj,...,1/n;) = bnj}

nj+1’

where X, = (X", ..., x{"). Thus,

> P{ max (Tﬁlk))z/bs > 32}
j=1

nj<n<nj,;

<ZP{ s Uty > O }+MZ JEh(Xl)I{ <k><bk}

nj

By (4.8), the first sum on the right is finite. By (4.4) and Lemma 4.3,

k
n ~ ~(k
Y 5 EMEDI{ES <o} )
Joon
k
< M+ MY I ERE)IED = of &0, <0k ).
J ”J+1 '

It follows from (4.8) and (3.9) of Theorem 3.2 (with §-’A o = §(k) and g(t) =
I{t > bkj}) that the right-hand side above is bounded by

S(k) k k
M+MY E-1{E]) > bh L&D, <ok )
J Mj+1
<M+MZE (k’)I{ £ > ok )
§M+MZP{ L) > bt ) < oo,
J

(iv) (4.3) = (4.7). This is a consequence of Proposition 4.4 and the Borel-
Cantelli lemma. For details, see Step 3 of the proof of Theorem 4.1 of Zhang
(1996), page 1608.
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(v) (4.8) = (4.1). The proof is simpler than (iii).
(vi) (4.1) = (4.6). See (iv).
(vii) (4.8) = (4.5) = (4.8). The Borel-Cantelli lemma. O

PrROOF OF THEOREM 4.2. By Proposition 4.4, (1.3) = (4.6), as in (iv) of the
proof of Theorem 4.1. Since A(x4, ..., x;) > 0, (4.6) = (4.10) by de la Pefia and
Montgomery-Smith (1995). The proofs of (4.10) = (4.12) = (4.2) = (4.11) =
(4.10), (4.12) = (1.3), and (4.12) = (4.9) = (4.12), are identical to those of
(4.6) = (4.8) = (4.3) = (4.7) = (4.6), (4.8) = (4.1) and (4.8) = (4.5) =
(4.8), respectively. O

PROOF OF THEOREM 1.1. (i) (4.12) = (1.16)—(1.18). Let 2/ < m; < 2/™ be

the index at which P{£/) > b%} reaches its maximum over 2/ < n < 2/+1.
Taking n; = my; in (4.12) with 5 = 1 and then n; = my;,, we find

(4.13) Y ntP{EH > bk < 0.

n=1
For k = 2 and b2 > ¢y (2/n), h(X{, X3) > b2 Vv c1(X1;2/n) v ¢1(X4;2/n) and
(1.9) imply ¢,(X;, X,) =1, with ¢,(x, ¥) = h(x, y)/¥(x, y;2/n), so that the
left-hand side of (1.18) is bounded by

S nEd¢, (X, Xo)I{EH > b2}
n=2
00 ~© 9RF 24+N,
=Y 2 EY g (XpId) - 82} <Y 28,7 )P{fifl > by} < 0.
n=2 T~ 1 n=2 7 1

ieA[nZ]
The inequality above is a consequence of Proposition 3.7, with g(x) = I{x >
b2}. Also, (1.16) follows from gLZ]/b;i — 0 a.s. and (1.17) follows from (4.13), as
(4.13) implies Y, n ! P{max,_;_, ¢;(X;, 2/n) > b2} < co.
(ii) (1.16)—(1.18) = (4.12). By the Borel-Cantelli lemma (1.16)—(1.18) =
(4.13). We obtain (4.13) = (4.12) by taking m ; to be the index of the minimum
in the block 2/ < n < 2/*! in the proof of (4.12) = (4.13) in (i).

5. Examples. For 0 < p < 2, Giné and Zinn (1992) proved that E|f (X,
..., X})|P < oo is sufficient for (4.2) with /b, = n'/P. Here we give an ex-
ample to show that the pth moment condition is in some sense far away
from necessary. By the equivalence of (4.1) and (4.3) and the Kolmogorov and
Marcinkiewicz—Zygmund strong laws, we have the following example.

ExXaMPLE 5.1. Let {Y(l), Ygf), n > 1} be independent sequences of iid ran-
dom variables. Suppose E|YD|?1 < 00,0 < p; <2,1 <1<k, py+---+p;, < 2k.

Then n—*/P ]_[le(zn é(l)Ygl)) — 0 a.s.,, where k/p=1/p;+---+1/p;.

i=1%i

ExamMPLE 5.2. Take 0 < p < 2 and set p; = p/(k— p(k—1)/2) < p. Define

2 . . .
flxq,...,x;) = ZieAEf] xil/plxi2 -+-x;, , the permutation symmetrized version of
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the kernel xf/ Plx, ... x;. Let X be a nonnegative variable with EX? < oo but
EX?** = oo for all & > 0. Then n*P Y \me; e, -, f(X;,...,X;,) = 0
a.s., while E|f (X, ..., X})|P1t® = oo for all ¢ > 0.

PROOF. It is clear that E|f(X;,..., X})|"t® = oo for all ¢ > 0. By the
equivalence of (4.2) and (4.3), it suffices to show n*k/PZieA[nkl & &, &, f(XEll),

...,XE}}:)) — 0 a.s., which is a consequence of Example 5.1 with YO =
{XWy2/p YD) = XD for2<l<kand pg=---= p, =2.
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