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ROTATION NUMBERS FOR LINEAR STOCHASTIC
DIFFERENTIAL EQUATIONS

BY LUDWIG ARNOLD AND PETER IMKELLER

Universitat Bremen and Humboldt-Universitat zu Berlin¨ ¨
Let dx � Ým A x� dW i be a linear SDE in � d, generating the flowi�0 i

� of linear isomorphisms. The multiplicative ergodic theorem assertst
d � 4 Žthat every vector v � � � 0 possesses a Lyapunov exponent exponen-

. Ž .tial growth rate � v under � , which is a random variable taking itst
values from a finite list of canonical exponents � realized in the invarianti
Oseledets spaces E . We prove that, in the case of simple Lyapunovi

d Ž .spectrum, every 2-plane p in � possesses a rotation number � p under
� which is defined as the linear growth rate of the cumulative infinites-t

Ž . Ž .imal rotations of a vector v inside � p . Again, � p is a randomt t
variable taking its values from a finite list of canonical rotation num-

Ž .bers � realized in span E , E . We give rather explicit Furstenberg�i j i j
Khasminskii-type formulas for the � . This carries over results of Arnoldi j
and San Martin from random to stochastic differential equations, which is
made possible by utilizing anticipative calculus.

1. Introduction. Notations and preliminaries. Smooth ergodic the-
Ž .ory is based on Oseledets’s fundamental multiplicative ergodic theorem MET

� � Ž10 . It provides us with a random substitute of linear algebra spectral
.theory and hence is at the basis of local theory of nonlinear deterministic

Žand random dynamical systems under an invariant measure smooth ergodic
. � � � �theory . See 1 for a survey and 2 for a comprehensive presentation.

ŽThe MET establishes the existence of exponential growth rates Lyapunov
.exponents for every tangent vector under the linearized flow. Lyapunov

exponents are the stochastic analogue of the real parts of deterministic
eigenvalues, and reduce to them in the absence of noise.

This paper aims at establishing the existence of a stochastic analogue of
Ž .the imaginary parts of deterministic eigenvalues so-called rotation numbers

for the case of linear stochastic differential equations. Again, the concept is
such that rotation numbers reduce to imaginary parts of eigenvalues in the
absence of noise.

The infinitesimal concept of rotation number of a 2-plane under a flow
� �generated by a vector field on a manifold was introduced by San Martin 12 .

The existence of rotation numbers for arbitrary planes was proved by Arnold
� �and San Martin 5 for random differential equations under an invariant

� �measure. See also 2 , Section 6.5 for a systematic presentation. Rotation
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� �numbers for stochastic differential equations were studied by Ruffino 11 .
The problem has, however, defied a thorough analysis due to the appearance
of quantities in the MET which are not adapted to the canonical Wiener
filtration. It thus calls for the use of anticipative calculus, which is what we
intend to do here.

Ž � �Rotation numbers are important in stochastic bifurcation theory see 2 ,
. Ž � �Chapter 9 . They also describe the rotation of invariant manifolds see 11 ,
.Section 6 .

Our basic probability space is the m-dimensional canonical Wiener space
Ž .�, FF, � , enlarged such as to carry an m-dimensional ‘‘Brownian motion’’

Ž m.indexed by �. More precisely, � � CC �, � is the set of continuous functions
on � with values in � m, FF is the �-algebra of Borel sets with respect to
uniform convergence on compacts of �, � the probability measure on FF for

Ž 1 m.which the ‘‘canonical Wiener process’’ W � W , . . . , W , t � �, makes botht t t
Ž . Ž .W and W usual m-dimensional Brownian motions which aret t � 0 �t t � 0

t Ž .independent. The natural filtration FF � � W � W : s � u, v � t , �� �s u v
s � t � �, of W is assumed to be completed by the �-completion of FF. For

Ž . Ž .t � �, let � : � � �, 	 � 	 t 	 
 � 	 t , be the ‘‘shift’’ of 	 by t. It ist
well-known that � preserves Wiener measure � for any t � � and is event

Ž Ž . . Žergodic. Hence �, FF, �, � is an ergodic metric dynamical system seet t � �

� � .2 , Appendix A .
As usual, we use a ‘‘�’’ to denote Stratonovich integrals with respect to the

Wiener process.
We shall have to use some basic results rooted in Malliavin’s calculus, for

which we briefly recall the main concepts. For a more detailed treatment see
� � j9 . For 1 � j � m we shall denote by D the derivative operator, which for a
smooth random variable of the form

n� mF � f W , . . . , W , f � CC � , t , . . . , t � � ,Ž .Ž . Ž .t t b 1 n 	1 n

takes the form

n �
jD F � f W , . . . , W 1 u .Ž .Ž .Ýu t t �0, t �1 n i� xi , ji�1

pŽ� �.For T � 0 and each p � 1, � 0, T will denote the Banach space of random1
variables on Wiener space defined as the closure of the set of smooth random
variables with respect to the norm

1
pp
2m
T 2j� � � � � �F � F 	 � D F du ,Ýp , 1 p H už /ž /0j�1

to which D j extends in a natural way. Malliavin’s calculus will enter our
treatment of rotation numbers of linear SDE via a well-known formula for

� �Stratonovich integrals figuring in 9 , page 151. We shall briefly recall it. Let
Ž .1 � j � m and u be a process which is smooth enough so that itst t � 0
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Skorokhod integral exists, along with the ‘‘traces’’

D j	u � lim D ju , D j�u � lim D ju ,t t t t	� t t t t��
� �0 � �0

t � 0, in the usual sense as elements of some L p space. Then

t t t1j j j	 j�1.1 u � dW � u dW 	 D u 	 D u ds,Ž . Ž .H H Hs s s s s s s s2
0 0 0

Ž .where the first integral on the right-hand side of 1.1 is a Skorokhod integral
with respect to W j. Skorokhod’s stochastic integral extends Ito’s integral toˆ
nonadapted integrands and shares with the latter the property of being

Ž .centered. The first trace term on the right-hand side of 1.1 hides the
well-known Ito�Stratonovich conversion term for adapted integrands.ˆ

We shall deal with matrices and operators on � d, equipped with the
standard basis and standard scalar product, mainly. By I we denote the

Ž .d-dimensional unit matrix identity operator .

2. The description of rotation. We will now present the main ingredi-
ents for the explicit description of rotation numbers of 2-planes of d-dimen-
sional linear stochastic systems. Since rotation is an infinitesimal concept;
that is, is described in terms of the generator of the flow, we have to keep
track of the structure of the vector fields involved. These are essentially the
following: the vector fields generating the flow induced by the linear flow on
the unit sphere in � d and the vector fields generating rotation by 	90
 inside
a plane transported by the linear flow.

The resulting concept of rotation number of a plane coincides with the one
� � � �presented in 5 and 2 , Section 6.5 for random differential equations,

working with the Stiefel manifold of orthonormal 2-frames in � d. We have,
however, chosen a more ‘‘user-friendly’’, elementary language here, as we
shall express all quantities involved in terms of d � d matrices.

Let A , 0 � i � m, be d � d matrices. We consider the linear stochastici
Ž .differential equation SDE ,

m
i2.1 dx � A x � dW ,Ž . Ýt i t t

i�0

where we use the convention dW 0 � dt for abbreviation.t
Ž . Ž .Let � be the flow of linear isomorphisms generated by 2.1 . We wantt t � �

to describe the rotation of a vector moved by the flow with respect to a plane
which is moved by the flow as well. For this purpose we start out by observing
how the linear flow moves planes and lines. As has been pointed out above,
we are mainly interested in the vector fields generating this transport on

� �certain Grassmannian manifolds. We briefly recall some facts from 7 . For
1 � k � d and A � � d�d, let

hk p � I � p Ap 	 pA� I � p , p � G d ,Ž . Ž . Ž . Ž .A k



ROTATION NUMBERS FOR LINEAR SDEs 133

where we identify the Grassmannian manifold of k-dimensional linear sub-
spaces of � d with their orthogonal projectors, that is,

G d � p � � d�d : p2 � p , p� � p , rank p � k .� 4Ž .k

Ž .If we consider the SDE on G d given byk
m

k k k i2.2 dp � h p � dW ,Ž . Ž .Ýt A t ti
i�0

we obtain as solution exactly the transport of k-dimensional linear subspaces
Ž . k Ž . kgenerated by � . More precisely, if p � G d , then the solution p oft t � � k t

Ž . k k kŽ d .2.2 such that p � p is the projector on � p � , t � �.0 t
Ž . Ž .We will use 2.2 for k � 1 and k � 2 only, and denote by q thet t � �

Ž . Ž .solution of 2.2 for k � 1 satisfying q � q, and by p the solution of0 t t � �

Ž . Ž Ž .2.2 for k � 2 satisfying p � p. More generally, we denote by q q : t � �,0 t
Ž .. Ž Ž . Ž ..q � G d , respectively, p p : t � �, p � G d , the corresponding flows1 t 2

Ž . Ž . Ž . Ž .cocycles on G d , respectively, G d . These are the flows cocycles gener-1 2
Ž . Ž . Ž . Ž � �.ated by � on G d , respectively, G d see 7 .t t � � 1 2

Since we aim at obtaining rotation as a scalar, we need to know two more
objects. First of all, we have to describe how vectors of length 1 are moved by

Ž Ž . Ž ..the flow. This is an easy task once one knows q q : t � �, q � G d .t 1

Ž . d�1LEMMA 2.1. Let q � G d and v � q � S . Then the solution of the1
SDE

m
i2.3 dv � I � q A v � dW , v � vŽ . Ž .Ýt t i t t 0

i�0

satisfies
v � q � Sd�1, t � �.t t

PROOF. By definition

d I � q v � dv � q dv � dq vŽ .Ž .t t t t t t t

m
� i� I � q A v � I � q A q v � q A I � q v � dWŽ . Ž . Ž .Ž .Ý t i t t i t t t i t t t

i�02.4Ž .
m

� i� I � q A � q A I � q v � dW .Ž . Ž .Ž .Ý t i t i t t t
i�0

Ž . Ž .Since I � q v � 0, strong uniqueness implies that 2.4 has solution 0; that
Ž � .is, we have q v � v , thus v � q . Moreover, obviously d v v � 0; that is,t t t t t t t

v � q � Sd�1 for all t � �. �t t

We next want to describe rotations of planes by 	90
. For this purpose, we
Ž .consider the covering manifold of G d with two leaves defined by2

ˆ d�d 2 2 �G d � p � � : �p � G d , �p p � p , p � �p ,Ž . Ž .ˆ ˆ ˆ ˆ ˆ ˆ ˆ½ 52 2
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Ž . Žand assume that G d has been oriented without making this explicit in2
.symbols .

	 � ˆŽ . Ž .LEMMA 2.2. For p � G d there exist exactly two p , p � G d such2 2
	 � Ž 	.2 Ž �.2that p � �p , � p � � p � p, and such that for any positively

Ž . 	 	oriented orthonormal basis e , e of p we have p e � e , p e � �e .1 2 1 2 2 1

Ž .PROOF. Let e , e be a positively oriented basis of p. Then the conditions1 2

p	e � e , p	e � �e , p	 I � p � 0 � I � p p	Ž . Ž .1 2 2 1

d�d Ž 	.2uniquely determine an operator in � . It satisfies � p e � e ,1 1
Ž 	.2 Ž 	.2Ž . Ž .Ž 	.2 Ž 	.2� p e � e , and � p I � p � 0 � I � p �p , hence � p � p.2 2

	 	 	 	 � 	 	 ˆŽ . Ž .Moreover, pp � p p � p and p � �p , and so p � G d . We take2
p�� �p	. Hence existence with the required properties is proved.

ˆ 2Ž .Now suppose p � G d satisfies pe � e , pe � �e and �p � p. Thenˆ ˆ ˆ ˆ2 1 2 2 1

I � p p � p 	 p3 � 0 � p I � p .Ž . Ž .ˆ ˆ ˆ ˆ
Hence

ker p � im I � p , im p � im p.Ž .ˆ ˆ
It is thus clear that p � p	. This proves uniqueness. �ˆ

ˆ Ž .We remark that G d is indeed a covering manifold with projection � :2
ˆ 2Ž . Ž .G d � G d given by p � �p .ˆ ˆ2 2

Ž Ž . Ž ..Now given our flow of planes p p : t � �, p � G d , generated by thet 2
ˆ Ž .linear flow, there is exactly one lifting onto G d to a flow of rotations2

of 	90
.

	 Ž .LEMMA 2.3. Let p be the positive rotation by 90
 inside p � G d . Then2
the solution of the SDE

m
�2 2 i 	dp � I 	 p A p 	 p A I 	 p � dW , p � pˆ ˆ ˆ ˆ ˆ ˆŽ . Ž .Ž .Ýt t i t t i t t 0

i�0

Ž 2 . Ž .has the following property: �p is a solution of 2.2 with k � 2 andt̂ t � �

p � p.0

ˆ Ž .PROOF. Since G d is compact and the vector fields involved are smooth,2
the SDE considered has a unique strong solution. Let for t � �, r � �p2.ˆt t
Then

dr � �dp p � p dpˆ ˆ ˆ ˆt t t t t
m

�2 2 i� I 	 p A r 	 r A I 	 p � dWˆ ˆŽ . Ž .Ž .Ý t i t t i t t
i�0
m

2 i� h r � dW , r � p ,Ž .Ý A t t 0i
i�0

which is the desired SDE. �



ROTATION NUMBERS FOR LINEAR SDEs 135

Ž . Ž .We call p the positive lift of p . Of course, the positive lift of thet̂ t � � t t � �

Ž . Ž Ž . Ž .. Ž .flow cocycle p p : t � �, p � G d is a uniquely defined flow cocyclet 2
ˆ ˆ	 ˆŽ Ž . Ž .. Ž . Ž .p p : t � �, p � G d on the leaf G d of positive rotations in G d .ˆ ˆ ˆt 2 2 2

To simplify matters, we introduce one more notation. For t � � and v , thet
Ž .solution of 2.3 , let

w � p v ,ˆt t t

Ž . Ž .and, to express the dependence on q � G d and p � G d or, alternatively,1 2
d�1 ˆ Ž . Ž . Ž . Ž . Ž .on v � S and p � G d , we write w q, p or w v, p for p p v q orˆ ˆ ˆ2 t t t t

Ž . Ž . Ž .p p v v , t � �. Note that v , w is a positively oriented orthonormalˆ ˆt t t t
2-frame in p , which connects our approach to the Stiefel manifold approacht
mentioned above.

After these preliminaries, we are in a position to define the rotation
number of a plane. It is evident that the infinitesimal angle d� by which thet
vector v is rotated inside p should be measured by the length of thet t
projection of dv onto w , that is, by d� � w� � dv . The cumulative rotationt t t t t

� � T �in the interval 0, T is hence � � H w � dv , and the rotation number ofT 0 t t
the plane should be the linear growth rate of this quantity. This leads to the
following definition.

Ž .DEFINITION 2.4 Rotation number of a plane . Let P be a random variable
Ž .with values in G d , and let Q and V be random variables with values in2

Ž . d�1G d and S , respectively, such that V � Q � P. Then, in case the follow-1
ing limit exists in probability, we call

1 1T T� �2.5 � P � lim w � dv � lim w Q, P � dv QŽ . Ž . Ž . Ž .H Ht t t tT TT�� T��0 0

the rotation number of P.

Ž .The random variable defined by 2.5 , if it exists, is independent of Q and
� � Ž � � .V, as is shown by Ruffino 11 , Proposition 2.1 see also 2 , Section 6.5.3 .

Ž .LEMMA 2.5. We have in case of existence of the limit

m1 T � i2.6 � P � lim w A v � dW .Ž . Ž . ÝH t i t tTT�� 0 i�0

PROOF. This is a direct consequence of Lemma 2.1 and the fact that
� Ž . �w I � q � w , t � �, which is due to the definition of p , t � �. �ˆt t t t

REMARK 2.6. Due to the substitution formula for Stratonovich integrals
Ž � �. Ž . Ž .see, e.g., 4 , which in our case is simple since G d and G d are compact,1 2

Ž . Ž .the definition of � P as well as the formula 2.6 make indeed sense, even if
P and Q are nothing but measurable.
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Ž .Our task will consist in proving that the limit in 2.6 indeed exists for any
Ž .random plane Section 4 . Moreover, it turns out that the random variable

Ž .� P can take on only finitely many possible values � which are realized asi j
rotation numbers of canonical planes spanned by the invariant spaces of the

Ž .MET Section 3 .

Ž .3. Rotation numbers for canonical planes. The linear cocycle �t t � �

Ž .generated by 2.1 automatically satisfies the integrability conditions of the
MET, and the underlying metric dynamical system generated by the shift on
Wiener space is ergodic. Hence the MET holds and provides us with a set of
r, 1 � r � d, nonrandom Lyapunov exponents � � 


 � � and an FF� -1 r ��

measurable splitting of � d into Oseledets spaces,

� d � E 
 
 


 
 E 
 ,Ž . Ž .1 r

Ž . Ž .where the d � dim E 
 the multiplicities of � are nonrandom withi i i
r Ž . Ž . Ž .Ý d � d, � 
 E 
 � E � 
 andi�1 i t i i t

1
� 4v � E 
 � 0 � lim log � 
 v � � , 1 � i � r .Ž . Ž .i t itt���

For all further investigations concerning rotation numbers we need to as-
sume that the Lyapunov spectrum is simple, that is, that r � d. The reason
for this is that we do not have enough information about how the linear flow
� behaves inside a higher-dimensional Oseledets space E to concludet i

Ž� � .existence of rotation numbers. As examples show 2 , Example 6.5.4 , there
can be continuously many different rotation numbers in one higher-dimen-
sional Oseledets space.

� �The following is a sufficient condition for simple Lyapunov spectrum 2
Remark 6.2.15:

Ž . Ž .H The subgroup G of Gl d, � generated by the matrices A , . . . , A equals0 m
	Ž . Ž .Gl d, � or Sl d, � .

This assumption is generically true, more precisely, it holds on an open
Ž . Ž d�d .m	 1and dense set of matrices A , . . . , A � � .0 m

Note also that, in contrast to the deterministic case, simple Lyapunov
spectrum does not preclude the existence of nonzero rotation numbers.

Ž .We shall now examine rotation numbers � � � P of ‘‘canonical planes’’i j i j
Ž .P � span E , E , 1 � i, j � d, i � j. Stationarity of the size of the infinites-i j i j

imal rotations will lead via the Birkhoff ergodic theorem to formulas for the
� of the type of Furstenberg�Khasminskii. A key role in the derivation ofi j
these formulas is played by the decomposition of general Stratonovich inte-
grals into Skorokhod integrals and trace terms featuring Malliavin gradients
of the invariant spaces. To this end we need some knowledge of the smooth-
ness of Oseledets spaces in the sense of Malliavin calculus, which we briefly

� �recall from 3 .
Ž . Ž .Under condition H the law of the vector E , . . . , E of Oseledets spaces1 d

� Ž Ž ..d � �has a C density with respect to Riemannian volume on G d 7 , Corol-1
lary 4.1. We shall make use of the latter fact below.
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Ž �.The MET also yields a family Q of orthogonal projectors of rank 1i 1� i� d
such that the spectral decomposition formula

d
� �1
2 t� �lim � � � exp �� QŽ . Ž .Ýt t i i

t��� i�1

is valid. The Q	 are FF �-measurable, and the Q� are FF 0 -measurable. Leti 0 i ��

d i
	 	 � �P � Q , P � Q , 1 � i � d.Ý Ýi k i k

k�i k�1

The intersection of the spaces onto which P	 and P� project are thei i
Oseledets spaces E . We denote the rank 1 orthogonal projector on E by Ri i i

� �and obtain from 3 , Theorem 4 for 1 � k � m and 1 � i � d, the formulas
�1k 	 � � sD R � � I � R I � T S S I � S A RŽ . Ž . Ž .s i i i i i i k i

3.1Ž .
� �1s � � 	� R A I � S S S I � T I � R ,Ž . Ž .Ž . Ž .i k i i i i i

where As � � A ��1, s � 0, S	� P	� R , T � S	S�S	. We also knowk s k s i i i i i i i
Ž . pŽ� �. � �that, under H , R � � 0, T for all T � 0 and 1 � p 	 2 3 , Theorem 6.i 1

Ž . ŽWe now investigate the smoothness properties of P � span R , R iden-i j
tifying, as always, E with R and P with the orthogonal projector onto Pi i

. 2 d Žand omitting subscripts by passing to the exterior product � � for details
� � .see 2 , Section 3.2.3 . In this space we may identify P with R � R . To seei j

this, let us show that R � R is an orthogonal projector in � 2� d. Indeed, fori j
x, y � � d we have

2 2 2R � R x � y � R x � R y � R x � R y � R � R x � yŽ . Ž .Ž . Ž .i j i j i j i j

and
� � �R � R x � y � R x � R y � R x � R y � R � R x � y .Ž . Ž .Ž . Ž .i j i j i j i j

Ž .Moreover, the space onto which R � R projects is the one-dimensionali j
span of the vectors u � u where u , u are nontrivial vectors in R and R ,i j i j i j
respectively. This easily implies the following lemma.

Ž .LEMMA 3.1. Assume H . Then for any T � 0 and 1 � p 	 2 we have
pŽ� �.P � � 0, T .1

PROOF. Clearly, multilinearity allows us to apply Leibniz’s rule to get the
Malliavin gradients. More precisely, for s � 0 and 1 � k � m,

3.2 DkP � DkR � R 	 R � DkR .Ž . s s i j i s j

Now use the integrability properties of DkR , DkR and the simple relationi j

1
22 2 d� � � � � � ² :x � y � x y � x , y , x , y � � ,Ž .
to obtain the desired integrability property. �
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Ž . Ž .The formula we would obtain for the gradient of P by using 3.2 and 3.1 is
not explicit enough. So we give another derivation, and with the same method

Ž .a somewhat different and slightly simpler version of 3.1 .

LEMMA 3.2. For 1 � i � d, 1 � k � m and s � 0, we have

�1k 	 � 	 sD R � � I � R R 	 I � P 	 I � P I � P A RŽ . Ž . Ž . Ž .Ž .s i i i i i i k i3.3Ž .
� �1s 	 	 ��R A I � P R 	 I � P 	 I � P I � R .Ž .Ž . Ž . Ž . Ž .Ž .i k i i i i i

PROOF. By definition of R we havei

R P	� R P�� R .i i i i i

As the gradient of these expressions exists, Leibniz’s rule yields

3.4 DkR P		 R DkP	 � DkR P�	 R DkP� � DkR .Ž . Ž . Ž . Ž . Ž .s i i i s i s i i i s i s i

Hence
�k 	 k 	 	 s 	3.5 D R I � P � R D P � �R P A I � PŽ . Ž . Ž . Ž .Ž . Ž .s i i i s i i i k i

Ž � � . � 0 k �see 3 , Theorem 3 . Since P is FF -measurable, we have D P � 0, hencei �� s i
Ž .3.4 yields

3.6 DkR I � P� � 0.Ž . Ž .Ž .s i i

Ž . Ž .By adding 3.5 and 3.6 we have
�k 	 � s 	3.7 D R I � R R 	 I � P 	 I � P � �R A I � P .Ž . Ž . Ž . Ž . Ž . Ž .Ž .Ž .s i i i i i i k i

Ž 	. Ž �.Now observe that R 	 I � P 	 I � P is invertible and commutes withI i i
Ž . Ž .I � R , and finally add the adjoint of the left-hand side of 3.7 to obtain thei
desired formula. �

Ž .LEMMA 3.3. Assume H . Then for 1 � k � m and s � 0 we have

DkP � � I � P X�P � PX I � P ,Ž . Ž .s s s

where

�1
X � I � P 	 R 	 RŽ .Ž .s i j

�s 	 	 �� R A I � P R 	 I � P 	 I � PŽ . Ž . Ž . Ž .Ž .i k i i i i

�s 	 	 �	R A I � P R 	 I � P 	 I � P .Ž . Ž . Ž . Ž .Ž .j k j j j j

PROOF. By the definition of P,

R P � R , R P � R .i i j j
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Since by Lemma 3.1 the Malliavin gradient of P exists, we may again write

DkR P 	 R DkP � DkR ,Ž . Ž .s i i s s i

hence

DkR I � P � R DkP ,Ž .Ž . Ž .s i i s

and also

3.8 R DkR I � R I � P � R P DkP I � P .Ž . Ž . Ž . Ž .Ž . Ž .i s i i i s

Ž .Then 3.8 and an analogous expression for j instead of i may be added to
give

P DkP I � PŽ .Ž .s

�1 k k� I � P 	 R 	 R R D R I � R 	 R D R I � R .Ž . Ž . Ž .Ž . Ž .i j i s i i j s j j

3.9Ž .

Ž . Ž .We finally have to substitute 3.3 into 3.9 to obtain the desired result. �

Let us now come back to the task of describing the rotation number of
Ž .P � span R , R . For this purpose we choose Q � R in Definition 2.4 andi j i

recall that any other choice would yield the same result. According to what
pŽ� �.we just proved both P and Q are in � 0, T for T � 0 and 1 � p 	 2. But1

to describe the spatial averages figuring in the Furstenberg�Khasminskii
Ž Ž .formulas, we also need smoothness properties of our flows v v : t � �,t

d�1 ˆ	. Ž Ž . Ž ..v � S and p p : t � �, p � G d . These are stated in the nextˆ ˆ ˆt 2
lemma, together with the perfect cocycle property.

Ž Ž . d�1. Ž Ž .LEMMA 3.4. The flows v v : t � �, v � S and p p : t � �, p �ˆ ˆ ˆt t
ˆ	Ž ..G d possess versions which fulfill the following properties:2

Ž . Ž . Ž . �i The functions v � v v and p � p p are C , with derivatives whichˆ ˆ ˆt t
are p-integrable for any p � 1.

d�1 ˆ	Ž . Ž .ii Perfect cocycle property: For t, s � �, 	 � �, v � S , p � G d , weˆ 2
have

v v 	 � v v v 	 � 	 , v v 	 � v ,Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž .s	t t s s 0

p p 	 � p p p 	 � 	 , p p 	 � p.Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž .ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆs	t t s s 0

PROOF. As the corresponding quantities are generated by SDE on com-
� Ž .pact manifolds with C vector fields, i follows from the well-known results

� � Ž .of Kunita 8 , whereas ii is a consequence of the perfection result of Arnold
� �and Scheutzow 6 . �

We shall henceforth assume that versions as in Lemma 3.4 are given. In our
main result we are about to formulate, the Furstenberg�Khasminskii formu-
las will emerge in terms of spatial averages of Malliavin gradients. Therefore,
we first have to discuss these gradients.
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d�1 ˆ	 2Ž .LEMMA 3.5. Let v � S , p � G d , p � �p . Then we have for 1 �ˆ ˆ2
� Ž . Ž .�k � m and s � 0 with the notation w � w v, p and v � v vˆs s s s

Dk	 w�A vŽ .s s k s

� � � � �� �� w A I � p A 	 A I � p A v 	 w A v w A w � v A v .Ž . Ž .s k s k k s k s s k s s k s s k s

PROOF. Set for abbreviation for A � � d�d,

f v � I � q Av, v � Sd�1,Ž . Ž .A

Ž .where q denotes the orthogonal projection on span v , and

2 � 2 ˆ	g p � I 	 p Ap 	 pA I 	 p , p � G d .Ž . Ž .Ž . Ž .ˆ ˆ ˆ ˆ ˆ ˆA 2

Then we have
m s

iv � v 	 f v � dW ,Ž .Ý Hs A r ri
0i�0

m s
ip � p 	 g p � dWŽ .ˆ ˆ ˆÝ Hs A r ri

0i�0

Ž � �.and hence by the rules of Frechet differentiation on Wiener space see 9 ,´
Dk	v � f v � I � q A v ,Ž . Ž .s s A s s k sk

Dk	p � g p � I � p A p 	 p A� I � p .Ž . Ž .Ž .ˆ ˆ ˆ ˆs s A s s k s s k sk

Thus

Dk	w � Dk	p v 	 p Dk	v � I � p A w 	 p I � q A v .Ž . Ž .ˆ ˆ ˆŽ .Ž .s s s s s s s s s k s s s k s

So we obtain, using q � p � ww�, w � pv and v � �pw,ˆ ˆ
Dk	 w�A v � Dk	w� A v 	 w�A Dk	vŽ . Ž . Ž .s s k s s s k s s k s s

� w�A� I�p �v�A� I�q p A v 	w�A I�q A vŽ . Ž . Ž .Ž .ˆs k s s k s s k s s k s k s

� w�A� I � p A v � v�A� I � q p v v�A vŽ . Ž . ˆs k s k s s k s s s s k s

	 w�A I � p A v 	 w�A w w�A vŽ .s k s k s s k s s k s

� w� A� I � p A 	 A I � p A vŽ . Ž .Ž .s k s k k s k s

	 w�A v w�A w � v�A v ,Ž .s k s s k s s k s

which is the desired result. �

We are now in a position to formulate and prove our main result, by which
rotation numbers of canonical planes are shown to exist and are explicitly
described.

Ž .THEOREM 3.6 Rotation numbers for canonical planes . Consider the lin-
Ž . Ž .ear SDE 2.1 and assume that condition H is satisfied. Then the linear

Ž . Ž .cocycle � generated by 2.1 has a simple Lyapunov spectrum. Denotet t � �
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for 1 � i � d by R the rank 1 orthogonal projectors on the Oseledets space Ei i
and consider for some 1 � i, j � d, i � j, the canonical plane P �

Ž .span R , R . Then the rotation number of P exists and is given by thei j
nonrandom scalar

m m1
�3.10 � P � � � � W A V 	 C W , V 	 D W , V ,Ž . Ž . Ž . Ž .Ý Ýi j 0 k kž /2 k�1 k�1

where

� �C W , V � W A I � P A 	 A I � P A VŽ . Ž . Ž .k k k k k

� � � � �	 W A V W A W � V A Vk k k

3.11Ž .

and

�
� k kD W , V � W q , p A V q D Q, D P ,Ž . Ž . Ž .Ž . Ž .Ž . Ž .q , p � Q , Pk k 0 0� q , pŽ .

Ž . Ž . Ž . Ž . Ž . Ž . Ž .where V q � v q , W q, p � w q, p � p p v q , Q � R , V � V Q andˆ0 0 0 0 i
Ž .W � W Q, P .

Ž .PROOF. Let us remark first that in order to give the notation ‘‘�
� q, p ’’
in the above formula for D a precise meaning in the sense of differentialk
calculus in Euclidean space, one may as usual extend our functions from the
compact manifolds on which they are defined to a tubular neighborhood of an
embedding Euclidean space.

The invariance properties of our spaces P and Q yield the following
equations for t � �:

v Q � v Q �� , p P � p P �� , w Q, P � w Q, P �� .Ž . Ž . Ž . Ž . Ž . Ž .ˆ ˆt 0 t t 0 t t 0 t

Hence the stochastic integrands in our definition of the rotation number
become stationary processes with respect to the canonical shift on Wiener

Ž � Ž . Ž ..space and are given by w Q, P A v Q �� , 0 � k � m, t � �. Hence0 k 0 t
Birkhoff’s ergodic theorem applies and yields

m1 t � k� P � lim � w Q, P A v Q �� � dW .Ž . Ž . Ž .Ž .ÝH 0 k 0 s sž /tt�0 0 k�0

We shall now compute this limit. The essential observation is that a
� �Stratonovich integral can be decomposed according to a formula given in 9 ,

page 151, into a Skorokhod integral and trace terms. The term for k � 0 is
easier, however. Continuity and boundedness of the integrand yield via
bounded convergence

1 t �3.12 lim � w Q, P A v Q �� ds � � W A V .Ž . Ž . Ž . Ž .Ž .H 0 0 0 s 0ž /tt�0 0
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For 1 � k � m we have

t � kw Q, P A v Q �� � dWŽ . Ž .Ž .H 0 k 0 s s
0

t � k� w Q, P A v Q �� dWŽ . Ž .Ž .H 0 k 0 s s
03.13Ž .

t �1 k		 D w Q, P A v Q �� , dsŽ . Ž .Ž .H s 0 k 0 s2
0

t �1 k�	 D w Q, P A v Q �� , ds,Ž . Ž .Ž .H s 0 k 0 s2
0

where the stochastic integral on the right-hand side is a Skorokhod integral.
Ž .Here 3.13 makes sense since we know that by smoothness of the flows and

of Q and P, the trace terms exist. We are even allowed to take expectations
Ž .in 3.13 and pass to the limit t�0. This is due to Lemmas 3.1 and 3.2, a

corresponding smoothness result for Q and Lemma 3.4. Since Skorokhod
integrals have vanishing expectation we arrive at

1 t � klim � w Q, P A v Q �� � dWŽ . Ž .Ž .H 0 k 0 s stt�0 0

1
�k	� � D w Q, P A v QŽ . Ž .Ž .Ž .0 0 k 02

3.14Ž .

1
�k�	 � D w Q, P A v Q .Ž . Ž .Ž .Ž .0 0 k 02

Ž .To compute the trace terms in 3.14 we apply Lemma 3.5 and the chain rule
Ž � � .see 9 , page 47 to get

Dk	 w� Q, P A v QŽ . Ž .Ž .0 0 k 0

�k	� D w q , p A v qŽ . Ž .Ž . Ž . Ž .q , p � Q , P0 0 k 03.15Ž .
�

� k k	 w q , p A v q D Q, D P .Ž . Ž .Ž . Ž .Ž . Ž .q , p � Q , P0 k 0 0 0� q , pŽ .
The second term is simpler. It reads

Dk� w� Q, P A v QŽ . Ž .Ž .0 0 k 0

�
� k k� w q , p A v q D Q, D P .Ž . Ž .Ž . Ž .Ž . Ž .q , p � Q , P0 k 0 0 0� q , pŽ .

3.16Ž .

An appeal to Lemma 3.5 finally gives the first term on the right-hand side of
Ž . Ž . Ž .3.15 explicitly. Now combine 3.12 to 3.16 to obtain the asserted formula.

�
Ž .We now discuss several particular cases of 3.10 .

Ž .First, we may take P � span R , R . Then due to the above definitions we1 2
have P � P�, Q � P� and obtain the corollary.2 1
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Ž .COROLLARY 3.7. Let P � span R , R . Then the ‘‘top’’ rotation number �1 2 12
is given by

m
� 13.17 � P � � � � W A V 	 C W , V ,Ž . Ž . Ž .Ý12 0 k2ž /

k�1

Ž . Ž . Ž . Ž . �where C W, V is given by 3.11 with V � v Q , W � w Q, P , Q � Pk 0 0 1
and P � P�.2

PROOF. Since Q and P are FF 0 -measurable, we have DkQ � Dk P � 0.�� 0 0
Ž . Ž .Hence 3.10 simplifies to 3.17 . �

When reversing time, we observe that the roles of P� and P� are taken2 1
by P	 and P	, respectively.d�1 d

Ž .COROLLARY 3.8. Let P � span R , R . Thend�1 d

m
� 13.18 � P � � � � W A V � C W , V ,Ž . Ž . Ž .Ýd�1, d 0 k2ž /

k�1

Ž . Ž . Ž . Ž . 	where C W, V is given by 3.11 with V � v Q , W � w Q, P , Q � Pk 0 0 d
and P � P	 .d�1

PROOF. Since this time P and Q are FF �-measurable, by definition of Dk	,0
Ž .the expression in 3.15 has to vanish. This implies

�k	D w q , p A v qŽ . Ž .Ž . Ž . Ž .q , p � Q , P0 0 k 0

�
� k k� � w q , p A v q D Q, D P ,Ž . Ž .Ž . Ž .Ž . Ž .q , p � Q , P0 k 0 0 0� q , pŽ .

3.19Ž .

Ž .1 � k � m. The left-hand side of 3.19 is, however, just given by Lemma 3.5
Ž .and yields a term which corresponds to the second term in 3.10 . This gives

the desired result. �

If we specialize the results obtained in the above corollaries to the case
d � 2, we obtain two different formulas for one and the same rotation

Ž 2 .number � � . This yields additional information on the laws of Oseledets
spaces.

COROLLARY 3.9. Let d � 2. Then the rotation number of �2 exists and

m
� � � �123.20 � � � � � � W A V 	 W A V W A W � V A V ,Ž . Ž . Ž .Ý0 k k k2ž /

k�1

	 Ž . � 	where W � p V, V � v Q with Q � R � P and p is rotation by 	90
0 1 1
of �2.
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Alternatively,

m
� � � �13.21 � � � W A V � W A V W A W � V A V ,Ž . Ž .Ý0 k k k2ž /

k�1

	 Ž . 	where W � p V, V � v Q with Q � R � P .0 2 2

The proof is a simplification of Corollaries 3.7 and 3.8, because P � I.
Ž .Formula 3.21 could also be obtained by time reversal of our linear SDE.

Ž . Ž . 1The expectations in 3.20 and 3.21 can be written as a mean over S
with respect to the distribution of V which can be found by solving a
corresponding Fokker�Planck equation.

Let us also mention that it can be easily seen that for d � 2 the rotation
Ž .number always exists; that is, condition H is not needed in this case.

Since Lemmas 3.2 and 3.3 give explicit descriptions of Malliavin gradients
of invariant lines and planes, Theorem 3.6 gives an explicit description of the
whole set of rotation numbers of canonical planes. In the following section we
shall discuss rotation numbers for noncanonical planes.

4. Rotation numbers for general planes. We now consider general
random planes P. One very important particular case is, of course, the case of

Ž .a deterministic plane p � G d which we treat first. It turns out that, under2
Ž .H , all deterministic planes rotate asymptotically as fast as the canonical

Ž . �plane P � span R , R � P , that is, with the ‘‘top’’ rotation number �1 2 2 12
�-a.s. This is analogous to the fact that, under a Hormander condition on¨

Ž .G d , nonrandom vectors v � 0 always grow with the top Lyapunov expo-1
Ž . � �nent � , � v � � �-a.s. 2 , Theorem 6.2.16.1 1

Ž .THEOREM 4.1 Rotation number for nonrandom plane . Consider the lin-
Ž . Ž . Ž .ear SDE 2.1 and assume that condition H is satisfied. Let p � G d be a2

Ž .fixed plane. Then its rotation number � p exists and satisfies

4.1 � p � � �-a.s.,Ž . Ž . 12

Ž Ž .. Ž .where � � � span R , R is the ‘‘top’’ rotation number of 2.1 defined by12 1 2
Ž .3.17 .

Ž . � � ŽPROOF. The condition H guarantees, as was shown in 7 , that the
. Ž .Lyapunov spectrum is simple and the law of R , . . . , R is smooth. Conse-1 d

quently, a fixed deterministic plane p can coincide with an Oseledets space
only with probability 0.

Now choose q � p arbitrary. According to Lemmas 6.5.11, 6.5.12 and 6.5.13
� �of 2 , we have, by the above smoothness argument, that the indices i and j0 0

Ž . Ž .defined by 4.8 and 4.9 satisfy i � 1 and j � 2 �-a.s. and hence0 0

p p ���1 � P � P�, q q ���1 � Q � P�,Ž . Ž .t t 2 t t 1
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both exponentially fast. This immediately implies that, �-a.s.,

p p ���1 � p P , v q ���1 � v Q ,Ž . Ž . Ž . Ž .ˆ ˆt t 0 t t 0

both exponentially fast.
Moreover, P and Q are FF 0 -measurable. Hence the exponential conver-��

gence just stated implies

1 T � � klim w q , p A v q � w Q, P A v Q � dW � 0,Ž . Ž . Ž . Ž .Ž .H t k t t k t tTT�� 0

0 � k � m, at least in probability. Therefore, it suffices to invoke Corollary
3.7 to obtain the desired result. �

We shall now consider a general random plane P and show that its rotation
number exists and is given by a random variable the possible values of which
are the finitely many canonical rotation numbers � described by Theoremi j
3.6. The main difficulty consists in proving that a process which possesses a
flow property and converges to 0 exponentially fast as t � � possesses
stochastic integrals whose time averages converge to 0 as well. We shall
establish this result in the following lemma.

Ž . Ž Ž ..LEMMA 4.2. Let S, � be a separable metric space and X y be ay � S
continuous random field with values in � d. Suppose F � S is a closed set such

� Ž . � Ž . 4that X � 0 and, introducing K F � y � S: d y, F 	 � , such that forF �

any � � 0,

p q� sup X y � c�Ž .ž /
Ž .y�K F�

Ž .with some constants c � 0 and p, q � 1. Let Y be a sequence of randomn n� �

variables with values in S and

A � 	 � � : d Y , F � me�� n , n � � , m � �, � � 0,� 4Ž .m , � n

�� nB � X Y � � e , n � �, � � 0.Ž . Ž .� 4n n n

Then we have

� A � B � cmq exp n p� � q� , m, n � �, � � 0.Ž . Ž .Ž .m , � n

If � 	 � q
p, we have

� A � lim sup B � 0.m , � nž /
n��

PROOF. By definition, we have on A the inequalitym , �

X Y � sup X y .Ž . Ž .n
Ž .y�K Fm expŽ� � n.
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Hence for m, n � �, � , � � 0, using that � is measure preserving,n

� A � X Y �� � exp �� n� 4Ž . Ž .Ž .m , � n n

� � A � sup X y � exp �� nŽ . Ž .m , � ½ 5ž /Ž .y�K Fm expŽ� � n.

p� exp p� n � sup X yŽ . Ž .ž /
Ž .y�K Fm expŽ� � n.

4.2Ž .

� exp p� n cmq exp �q� nŽ . Ž .
� cmq exp n p� � q� .Ž .Ž .

Ž .If, moreover, � 	 � q
p, 4.2 yields

� A � B 	 �,Ž .Ý m , � n
n��

so the Borel�Cantelli lemma applies to yield

� A � lim sup B � 0. �m , � nž /
n��

Lemma 4.2 will be helpful in the following situation: let K be a compact
d1 Ž Ž . .manifold in � for some d � �, and assume that u x : s � �, x � K is a1 s

cocycle on the manifold K, which is generated by an SDE with C� vector
fields. Assume further that Z , Z are random variables with values in K1 2

Ž . Ž .such that u Z � u Z � 0 as s � � exponentially fast; that is, theres 1 s 2
exist a random variable C and a number � � 0 such that

�� s4.3 u Z � u Z � Ce , s � 0.Ž . Ž . Ž .s 1 s 2

LEMMA 4.3. Let f : K � � be a Lipschitz-continuous function, and assume
Ž .that 4.3 holds. Then for any 1 � k � m,

t klim f u Z � f u Z � dW exists �-a.s.Ž . Ž .Ž . Ž .Ž .H s 1 s 2 s
t�� 0

Ž . t Ž Ž .. kIn particular, if lim 1
t H f u Z � dW exists, we havet �� 0 s 1 s

1 1t tk klim f u Z � dW � lim f u Z � dW .Ž . Ž .Ž . Ž .H Hs 1 s s 2 st tt�� t��0 0

PROOF. First, the Stratonovich integrals appearing in the statements
� � Ž Ž .exist, due, for example, to the results in 4 . The cocycle property of u x :s

.s � �, x � K yields for n � �, n � t � n 	 1, 	 � �, j � 1, 2

t tk kf u Z � dW 	 � f u u Z 	 � dW � 	Ž . Ž . Ž .Ž . Ž .Ž . ŽH H žs j s s�n n j s�n n
n n

t�n k� f u u Z 	 � dW � 	 .Ž . Ž .Ž .Ž .H ž s n j s n
0
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Ž .Hence we may set, for x, y � K � K,

t kX x , y � sup f u x � f u y � dW ,Ž . Ž . Ž .Ž . Ž .Ž .H s s s
00�t�1

and for n � �,
Y � u Z , u ZŽ . Ž .Ž .n n 1 n 2

to obtain

t k4.4 X Y �� � sup f u Z � f u Z � dW .Ž . Ž . Ž . Ž .Ž . Ž .Ž .Hn n s 1 s 2 s
nn�t�n	1

Let us now verify the hypotheses of Lemma 4.2 for X. Of course, we take
S � K � K and � the metric induced by the Euclidean norm of � d1. Let F be

�the diagonal in S. Then F is closed and X � 0. By our hypotheses aboutF
Ž Ž . . � �the cocycle u x : s � �, x � K and standard results of 8 there are fors

p � 1 constants c such thatp
p p� �4.5 � X x , y � c x � y , x , y � K .Ž . Ž . p

Hence the lemma of Garsia, Rodemich and Rumsey applies and yields for
Ž .p � 1 and some appropriate q � q p a constant c such that for any � � 0,

p q4.6 � sup X x , y � c� .Ž . Ž .ž /
Ž . Ž .x , y �K F�

So we may apply Lemma 4.2. Let � 	 � q
p, 	 � A . Then there existsm , �

Ž . Ž .N 	 � � such that for n � N 	 ,
�� nX Y �� 	 � e .Ž . Ž .n n

Ž . � � � �Thus for s, t � N 	 , s � n, n 	 1 , t � m, m 	 1 we have

t kf u Z � f u Z � dW 	Ž . Ž . Ž .Ž . Ž .Ž .H r 1 r 2 r
s

m
t k� sup f u Z � f u Z � dW 	Ž . Ž . Ž .Ž . Ž .Ž .Ý H r 1 r 2 r

jj�t�j	1j�n

m m
�� j� X Y �� 	 � eŽ .Ž .Ý Ýj j

j�n j�n

4.7Ž .

1
�� n� e .��1 � e

Ž .Then 4.7 clearly implies that

t klim f u Z � f u Z � dWŽ . Ž .Ž . Ž .Ž .H s 1 s 2 s
t�� 0

Ž . Ž .exists �-a.s. on A , m � �, with � according to 4.3 . But 4.3 also givesm , �

A �� as m � �. Hence the limit exists �-a.s. on �. The remainingm , �

assertions now follow readily from this. �
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We are now ready to prove our final multiplicative ergodic theorem for
rotation numbers.

For this purpose, let P be an arbitrary random plane. Recalling the
� �Oseledets splitting and following 2 , page 361, we define for 	 � �,

4.8 i 	 � min 1 � i � d : R 	 P 	 � 0 ,� 4Ž . Ž . Ž . Ž .0 i

4.9 j 	 � min i � i 	 : R 	 P 	 I � R 	 � 0Ž . Ž . Ž . Ž . Ž . Ž .Ž .½ 50 0 i i Ž	 .0

and

4.10 C P 	 � span R 	 , R 	 .Ž . Ž . Ž . Ž . Ž .Ž .i Ž	 . j Ž	 .0 0

Ž .Then evidently C P is a random plane which takes its values in the set of
canonical planes dealt with in Theorem 3.6.

Ž .THEOREM 4.4 Rotation number for random plane . Consider the linear
Ž . Ž .SDE 2.1 and assume that condition H is satisfied. Then for any random

d Ž .plane P in � , the rotation number � P exists and satisfies

� P � � C P � � ,Ž . Ž .Ž . i , j0 0

Ž . Ž . Ž . Ž .where � is given by 3.10 and i , j and C P are defined by 4.8 , 4.9 andi j 0 0
Ž .4.10 , respectively.

Ž Ž .. Ž .PROOF. First, � C P exists according to Theorem 3.6 pathwise limit ,
and takes on the finitely many values described there. Now let U be a

ˆ� �random unit vector in R , and let V � PU
 PU . Moreover, let P be thei
ˆ	 ˆŽ . Ž .unique element of G d over P, and let C P be defined analogously. Then2

� �2 , Lemma 6.5.11 yields the following convergence results:

ˆ ˆp P � p C P � 0, p P � p C P � 0,Ž . Ž . Ž .Ž .Ž . ˆ ˆ Ž .t t t t4.11Ž .
v V � v U � 0,Ž . Ž .t t

as t � �, exponentially fast. Define

u v , p � p p , v v , f v , p � v� p�A v ,Ž . Ž . Ž . Ž .Ž .ˆ ˆ ˆ ˆ ˆt t t k k

d�1 ˆ	Ž . Ž . Ž .where v, p � S � G d , 0 � k � m. Then 4.11 impliesˆ 2

ˆ ˆ4.12 u V , P � u U, C P � 0Ž . Ž .Ž . Ž .t t

as t � �, exponentially fast as well, and the f are Lipschitz functions.k
Thus for 1 � k � m, Lemma 4.3 implies

1 t tk kˆ ˆlim f u V , P � dW � f u U, C P � dW � 0.Ž .Ž . Ž .Ž .H H Ž .k s s k s stt�� 0 0

For k � 0 the corresponding convergence is trivial. Since
m1 t kˆ� C P � lim f u U, C P � dWŽ . Ž .Ž . Ž .ÝH Ž .k s stt�� 0 k�0
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exists by Theorem 3.6, Lemma 4.3 yields, moreover, that
m1 t kˆ� P � lim f u V , P � dWŽ . Ž .Ž .ÝH k s stt�� 0 k�0

Ž Ž ..exists as well and equals � C P . This completes the proof. �
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