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ON THE SPATIAL ASYMPTOTIC BEHAVIOR OF STOCHASTIC
FLOWS IN EUCLIDEAN SPACE

By Peter Imkeller and Michael Scheutzow

Humboldt-Universität and Technische Universität Berlin

We study asymptotic growth rates of stochastic flows on Rd and their
derivatives with respect to the spatial parameter under Lipschitz condi-
tions on the local characteristics of the generating semimartingales. In a
first step these conditions are seen to imply moment inequalities for the
flow φ of the form

E sup
0≤t≤T

�φ0t�x� −φ0t�y��p ≤ �x− y�p exp�cp2� for all p ≥ 1


In a second step we deduce the growth rates from an integrated version
of these moment inequalities, using the continuity lemma of Garsia, Ro-
demich and Rumsey. We provide two examples to show that our results are
sharp.

0. Introduction. Stochastic differential equations generated by suffi-
ciently smooth vector fields on Rd are known to generate flows of homeomor-
phisms or diffeomorphisms of Rd
 For an account of this and the main facts
about stochastic flows, see [5]. In the deterministic setting, any flow generated
by vector fields with at most linear growth in the spatial parameter has sub-
linear growth as well. This is no longer true in the presence of semimartingale
noise driving the stochastic differential equations which generate the flow.

Their a.s. spatial asymptotic growth rate has been studied in [11], [5], pages
163, 176 and [10]. In the first two papers, it is shown that for �x� → ∞ the
supremum over s� t in a compact interval of the modulus of the flow φst�x�
grows at most like �x�1+ε and at least like �x�1−ε for any ε > 0, and similar
results hold for the derivative of the flow and its inverse in case it consists
of diffeomorphisms. Ocone and Pardoux [11] consider stochastic differential
equations driven by finite-dimensional Brownian motion, whereas Kunita [5]
works in a more general class of driving semimartingales. In Kunita’s [5] gen-
eral setting, Mohammed and Scheutzow [10] improve these results by showing
that the growth rate of the flow at infinity can be at most �x��ln �x��ε, for any
positive ε.

Our motivation for writing this paper comes from the same source as Mo-
hammed and Scheutzow’s: the global a.s. rates of spatial growth of flows will
play a role in questions of existence of infinite-dimensional flows associated
with quasilinear stochastic hereditary systems and stochastic partial differ-
ential equations (see [7], [8], [9]). Looking at the results of [10], we asked: can
we obtain exact rates of growth by applying the lemma of Garsia, Rodemich
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and Rumsey in its majorizing measure version to moment inequalities for the
flow, while carefully keeping track of the quality of the constants appearing in
the main martingale inequalities of Doob and Burkholder, Davis and Gundy?
It is the main task of this paper to show that the answer to this question is
“yes.”

The paper is organized as follows. In the first section we review the ma-
jorizing measure form of the GRR lemma. In Theorems 1.1, 1.2 and 1.3, this
key lemma is used to derive moduli of continuity for random fields on Rd with
values in some metric space �M�ρ� which satisfy moment conditions of the
form

E
[
ρ�φ�x�� φ�y��p] ≤ d�x�y�p exp�cp2��

either for some fixed p and the metric d�x�y� = �x− y� (Theorem 1.1), for all
p ≥ 1 and the metric d�x�y� = �x− y� (Theorem 1.2) or for all p ≥ 1 and the
metric d�x�y� = �x− y� ∧ 1, x�y ∈ M (Theorem 1.3).

In Section 2 we verify the conditions of Theorem 1.2 for the stochastic flow φ
generated by a stochastic differential equation driven by a semimartingale F
whose local characteristics satisfy suitable Lipschitz conditions. Together with
a similar estimate on the inverse of the modulus of the flow (Proposition 2.2)
we obtain Theorem 2.1, which shows that the supremum of �φst�x�� over 0 ≤ s,
t ≤ T is bounded by a random variable Y multiplied by �x� exp�γ�ln ln �x��1/2�
as �x� → ∞ for some constant γ > 0, and moreover that Y is integrable with
respect to a certain Young function growing faster than any polynomial. Ex-
ample 3.1 of the final Section 3 shows that this rate is optimal—possibly up
to the value of the constant γ
 The remaining part of Section 2 is devoted
to corresponding questions on the growth rate of (higher) derivatives of the
flow φ
 The main result is Theorem 2.2, which shows that, under differen-
tiability conditions on the local characteristics of F, the growth rate of any
partial derivative of order at least 1 is at most Z exp�γ�ln �x��1/2� for some
constant γ > 0, where Z has a similar integrability property as Y above. Ex-
ample 3.2 of Section 3 proves that the rate is optimal—again, possibly up to
the value of the constant γ


1. Some estimates of moduli of continuity. In this section we shall
provide some estimates of the moduli of continuity of random fields, derived
from various assumptions on the moments of their distance at two points of
the parameter space. Of course, in later applications of these estimates we
shall be interested in quite particular random fields: stochastic flows, where
the parameter is just their spatial variable. The assumptions we start with
in the following theorems on the moments of distances shall be verified for
the flows to be discussed in the following section. The passage from these
assumptions to moduli of continuity will be done via the real variable lemma
of Garsia, Rodemich and Rumsey. We use the following general version of this
lemma in which majorizing measures are crucial (see [1]). For the terminology
and the use of majorizing measures, see [6].
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In the sequel let �X�d�� �M�ρ� be separable metric spaces, m a locally finite
measure on the Borel sets of X. For a function g X → M� denote

g̃�s� t� =



ρ�g�s�� g�t��

d�s� t� � if s �= t�

0� if s = t�

and let � �0�∞�→ �0�∞� be an increasing, right-continuous function satisfy-
ing ��0� = 0, ��x� > 0 for x > 0.

Then the extended form of the lemma of Garsia, Rodemich and Rumsey
that we shall use can be stated as follows. If g is a continuous function, and

V =
∫
X

∫
X
�
(
g̃�s� t�)m�ds�m�dt� < ∞�(1)

then for any s, t ∈ X�

ρ
(
g�s�� g�t�) ≤ 12 max

z∈�s� t�

∫ d�s� t�

0
�−1

[
4V

m�Kε�z��2

]
dε�(2)

where Kε�z� denotes the closed ball of radius ε around z. For a proof of (2),
see [1].

For the rest of this section, let X = Rd, fix α > 1 and choose the majorizing
measure m defined by

m�dx� = f��x��λ�dx��
where λ denotes Lebesgue measure on Rd and for z ≥ 0,

f�z� = 1

zd�ln+ z�α ∨ 1



We choose this particular density f because it is “just” integrable over Rd.
The fact that the measure m is finite will be important later on when we
establish the finiteness of moments of random variables (such as Y in the
following theorem). Let �!�� �P� be an arbitrary probability space. We em-
phasize that constants appearing in the inequalities of the paper will be con-
secutively numbered c1� c2� c3� 
 
 
 
 The positive part of the logarithm will be
written ln+ x = lnx ∨ 0 for x ≥ 0


Theorem 1.1. Let φ !×Rd → M be a measurable map such that for any
ω ∈ ! the function φ�ω� ·� is continuous. Assume that for some p > 2d and
some constant c > 0 we have

E
(
ρ�φ�·� x�� φ�·� y��p) ≤ c�x− y�p for x�y ∈ Rd
(3)

Then there exists a p-integrable random variable Y such that for all x�y ∈
Rd such that �x� ≥ �y� and all ω ∈ !, we have

ρ
(
φ�ω�x�� φ�ω�y�) ≤ Y�ω��x− y�1−2d/p([�x�2d/p�ln+ �x��2α/p] ∨ 1

)



In particular, for all x ∈ Rd, ω ∈ !�

ρ
(
φ�ω�x�� φ�ω�0�) ≤ Y�ω�[(�x��ln+ �x��2α/p) ∨ �x�1−2d/p]
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Proof. Set

Z�ω� =
[∫

Rd

∫
Rd

(
ρ�φ�ω�x�� φ�ω�y��

�x− y�
)p

m�dx�m�dy�
]1/p

�

ω ∈ !. Due to the separability of M, Z is measurable. Moreover, (3) implies
that E�Zp� < ∞. To apply the GRR lemma, let ��x� = xp, x ≥ 0. Then (1)
yields for ω ∈ !, x�y ∈ Rd,

ρ
(
φ�ω�x�� φ�ω�y�) ≤ Z�ω�c1 max

z∈�x�y�

∫ �x−y�

0
m
(
Kε�z�

)−2/p
dε


Assuming �x� ≥ �y�, we obtain

ρ�φ�ω�x�� φ�ω�y��

≤ c2Z�ω�
∫ �x−y�

0
ε−2d/pf

(�x� + �x− y�)−2/p
dε

≤ c2Z�ω� �x− y�1−2d/p

1 − 2d/p

[(��x� + �x− y��2d/p(ln+��x� + �x− y��)2α/p) ∨ 1
]

≤ c3Z�ω��x− y�1−2d/p[(�x�2d/p�ln+ �x��2α/p) ∨ 1
]



Setting Y = c3Z, we get the first assertion of the theorem. The final one is
obtained by specializing the first one to y = 0
 ✷

Remark. Fix y ∈ Rd. Note that condition (3) is translation invariant. We
therefore obtain a random variable Y1, which is p-integrable such that

ρ
(
φ�ω�x�� φ�ω�y�) ≤ Y1�ω�

[��x− y��ln+ �x− y��2α/p� ∨ 1
]

for all x ∈ Rd, ω ∈ !
 The random variable Y1, however, depends on y (or x).
If (3) holds for all sufficiently large p and if one is able to control the

constant c appearing in (3) as a function of p, one may, as will be pointed out
in the following section, obtain an “integrated” version of (3). In this inequality,
the following exponential Young function appears. For c > 0, let

�c �0�∞�→ �0�∞�� x �→
∫ ∞

1
exp�−ct2�xt dt


This function was first introduced in [4] to obtain moduli of continuity for
the local time of one-dimensional diffusions in the spatial parameter and used
in [2] for establishing conditions under which the multiplicative ergodic theo-
rem holds. The significance of the functions �c is that solutions of SDE’s with
Lipschitz coefficients have finite �c-moments for some (but usually not all)
c > 0. This will be shown in Section 2.

We need the following estimates of �c and its inverse (see also [2]).

Lemma 1.1. Let c > 0, and denote

K = exp
[(

−4c ln
(∫ ∞

1
exp�−cp2�dp ∧ 1

))1/2]
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Then for t ≥ 0 we have:

(a) �−1
c �t� ≤ K exp

(√
4c ln+ t

)
;

(b) �c�t� ≤
√
π/c exp��ln t�2/4c�


Proof. A straightforward computation shows that

exp
(�lnx�2/4c

)
exp

(−�lnK�2/4c
) ≤ �c�x� ≤

√
π

c
exp

(�lnx�2/4c
)
�(4)

where the left inequality holds for all x ≥ 1 and the right one for all x ≥ 0.
From this, (a) and (b) follow immediately. ✷

Lemma 1.1 enables us to obtain an “integrated” version of Theorem 1.1.

Theorem 1.2. Let φ !×Rd → M be a measurable map such that for any
ω ∈ ! the function φ�ω� ·� is continuous. Assume that there exists c ≥ 0 such
that for any p ≥ 1 we have

E
(
ρ�φ�·� x�� φ�·� y��p) ≤ exp�cp2��x− y�p(5)

for all x�y ∈ Rd. Then for any b > c there exists a �b-integrable random
variable Y such that for all x, y ∈ Rd such that �x� ≥ �y� and all ω ∈ !,

ρ
(
φ�ω�x�� φ�ω�y�)

≤ Y�ω���x� ∨ 1� exp
(�8bα ln+ ln+ �x��1/2�

×
∫ �x−y�/��x�∨1�

0
exp

([
8bd ln

(
1 + 1

z

)]1/2)
dz


(6)

In particular, there exists a �b-integrable random variable Z such that for
any x ∈ Rd and ω ∈ !,

ρ
(
φ�ω�x�� φ�ω�0�) ≤ Z�ω���x� ∨ 1� exp

([
8bα ln+ ln+ �x�]1/2)




Remark. The finiteness of the integral in (6) is easy to check.

Proof. Let b > a > c and define

U = �−1
a

[∫
Rd

∫
Rd
�a

(
ρ�φ�·� x�� φ�·� y��

�x− y�
)
m�dx�m�dy�

]



Since a > c, it is easy to see, using the theorem of Fubini, that

E��a�U�� < ∞


Now apply (2) to φ and �a to obtain the inequality

ρ
(
φ�ω�x�� φ�ω�y�) ≤ c4 max

z∈�x�y�

∫ �x−y�

0
�−1
a

(
c5�a�U�
m�Kε�z��2

)
dε
(7)
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We next use (a) of Lemma 1.1, the inequality
√
v+w ≤ √

v+√
w for v�w ≥

0, and the notation

V = exp
(√

4a ln+�a�U�
)



For �x� ≥ �y�, ω ∈ !, we then get

ρ
(
φ�ω�x�� φ�ω�y�)

≤ c4KV�ω� max
z∈�x�y�

∫ �x−y�

0
exp

([
4b�ln+ c5 + ln+�m�Kε�z��−2��]1/2)

dε

≤ c6V�ω�
∫ �x−y�

0
exp

([
4b ln+�ε−2df��x� + ε�−2�]1/2)

dε

≤ c7V�ω� exp
([

8bα ln+ ln+ �x�]1/2)
×

∫ �x−y�

0
exp

([
8bd ln

(
1 + �x� ∨ 1

ε

)]1/2)
dε


(8)

Furthermore,

∫ �x−y�

0
exp

([
8bd ln

(
1 + �x� ∨ 1

ε

)]1/2)
dε

= ��x� ∨ 1�
∫ �x−y�/��x�∨1�

0
exp

([
8bd ln

(
1 + 1

z

)]1/2)
dz


(9)

Part (b) of Lemma 1.1 guarantees that V is �a-integrable and therefore any
constant multiple of V is �b-integrable. So (9) employed in (8) yields the first
assertion, while the second is obtained by setting y = 0
 ✷

We finally consider an application of the real variable lemma to a moment
inequality which is slightly, but essentially, different from (5).

Theorem 1.3. Let φ !×Rd → M be a measurable map such that for any
ω ∈ ! the function φ�ω� ·� is continuous. Assume that there exists c ≥ 0 such
that for any p ≥ 1 we have

E
(
ρ�φ�·� x�� φ�·� y��p) ≤ exp�cp2�[�x− y�p ∧ 1

]
(10)

for all x�y ∈ Rd. Then for any b > c there exists a �b-integrable random
variable Y such that for all x�y ∈ Rd such that �x� ≥ �y� and all ω ∈ !,

ρ
(
φ�ω�x�� φ�ω�y�)

≤ Y�ω� exp
([

8bd ln+ �x�]1/2) ∫ �x−y�∧1

0
exp

([
8bd ln+

(
1
ε

)]1/2)
dε


Proof. We proceed just as in the preceding proof, except that we now use
the metric d�x�y� = �x− y� ∧ 1
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Fix a such that b > a > c and define

Z = �−1
a

(∫
Rd

∫
Rd
�a

(
ρ�φ�·� x�� φ�·� y��

d�x�y�
)
m�dx�m�dy�

)



Then (10) implies

E��a�Z�� < ∞


Now we apply (2) with the modified metric, define

V = exp
([

4a ln+��a�Z��]1/2)
�

to get for x�y ∈ Rd such that �x� ≥ �y� and ω ∈ !,

ρ
(
φ�ω�x�� φ�ω�y�)

≤ c8V�ω� exp
([

8a ln+(�f��x� + �x− y���−1)]1/2)
×

∫ �x−y�∧1

0
exp

([
8ad ln+

(
1
ε

)]1/2)
dε

≤ c9V�ω� exp
([

8bd ln+ �x�
]1/2) ∫ �x−y�∧1

0
exp

([
8bd ln+

(
1
ε

)]1/2)
dε


(11)

Another appeal to part (b) of Lemma 1.1 guarantees the �a-integrability
of V and hence the �b-integrability of c9V
 Hence (11) yields the desired
inequality. ✷

2. Spatial estimates for stochastic flows. In this section we shall show
that stochastic flows which are generated by stochastic differential equations
driven by continuous semimartingale noise satisfy inequalities of the types on
which Theorems 1.1, 1.2 and 1.3 were based. Their local characteristics just
have to fulfill suitable Lipschitz and growth conditions. The moment inequal-
ities are derived in the following propositions. They lead to our main results,
stated in Theorems 2.1 and 2.2, on bounds for the asymptotic spatial growth
of the flows and their derivatives.

We will use the set-up and notation of [5] which we recall for the reader’s
convenience.

Let F�x� t�, t ≥ 0� be a family of Rd-valued continuous semimartingales on
a filtered probability space �!�� � ��t�t≥0�P� indexed by x ∈ Rd
 Let F�x� t� =
M�x� t�+V�x� t� be the canonical decomposition into a local martingale M and
a process V of locally bounded variation. We will assume throughout that both
M and V are jointly continuous in �x� t�. Furthermore, we assume that there
exist a Rd × Rd × �0�∞�×! → Rd×d and b Rd × �0�∞�×! → Rd, called the
local characteristics of F, such that

〈
Mi�x� ·��Mj�y� ·�

〉�t� = ∫ t

0
aij�x�y�u�du� Vi�x� t� =

∫ t

0
bi�x�u�du
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Let - = ��x� x� x ∈ Rd�
 For α = �α1� 
 
 
 � αd�, αi ∈ N0, i = 1� 
 
 
 d� we write
�α� = ∑d

i=1 αi as usual.
We shall say that F has local characteristics of class B

m�δ
ub for m ∈ N0,

0 < δ ≤ 1 (or just F ∈ B
m�δ
ub � if b is in Cm, and all derivatives of a up to

order m with respect to x and y (simultaneously) are continuous and if for all
T > 0�

ess sup
ω∈!

sup
0≤t≤T

(�a�t��̃m+δ + �b�t��m+δ
)
< ∞�

where

�a�t��̃m+δ = sup
x�y∈Rd

�a�x�y� t��
�1 + �x���1 + �y�� +

∑
1≤�α�≤m

sup
x�y∈Rd

∣∣Dα
xD

α
ya�x�y� t�

∣∣
+ ∑

�α�=m
�Dα

xD
α
ya�x�y� t��̃δ�

�b�t��m+δ = sup
x∈Rd

�b�x� t��
�1 + �x�� +

∑
1≤�α�≤m

sup
x∈Rd

�Dα
xb�x� t��

+ ∑
�α�=m

sup
�x�y�∈-c

�Dα
xb�x� t� −Dα

yb�y� t��
�x− y�δ �

�f�̃δ = sup
{ �f�x�y�−f�x′� y�−f�x�y′�+f�x′� y′��

�x− x′�δ�y− y′�δ  �x� x′�� �y�y′�∈-c
}



Throughout the rest of the paper we will consider the stochastic differential
equation

dX�t� = F�X�t�� dt�(12)

on Rd where F is a spatial semimartingale as above. If F ∈ B
0�1
ub (in fact, even

under a slightly weaker condition) Kunita [5], page 155, proved the existence
of a stochastic flow of homeomorphisms (or diffeomorphisms, if F ∈ B

k�δ
ub for

some k ≥ 1) associated with (12), that is, a map φ �0�∞�×�0�∞�×Rd×! → Rd

such that:

1. φst�x� ·�, t ≥ s solves (12) with initial condition X�s� = x for each s ≥ 0,
x ∈ Rd;

2. φst�·�ω� is a homeomorphism for each 0 ≤ s ≤ t, ω ∈ !;
3. φst�·�ω� = φ−1

ts �·�ω� for each s� t ≥ 0, ω ∈ !;
4. φsu�·�ω� = φtu�·�ω� ◦φst�·�ω� for all s� t� u ≥ 0, ω ∈ !;
5. �s� t� �→ φst�·�ω� is continuous from �0�∞�2 to the (group of) homeomor-

phisms on Rd.

In the following, φ will always denote the flow associated with (12). We
remark that all moments of the flow and its derivatives appearing in the
sequel are finite, according to [5].
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Proposition 2.1. Assume F ∈ B
0�1
ub . Fix T > 0. Then there exists c ≥ 0 such

that for all x�y ∈ Rd and all p ≥ 1, we have:

(a) E sup0≤t≤T��φ0t�x� −φ0t�y��p� ≤ exp�cp2��x− y�p;
(b) E sup0≤t≤T��φ0t�0��p� ≤ exp�cp2�


Proof. It is enough to prove (a) and (b) for p ≥ 4.

(a) Since F ∈ B
0�1
ub there exists c10 ≥ 0 such that for all x� x̃� y� ỹ ∈ Rd,

0 ≤ t ≤ T and ω ∈ !,∣∣a�x�y� t� − a�x̃� y� t� − a�x� ỹ� t� + a�x̃� ỹ� t�∣∣ ≤ c10�x− x̃� �y− ỹ�
and ∣∣b�x� t� − b�y� t�∣∣ ≤ c10�x− y�

Fix x�y ∈ Rd and define

Y�t� = ∣∣φ0t�x� −φ0t�y�
∣∣2 =

d∑
i=1

(
φ0t�x� −φ0t�y�

)2
i



Then Itô’s formula implies

dY�t� =
d∑
i=1

2
(
φ0t�x� −φ0t�y�

)
i

(
Mi�φ0t�x�� dt� −Mi�φ0t�y�� dt�

)

+
d∑
i=1

2
(
φ0t�x� −φ0t�y�

)
i

(
bi�φ0t�x�� t

)− bi�φ0t�y�� t�
)
dt

+
d∑
i=1

d�Mi�φ0t�x�� ·� −Mi�φ0t�y�� ·��t


Therefore we obtain for p ≥ 2 and t ≤ T,

E
(

sup
0≤s≤t

Y�s�p
)

≤ 3p−1
(
�x− y�2p +E sup

0≤s≤t

∣∣∣∣
d∑
i=1

2
∫ s

0

(
φ0u�x� −φ0u�y�

)
i

× (
Mi�φ0u�x�� du�−Mi�φ0u�y�� du�

)∣∣∣∣
p

+E

(∫ t

0
2c10

∣∣φ0u�x� −φ0u�y�
∣∣2

+
d∑
i=1

∣∣aii�φ0u�x�� φ0u�x�� u� − aii
(
φ0u�x�� φ0u�y�� u

)

− aii
(
φ0u�y�� φ0u�x�� u

)+ aii
(
φ0u�y�� φ0u�y�� u

)∣∣du)p)
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≤ 3p−1
(
�x− y�2p +C�p�E

(∫ t

0
4c10

∣∣φ0u�x� −φ0u�y�
∣∣4 du)p/2

+E

(∫ t

0
�2 + d�c10

∣∣φ0u�x� −φ0u�y�
∣∣2 du)p)

�

where C�p� = �c11p
1/2�p is an upper bound for the constant in Burkholder’s

inequality for continuous martingales for all p ≥ 2� and c11 is some universal
constant ([3], page 207).

Abbreviating f�t� = �E sup0≤s≤t Y�s�p�1/p we get

f�t� ≤ 3
(
�x− y�2 +C�p�1/p2

√
c10

(∫ t

0
f2�u�du

)1/2

+ c10�2 + d�
∫ t

0
f�u�du

)

and hence

f2�t� ≤ 27
(
�x− y�4 +C�p�2/p4c10

∫ t

0
f2�u�du+ c2

10�2 + d�2T
∫ t

0
f2�u�du

)



Using Gronwall’s inequality, we obtain

E sup
0≤t≤T

∣∣φ0t�x� −φ0t�y�
∣∣2p

≤ �x− y�2p27p/2 exp
(

27pT
2

(
C�p�2/p4c10 + c2

10�2 + d�2T
))



Since C�p�1/p = c11p
1/2� the assertion follows.

(b) Let Y�t� = �φ0t�0��2
 Then

dY�t� =
d∑
i=1

2φ0t�0�iMi�φ0t�0�� dt� +
d∑
i=1

2φ0t�0�ibi�φ0t�0�� t�dt

+
d∑
i=1

d
〈
Mi�φ0t�0�� t�

〉



Using the fact that there exists c12 ≥ 0 such that∣∣a�x� x� t�∣∣ ≤ c12
(
1 + �x�2)

and ∣∣b�x� t�∣∣ ≤ c12
(
1 + �x�)

for all x ∈ Rd, 0 ≤ t ≤ T� and ω ∈ !, the assertion follows as in part (a). ✷

Remark. The good estimate C�p� = �c11p
1/2�p of the best constant in

Burkholder’s inequality, which showed up in the preceding proof, is crucial
for our estimates and will appear in subsequent proofs repeatedly.

Proposition 2.1 combined with Theorem 1.2 provide spatial estimates for
sup0≤t≤T �φ0t�x��
 Together with the following proposition we shall be able to
extend this estimate even to sup0≤s� t≤T �φst�x�� in Theorem 2.1.
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Proposition 2.2. Assume F ∈ B
0�1
ub and define

3t�x� =
�x�2

1 + �φ0t�x��
� t ≥ 0� x ∈ Rd


For every T > 0 there exists c ≥ 0 such that for all p ≥ 1 and x�y ∈ Rd:

(a) E sup0≤t≤T�1 + �φ0t�x��2�−p ≤ exp�cp2��1 + �x�2�−p;
(b) E sup0≤t≤T��3t�x� −3t�y��p� ≤ exp�cp2��x− y�p


Proof. It suffices to prove the assertions for p ≥ 2.
Fix x ∈ Rd, T > 0 and define

X�t� = φ0t�x�� Y�t� = �1 +X�t�2�−1


Itô’s formula implies

dY�t� = −
d∑
i=1

2Xi�t�
�1 + �X�t��2�2

Mi�X�t�� dt�

−
d∑
i=1

2Xi�t�
�1 + �X�t��2�2

bi�X�t�� t�dt

− 1
2

d∑
i=1

2
�1 + �X�t��2�2

aii�X�t��X�t�� t�dt

+ 1
2

d∑
i� j=1

8Xi�t�Xj�t�
�1 + �X�t��2�3

aij�X�t��X�t�� t�dt


Since F ∈ B
0�1
ub � there exists c13 ≥ 0 such that

�a�x� x� t�� ≤ c13�1 + �x�2� and �b�x� t��2 ≤ c2
13�1 + �x�2�


Proceeding as in the proof of Proposition 2.1, and denoting

f�t� =
(
E

(
sup

0≤s≤t
Y�s�p

))1/p

� 0 ≤ t ≤ T� p ≥ 2�

we obtain

f�t� ≤ 3
[
�1 + �x�2�−1 +C�p�1/p2

√
c13

(∫ t

0
f�s�2 ds

)1/2

+ �2 + d+ 4�c13

∫ t

0
f�s�ds

]



The assertion now follows by applying Gronwall’s lemma to f2 as in the
proof of Proposition 2.1.
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To prove (b), note that for x�y ∈ Rd, �y� ≥ �x�� and 0 ≤ t ≤ T� we have∣∣3t�x� −3t�y�
∣∣

≤ �x�2
∣∣∣∣ 1
1 + �φ0t�x��

− 1
1 + �φ0t�y��

∣∣∣∣+ 1
1 + �φ0t�y��

∣∣�x�2 − �y�2∣∣
≤ �x�

1 + �φ0t�x��
�y�

1 + �φ0t�y��
∣∣φ0t�x� −φ0t�y�

∣∣+ �x− y� 2�y�
1 + �φ0t�y��




Now the assertion follows from Proposition 2.1 and part (a). ✷

We are ready to state and prove our main result on asymptotic growth rates
for stochastic flows.

Theorem 2.1. Assume F ∈ B
0�1
ub 
 Then for all T > 0, there exist c� γ > 0

such that

Y = sup
x∈Rd

1 + sup0≤s�t≤T �φst�x��
�x� + 1

exp
(−γ�ln+ ln+ �x��1/2)

and

Y′ = sup
x∈Rd

sup
0≤s� t≤T

�x� + 1
1 + �φst�x��

exp
(−γ�ln+ ln+ �x��1/2)

are �c-integrable.

Proof. Fix x ∈ Rd
 For 0 ≤ s ≤ T, define ys = φ−1
0s �x� ·�
 Propositions 2.1

and 2.2 together with Theorem 1.2 show that there exist c14, c15 > 0 and
a �c14

-integrable random variable Z (not depending on x), such that for all
0 ≤ t ≤ T,

1 + ∣∣φ0t�ys�
∣∣ ≤ Z

(�ys� + 1
)

exp
(
c15�ln+ ln+ �ys��1/2)�(13)

1 + ∣∣φ0t�ys�
∣∣ ≥ Z−1(�ys� + 1

)
exp

(−c15�ln+ ln+ �ys��1/2)
(14)

To obtain (13), first apply (b) in Proposition 2.1 to get the �c14
-integrability of

sup0≤t≤T �φ0t�0��� then use (a). Then (13) and (14) imply

1 + ∣∣φst�x�
∣∣ = 1 + ∣∣φ0t�ys�

∣∣ ≤ Z2�1 + �x�� exp
(
2c15

(
ln+ ln+ �ys�

)1/2)



Now (14) implies that there exists α ≥ 0 (depending on c15) such that �ys�+1 ≤
α2Z2�1 + �x��2, so, assuming w.l.o.g. ln+�α2Z2� ≥ 1,(

ln+ ln+ �ys�
)1/2 ≤ (

ln
(
ln�α2Z2� + ln�3�1 + �x��2�))1/2

≤ (
ln ln�α2Z2� + ln ln�3�1 + �x��2� + ln 2

)1/2

≤ (
ln ln�α2Z2�)1/2 + (

ln ln�3�1 + �x��2�)1/2 + �ln 2�1/2


(15)
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Therefore,

1 + sup
0≤s� t≤T

�φst�x�� ≤ Z2 exp
(
2c15�ln ln�α2Z2��1/2) exp

(
2c15�ln 2�1/2)�1 + �x��

× exp
(
2c15�ln ln 3�1 + �x��2�1/2)


Now the first assertion follows with γ = 2c15

Further,

1 + �φst�x�� = 1 + �φ0t�ys�� ≥ Z−2�1 + �x�� exp
(−2c15�ln+ ln+ �ys��1/2)


Using (15), the second assertion follows with γ = 2c15
 ✷

Remarks. (1) Suppose we use the moment inequalities of Propositions 2.1
and 2.2 just for one individual p > 2d instead of the ”integrated version”
hidden behind the appearance of �c employed in Theorem 2.1. Then, as The-
orem 1.1 shows, our analysis just leads to �x��ln �x��ε for arbitrary ε > 0 as
estimates of growth rates, which is the bound derived in [10]. This is an-
other confirmation of the power of methods involving the real variable lemma
of GRR.

(2) It will be shown in Section 3 that the growth rates appearing in Theo-
rem 2.1 are sharp. This result is also nearly optimal in another respect. The
random variable Y is proved to be �c-integrable for some c > 0. As the exam-
ple of the flow φ in dimension 1 associated with the SDE

dxt = xt dWt

shows, this integrability statement cannot be improved by much. For fixed
t > 0 and x �= 0� the random variable φ0t�x� is not �c-integrable for c small
enough. This is a fortiori true for Y


We next consider spatial estimates of derivatives of a stochastic flow.

Proposition 2.3. Assume that F ∈ B
k�1
ub for some k ∈ N. Then for all T > 0

there exists c ≥ 0 such that for all 1 ≤ �α� ≤ k, p ≥ 1 and x�y ∈ Rd we have

E

(
sup

0≤t≤T

∣∣Dαφ0t�x� −Dαφ0t�y�
∣∣p) ≤ exp�cp2���x− y�p ∧ 1�(16)

and

E

(
sup

0≤t≤T
�Dαφ0t�x��p

)
≤ exp�cp2�
(17)

Proof. Theorem 4.6.5 in [5] shows that φ is a flow of Ck-diffeomorphisms.
We denote by Dφ0t�x� the Jacobian of φ0t with respect to x and similarly
for F. Abusing notation, we shall often write Di for the derivative w.r.t. the
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ith variable. We shall use upper indices to denote the components of φ
 For
1 ≤ �α� ≤ k and j ∈ �1� 
 
 
 � d� we have the equation

Dαφ
j
0t�x� = ηα�j +

d∑
n=1

∫ t

0
Dαφn

0s�x� DnFj�φ0s�x�� ds�

+ ∑
2≤�β�≤�α�

∫ t

0
Pβ�x� j�s�DβFj�φ0s�x�� ds��

(18)

where ηα�j = 1 if �α� = 1 and αj = 1 and ηα�j = 0 otherwise, and where

Pβ�x� j�s� is a finite sum of products of the form
∏r

i=1 D
γiφ

ji
0s�x� with 1 ≤ �γi� <

�α� and
∑r

i=1 �γi� = �α� (see [5], page 95). Observe that the second sum in (18)
is zero in case �α� = 1


We first prove (17) by induction on �α�
 For 1 ≤ j ≤ d, 0 ≤ t ≤ T, p ≥ 1 let

Yj�t� = Dαφ
j
0t�x�� Y�t� = ∣∣Dαφ0t�x�

∣∣ = [ d∑
j=1

Y2
j�t�

]1/2

�

Zj�t� = sup
0≤s≤t

�Yj�s��� Z�t� = sup
0≤s≤t

Y�s��

fp�t� =
[
E�Z�t�p�]1/p

�

where we suppress x and α for ease of notation. We rewrite (18) to get

Yj�t� = ηα�j +
d∑

n=1

∫ t

0
Yn�s�DnFj�φ0s�x�� ds�

+ ∑
2≤�β�≤�α�

∫ t

0
Pβ�x� j�s�DβFj�φ0s�x�� ds�


With the help of [5], Theorem 3.1.2, which allows us to interchange spatial
derivatives and the quadratic variation, we get for p ≥ 2�

[
E�Zj�t�p�

]1/p ≤ c16

(
1 +C�p�1/p

[
E

(∫ t

0
Z�s�2 ds

)p/2]1/p

+
∫ t

0
fp�s�ds

+C�p�1/p ∑
j�β

[
E

(∫ t

0
P2
β�x� j�s�ds

)p/2]1/p

+ ∑
j�β

∫ t

0

[
E
(�Pβ�x� j�s��p

)]1/p
ds

)



Therefore, for 0 ≤ t ≤ T we obtain the estimate

f2
p�t� ≤ c17

(
�C�p�2/p + 1�

∫ t

0
f2
p�s�ds+

(
C�p�2/p + 1

)

× ∑
j�β

∫ t

0

[
E��Pβ�x� j�s��p�

]2/p
ds

)



(19)
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For �α� = 1 the last sum is empty and consequently we get (17). For 1 < �α� ≤ k
we use the induction hypothesis and Hölder’s inequality to show that for some
constant c18 ≥ 0 and all p ≥ 1 we have

E
(�Pβ�x� j�s��p

) ≤ exp�c18p
2�


Now Gronwall’s lemma applied to f2
p implies (17).

It remains to prove (16). Due to (17) it is enough to prove the inequality
with �x − y�p ∧ 1 replaced by �x − y�p. Let 1 ≤ �α� ≤ k, x�y ∈ Rd, 1 ≤ j ≤ d,
p ≥ 1� and, again suppressing α� x�y, define

Vj�t� = Dαφ
j
0t�x� −Dαφ

j
0t�y�� V�t� =

[ d∑
j=1

V2
j�t�

]1/2

�

Wj�t� = sup
0≤s≤t

�Vj�s��� W�t� = sup
0≤s≤t

V�s��

gp�t� = �E�W�t�p��1/p

Now we have

Vj�t� =
d∑

n=1

[∫ t

0
Dαφn

0s�x�DnFj�φ0s�x�� ds� −
∫ t

0
Dαφn

0s�y�DnFj�φ0s�y�� ds�
]

+ ∑
2≤�β�≤�α�

[∫ t

0
Pβ�x� j�s�DβFj�φ0s�x�� ds�

−
∫ t

0
Pβ�y�j�s�DβFj�φ0s�y�� ds�

]

=
d∑

n=1

[∫ t

0
Vj�s�DnFj�φ0s�x�� ds�

+
∫ t

0
Dαφn

0s�y�
(
DnFj�φ0s�x�� ds� −DnFj�φ0s�y�� ds�

)]

+ ∑
2≤�β�≤�α�

[∫ t

0

(
Pβ�x� j�s� −Pβ�y�j�s�

)
DβFj�φ0s�x�� ds�

+
∫ t

0
Pβ�y�j�s�

(
DβFj�φ0s�x�� ds� −DβFj�φ0s�y�� ds�

)]



Again, the proof goes by induction on �α�
 For �α� = 1� the last sum drops out,
and we get for 0 ≤ t ≤ T, and p ≥ 2,

g2
p�t� ≤ c19

(
�C�p�2/p + 1�

∫ t

0
g2
p�s�ds+ �C�p�2/p + 1�

×
∫ t

0

[
E��Dαφ0s�y��2p�

]1/p[
E��φ0s�x� −φ0s�y��2p�

]1/p
ds

)
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Using (17), Proposition 2.1 and applying Gronwall’s lemma we get (16) for
�α� = 1


For general 2 ≤ �α� ≤ k� observe that Pβ�x� j�s�−Pβ�y�j�s� can be expressed

as a finite sum of terms of the form �Dγφk
0s�x� − Dγφk

0s�y��
∏r

i=1 D
γiφ

ki
0s�z�

where z ∈ �x�y�, 1 ≤ �γ� < α, �γi� ≥ 1� and γ +∑r
i=1 �γi� = �α�
 Using this fact

the induction proof follows along the familiar lines. ✷

We next extend the considerations of Proposition 2.3 to the inverse of the
Jacobian of a stochastic flow.

Proposition 2.4. Assume that F ∈ B
1�1
ub 
 Let �st�x� = �Dφst�x��−1, 0 ≤

s ≤ t
 Then for all T > 0 there exists c ≥ 0 such that for all p ≥ 1 and
x�y ∈ Rd� we have

E
(

sup
0≤t≤T

∣∣�0t�x� −�0t�y�
∣∣p) ≤ exp�cp2�(�x− y�p ∧ 1

)
(20)

and

E
(

sup
0≤t≤T

��0t�x��p
)
≤ exp�cp2�
(21)

Proof. The following well-known identity is easily checked with Itô’s for-
mula:

�0t�x� = I−
∫ t

0
�0s�x�DF�φ0s�x�� ds� +

∫ t

0
�0s�x�ã�φ0s�x�� φ0s�x�� s�ds�

where ãij�x�y� s� = ∑d
k=1 D

k
xD

j
yaik�x�y� s�� i� j ∈ �1� 
 
 
 � d�
 Using the fact

that ã is bounded, the arguments of the preceding propositions easily yield
(21), taking the pth moment of the supremum of �� ij

0s�x�� in s between 0
and t.

To show (20), we write

�0t�x� −�0t�y� = −
∫ t

0
��0s�x� −�0s�y��DF�φ0s�x�� ds�

+
∫ t

0
�0s�y��DF�φ0s�y�� ds� −DF�φ0s�x�� ds��

+
∫ t

0

(
�0s�x� −�0s�y�

)
ã�φ0s�x�� φ0s�x�� s�ds

+
∫ t

0
�0s�y�

(
ã�φ0s�x�� φ0s�x�� s�

− ã�φ0s�y�� φ0s�y�� s�
)
ds


We will be able to show (20) by the arguments of the second part of the
proof of Proposition 2.3 for �α� = 1, once we know that for āijkl�x�y� t� =
Di

xD
j
yakl�x�y� t�� i� j� k� l ∈ �1� 
 
 
 � d�� we have∣∣āijkl�x� x� t� − āijkl�y�y� t�∣∣ ≤ c20�x− y�
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for all 0 ≤ t ≤ T, x�y ∈ Rd� with some constant c20
 Since F ∈ B
1�1
ub � we know

that there exists a constant c21 such that for all i� j and all x�y ∈ Rd� we have∣∣āijij�x� x� t� − 2āijij�x�y� t� + āijij�y�y� t�∣∣ ≤ c21�x− y�2

and ∣∣āijij�x� x� t�∣∣ ≤ c21


Fix i� j� k� l and write M̄�x� t� = DiMk�x� t�, N̄�x� t� = DjMl�x� t�
 Then, the
inequality of Kunita–Watanabe yields∣∣āijkl�x� x� t� − āijkl�y�y� t�∣∣

=
∣∣∣∣ ddt

(〈
M̄�x� ·�� N̄�x� ·�〉

t
− 〈

M̄�y� ·�� N̄�y� ·�〉
t

)∣∣∣∣
≤

∣∣∣∣ ddt
〈
M̄�x� ·� − M̄�y� ·�� N̄�x� ·�〉

t

∣∣∣∣
+

∣∣∣∣ ddt
〈
M̄�y� ·�� N̄�x� ·� − N̄�y� ·�〉

t

∣∣∣∣
≤

√
d

dt

〈
M̄�x� ·� − M̄�y� ·�〉

t

√
d

dt

〈
N̄�x� ·�〉

t

+
√

d

dt

〈
M̄�y� ·�〉

t

√
d

dt

〈
N̄�x� ·� − N̄�y� ·�〉

t

≤ 2c21�x− y�
 ✷

The estimates of the preceding propositions combined with the results of the
first section lead to the following main theorem about the asymptotic growth
of the derivatives of a stochastic flow.

Theorem 2.2. Assume F ∈ B
k�1
ub for some k ∈ N
 Then for all T > 0� there

exist c� γ > 0 such that for all 1 ≤ �α� ≤ k the random variables

Y = sup
x∈Rd

sup
0≤s� t≤T

∣∣�Dφst�x��−1
∣∣ exp

(−γ�ln+ �x��1/2)�(22)

Y′ = sup
x∈Rd

sup
0≤s� t≤T

1
�Dφst�x��

exp
(−γ�ln+ �x��1/2)(23)

and

Yα = sup
x∈Rd

sup
0≤s� t≤T

�Dαφst�x�� exp
(−γ�ln+ �x��1/2)(24)

are �c-integrable.

Proof. Here (23) is an easy consequence of (22) since for any matrix norm
submultiplicativity gives �A� �A−1� ≥ �I� for matrices A




126 P. IMKELLER AND M. SCHEUTZOW

Let us first show (22). Fix T > 0 and x ∈ Rd
 For 0 ≤ s ≤ T� define
ys = φ−1

0s �x� as in the proof of Theorem 2.1. The equation

Dφ0t�ys� = Dφst�x�Dφ0s�ys�
implies the estimate∣∣�Dφst�x��−1

∣∣ ≤ ∣∣Dφ0s�ys�
∣∣∣∣Dφ0t�ys�−1

∣∣

Now Propositions 2.3, 2.4 and Theorem 1.3 imply that there exist c22 > 0,
c23 ≥ 0 and a �c22

-integrable random variable Z not depending on x such that
for all 0 ≤ t ≤ T� ∣∣�Dφst�x��−1

∣∣ ≤ Z2 exp
(
c23�ln+ �ys��1/2)


As in the proof of Theorem 2.1, we use the fact that there exists κ ≥ 0 such
that �ys� ≤ κ2Z2�1 + �x�2�
 Hence∣∣�Dφst�x��−1

∣∣ ≤ Z2 exp
(
c23�ln+�κ2Z2��1/2) exp

(
c23�2 ln�1 + �x���1/2)(25)

for all 0 ≤ s, t ≤ T and all x ∈ Rd
 Then (25) immediately implies (22).
It remains to prove (24).
Suppose first that f Rd → Rd is a Ck-diffeomorphism for some k ∈ N


Then for each α with 1 ≤ �α� ≤ k� i = 1� 
 
 
 � d and for all x ∈ Rd�

Dα��f−1�i��x� =
pα� i�f−1�x��

�det�Df�f−1�x����nα �(26)

where nα ∈ N
 In (26) pα� i�y� is a polynomial in the partial derivatives of the
components of f up to order �α� evaluated at y ∈ Rd
 It is easy to verify (26)
via induction on �α� using the chain rule and Cramér’s rule.

For 0 ≤ s, t ≤ T and x ∈ Rd we have

φst�x� = φ0t�φ−1
0s �x��


Using the chain rule and (26) we see that for any j ∈ �1� 
 
 
 � d� we can write
Dαφ

j
st�x� as a finite sum of a product of partial derivatives up to order �α� of

components of φ0t and φ0s evaluated at φ−1
0s �x� multiplied by∣∣det

[
Dφ0s�φ−1

0s �x��
]∣∣−m

for some m ∈ N
 The fact that for any d× d matrix A we have

�detA�−m = ∣∣detA−1
∣∣m ≤ c24�A−1�dm�

combines with Propositions 2.3, 2.4 and Theorem 1.3 to show that there exist
c25 > 0, γ > 0 such that for all 0 ≤ s, t ≤ T� all x ∈ Rd and all 1 ≤ j ≤ d�∣∣Dαφ

j
st�x�

∣∣ ≤ Y exp
(
γ�ln+ �φ−1

0s �x���1/2)
for some �c25

-integrable random variable Y
 Arguing as in the derivation of
(22), we now obtain (24). ✷
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3. Examples. We present two examples which show that the rates ob-
tained in the first part of Theorem 2.1, and for the first derivative in Theorem
2.2, are optimal, up to the constant γ
 In fact we shall show slightly more,
namely, that even if we fix t > 0 and s = 0, without taking the sup over s and
t, the rates specified in the theorems are still optimal up to the constant γ


Since the first example is only a slight modification of Example 1 in [10],
we shall only sketch it.

Example 3.1. Let d = 1 and fix T > 0 and 0 < ε < 2
 For 2 ≤ n ∈ N�
define δn = exp�n√�2 − ε�T lnn� and γn = �δn+1 − 1 + δn�/2
 Let σ  R → R
satisfy:

(a) σ ∈ C∞�R� and all derivatives of σ are bounded;
(b) σ�x� = x− δn for x ∈ �δn� γn − 1�, 2 ≤ n ∈ N�
(c) σ�γn − x� = σ�γn + x� for x ∈ �0� γn − δn�, 2 ≤ n ∈ N�
(d) σ�x� = 0 for x ∈ �δn+1 − 2

3 � δn+1 − 1
3 �, 2 ≤ n ∈ N


For 2 ≤ n ∈ N� let Wn be independent standard Brownian motions and define

F�x� t� =
{
σ�x�Wn�t�� x ∈ �δn − 1

2 � δn+1 − 1
2 ��

σ�x�W2�t�� x ≤ δ2 − 1
2 


It is easy to see that F ∈ B
k�δ
ub for any k ∈ N, 0 < δ ≤ 1
 If x ∈ �δn� γn − 1� and

τ is the first time for which φ0t�x� hits γn − 1, then

φ0t�x� = �x− δn� exp
(
Wn�t� −

t

2

)
+ δn�

0 ≤ t ≤ τ
 There exists n0 such that for n ≥ n0 we have xn = �e + 1�δn ∈
�δn� γn − 1�
 A simple estimate shows that the sum over P�sup0≤t≤T φ0t�xn� ≥
γn−1� for n ≥ n0 diverges. Hence by the second Borel–Cantelli lemma we get

lim sup
n→∞

sup0≤t≤T φ0t�xn�
γn − 1

≥ 1

P-a.s. Furthermore,

lim
n→∞

γn − 1

xn exp
(√�2 − δ�T ln lnxn

) = ∞

for any δ > ε
 Hence, for any δ ∈�0�2� we have

sup
x≥1

sup
0≤t≤T

φ0t�x�
x exp

(√
�2 − δ�T ln+ ln+ x

) = ∞

P-a.s. Since σ is symmetric around γn on �δn� δn+1 − 1�� we also have

sup
x≥1

�φ0T�x��
x exp

(√
�2 − δ�T ln+ ln+ x

) = ∞

P-a.s.



128 P. IMKELLER AND M. SCHEUTZOW

Example 3.2. Let d = 1. Let σ  R → R be a C∞-function with the following
properties:

(a) σ is periodic with period 1;
(b) σ�x� = x for − 1

4 ≤ x ≤ 1
4 ;

(c) σ�x� = 0 for 3
8 ≤ x ≤ 5

8 .

Let Wn, n ∈ Z� be independent standard Brownian motions and define

F�x� t� = σ�x�Wn�t�
for n− 1

2 ≤ x < n+ 1
2 , t ≥ 0
 Clearly F ∈ B

k�δ
ub for arbitrary k ∈ N, 0 < δ ≤ 1


By Theorem 4.6.5 in [5], the associated flow φ is a flow of C∞-diffeomor-
phisms. Its spatial derivative satisfies for n ∈ Z, t ≥ 0�

Dφ0t�n� = exp
(
Wn�t� − 1

2t
)
�

since the SDE based on F is linear in a neighborhood of n ∈ Z
 Fix T > 0 and
2 > ε > 0
 For n ∈ N� define αn = √

T�2 − ε� lnn
 Then

P
(
exp�Wn�T� − 1

2T� ≥ exp�αn�
) = P

(
Wn�T� ≥ αn + 1

2T
)



Because Wn�T� is Gaussian with mean zero and variance T, there exists
c = c�T�ε� such that for all n ∈ N�

P
(
Wn�T� ≥ αn + 1

2T
) ≥ c exp�− lnn� = c

n



Using the Borel–Cantelli lemma, we see that for every 0 < δ < 1�

sup
n∈N

Dφ0T�n� exp
(
−
√
T�2 − δ� lnn

)
= ∞

P-a.s.
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