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A SYMMETRIZATION-DESYMMETRIZATION PROCEDURE FOR
UNIFORMLY GOOD APPROXIMATION OF EXPECTATIONS
INVOLVING ARBITRARY SUMS OF GENERALIZED
U-STATISTICS

BY MICHAEL J. KLASS! AND KRZYSZTOF NOWICKI?
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Let @ be a symmetric function, nondecreasing on [0, co) and satisfying
a Ay growth condition, (X1,Y),(Xs,Y5),...,(X,,Y,) be independent
random vectors such that (for each 1 < i < n) either ¥; = X; or Y; is
independent of all the other variates, and the marginal distributions of
{X;} and {Y}} are otherwise arbitrary. Let {f;;(x, ¥)}1<; j<n be any array
of real valued measurable functions. We present a method of obtaining the
order of magnitude of

Ecp( > (X, Yj)>~
1<i, j<n

The proof employs a double symmetrization, introducing independent
copies {X;,Y ;} of {X;, Y;}, and moving from summands of the form
fij(X;, Y;) to what we call fg;)(Xi, Y;, )?i, 17J) Substitution of fixed con-

stants %; and y ; for )Z'i and ?J- results in fg;)(Xi, Y;, %;, 7 j), which equals

fij(X;,Y;) adjusted by a sum of quantities of first order separately in
X; and Y;. Introducing further explicit first-order adjustments, call them
glij(Xi’ )N(, 57) and ng](Y]’ f(, S’), it is prOVed that

E‘D( > (fﬁf)(Xi, Y;, %;, 5’j> - glij<Xi:f‘s 5’) - gZij<erf§s 5’)))

1<i, j<n

<a E@(\J} 3 (fﬁ?(xi, Y, %, &j)>2> ~, @(f(s),x,y, %, y)

1<i, j<n

where the latter is an explicitly computable quantity. For any %° and §°
which come within a factor of two of minimizing d>(f(s), X, Y, x,¥y) it is
shown that

Eq’( > (X, Yﬂ)

1<i, j=n

~, maxi@(f(s), X,Y,%°, 90), E<1>< 3 (fl-j(Xl-, y‘}) + fij(az?, Yj)

1<i, j<n

= £iy(3,39) + g14y (X, 20, 35) + s (V5 22, y(})>>}
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which is computable (approximable) in terms of the underlying random
variables. These results extend to the expectation of ® of a sum of functions
of k-components.

1. Introduction. Let {X,,Y;}" ; be a collection of 2n independent ran-
dom variables. Set

A, = {symmetric functions ®(-), nondecreasing on [0,00) with ®(0)=0 and

such that for some a>0,®(cx) <|c|*®P(x) for all |c|>2 and all x}.

Such a ® € A, is said to have parameter « (and hence it has parameter 8 for
all B8 > a).
We are interested in approximating

(1.1) E(D,£,X,Y) = E<I>< Y fi(Xi, Yj)>

1<i, j<n

for arbitrary real-valued measurable functions £ = {f;(x, ¥)}1<;, j<n-

First results in this direction were obtained by Giné and Zinn (1992). Specif-
ically, they showed that for any independent r.v’s X;,Y,...,X,,Y, such
that Z(X;) = Z(Y;) for 1 < i < n and any function f(x, y) satisfying
f(x,y) = f(y, x) for all x, y with the further property that Ef(X,,y) = 0
for all y and i,

p " p
E| Y [f(X,Y) SpE|:1U<1.aX Zf(Xi’Yj):|
1<i, j<n si=n i
P
+|:E > f(Xi,Yj)i| forp > 1,
1<i, j<n

where A <, B(A >, B) means that there is a universal constant ¢,, < oo(c, >
0) depending only on p such that A < ¢,B(A > ¢,B) and A ~, B means that
AprandAzpB.

The nonnegative case of f;;j(x,y) > 0 and ® € A, was treated in Klass
and Nowicki (1997). The goal of this paper is to convert the general problem
of (1.1) into this nonnegative case, with the possible adjoining of a sum of
first-order variates. To do so, we employ the use of conditionally symmetric
variables, thereby obtaining a lower bound. Thus, just as symmetrization of
Z entails E®(Z) > 27* 1ED(Z — Z) where Z is an independent copy of r.v.
Z, applying this idea twice (first on the set of {X;}" ; and then on the set of
{Yj}’}zl) gives

(1.2) E<I>< )3 fij(Xi,Yj)>z4“*‘1E<D< > XY, fi,?j))

1<i, j<n 1<i, j<n
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where
(1 3) fg;)(XwY XL7Y) f (XL7Y) ij(fian)
—fi(X, Yj) + fij(}?i’ 17j)

and {)?i, 17}}?:1 are independent copies of {X;, Y;}I;

Take any fixed X = (%4,...,%,) and ¥ = (J1,...,¥,). Observe that
Zlgi,j<n (S)(Xw £i9 37]) is jllSt our orig‘inal sum Zlgi,jgn fij(Xi9 YJ)
adjusted by a sum of first-order terms, that is,

(s) ~ o~
Z f (Xianaxiayj)

1<i, j<n
(1.4)
= Z flJ(Xl’Y)_Zfll(X) Zij(Yj)’
1<i, j<n =1

where
(1.5) f1(X;) = Zfij(Xi,yj)—%Zfzj(fiaf’j)

j=1 j=1
and
(16) ij(Yj) = Z fij(gz'i’ YJ) - % L](xl7 y]

i=1 i=1

As explained further in Lemma 2.4 (below), since the RHS of (1.7) below is

an average there must exist instances X = (%1,...,%,) and ¥ = (¥, .-+, ¥)
such that

an Eo( ¥ FPXYa5p) < Bo( T XY, %)),

1<i, j<n 1<i, j<n

The idea of using the average of a nonconstant function over a set to produce
the existence of an element of the set whose functional value is either less or
greater (as desired) than that of the average was used by de Acosta (1980) and
probably dates back hundreds of years. For a long time Erd6s championed its
use in probabilistic combinatorics.

Combining (1.2) and (1.7), Lemma 2.3 (below) shows that

‘D< > fi,-(X,-,Yj)>

1<i, j<n

18 max{E¢(l<§<n (XY, - 2 Fr(X:) - 2 fzjm),
Ecb(z Fu(Xo) + z f2J(Y>)}
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and also that

q>< ) fij(X,.,Yj)) %amax{Eq)( Y XLy, )?,,f@)),

(19) 1<i, j<n 1<i, j<n

E@(éfu(xiwféf”(n))}'

If we were given f1;(-) and f9;(-), each of the components in the maximum
above would now be computable. The expectation involving the sum of 2n
independent r.v’s could be approximated using results in Klass (1981), given
as Theorem A.3 (below). As to the other quantity, let X; = (X;, X;) and
= (Y; Y) and define f(s)(Xl, Y;) as f(s)(XL, , X;,Y;). The function
(S)(X i Y) is (separately) conditionally symmetric in X and in YJ Since
Theorem 3.2 in Klass and Nowicki (1998), given as Theorem A.4 (below), also
applies to random elements [see Lemma 2.2 (below)],

(1.10) E@( Y X, ?j)) (\/ > [ ?j)r).

1<i, j<n 1<i, j<n

The latter involves the expectation of a A,-function of a sum of nonnega-
tive generalized U-statistics. This is approximable by Theorem 4.3 in Klass

and Nowicki (1997) extended from r.v’s X; and Y; to random elements X ;

and 17, To present this approximation we need to introduce the following
quantities.

For &; = (x;, x;) and 3; = (y;, ¥;) let 01,(%;), 02;(5 ), V14, Vg, and w, be
defined as

(1.11)  6;(%;) =supjv >0, > E((fgjs-)(xi, Y;, %, %))2 A v2) > vz},

s ~ 2
(112) UAQ‘](.}A’]) = Sup{v = 07 ZE<<f§j)(Xn yja Xi’ yJ)> A Uz) = 02},

=1

(1.13) U1, =supjv>0,> E(v%i(fl) AV?) > vz},
i=1

(1.14) g, =supiv >0, > E(Ugj(Aj) AVE) > v2}
j=1

and

W, =sup {w >0: > E([(fgj)(fl, ?j))Q A w2]
(1.15) 1sh =
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Then,
/) 7 7T & ) X ¥
(1.16) Eo( [ ¥ [ij (Xi,Yj)] ~, O(F,X,Y),
1<i, j<n
where

ij

o, %, ) = max| B, (75,7,
(1.17) Emax;_;, ®(61,(X))),

B s (0, (7)) 0061, (65,0, .

The above described approach shows that the order of magnitude of
&(D,£,X,Y) is governed by the maximum of (D(f'(s),i,?) and a quantity
which involves the sum of first-order terms. Though we have not found a con-
structive method of producing such a first-order sum from a vector pair (X, §)
satisfying (1.4) we now manage to overcome this hurdle by simply dropping
the condition that f;(-) and fy;(-) come from such a vector pair. We merely
need to retain the key consequence of the vector pair assumption, namely that
we can construct first-order terms f9,(-) and f9 ;(+) satisfying

E(D( Y XL YY) =Y (X -Y fgj(Yj)>
1<i, j=n i=1 j=1

(1.18)
<, Ecb( 3 fﬁj)(Xi,Yj,)?i,f/j)).

1<i, j<n

Then, Lemma 2.3 together with (1.2), (1.10) and (1.16) ensure that

Ecb( ¥ fij<Xi,Yj>)
1<i, j<n

(1.19) n n
~, max{d)(f'(s), i, ?), E¢)<Z f?i(Xi) + > fgj(Yj)> }
j=1

i=1

In Section 3 we prove that this leads to an explicit construction of f ?i(~) and
f;0)-

In the approximation of &(®, f,X,Y) discussed above we initially passed
from fij(Xi7 YJ) tO

fgjs')(Xi, Y, %,5)=fi(X;,Y;)— fi;(%,Y;)
— (X0, 3;)+ fi(%,9;).

The reason for such an unexpected transformation seems to be explained
roughly as follows: we would like to construct quantities to approximate

(1.20)
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&(®,f, X,Y) based on the local behavior of f;. If such a method is to work,
the local truncation levels must become zero whenever the global sum

> fii(X;,Y))

1<i, j<n

is zero. Thus, for example, suppose f;;(X;,Y;) = (-1)""(X,; +Y;) and n is
even. Then the global sum 3°,_; ;, f;j(X;,Y;) = 0 (even if X; and Y, lack
every positive moment), so

E(IJ( > fu(X, Yj)> = E®(0) = ®(0) = 0.

1<i, j<n

However, for any local approximation method based on f;;(X;, Y;) alone [i.e.,
based on quantities such as E®(max;.; j-,|f;;(X;,Y;)]), E®(max;_,
1201 Fi(X, Y))) or E®@(max, .-, |37, f;(X;, Y;))] our approximation
method will produce nonzero quantities and truncation levels whenever
P(X;+Y;=0) <1 for some i and j. Hence any such approximation would pro-
duce @ of a positive number (which is positive) and thus fail to be proportional
to ®(0). Therefore, using f;; alone to generate our approximation quantities

cannot be uniformly valid. For this reason we use f S) and construct the quan-
tities given in (1.11)—(1.15).
We believe that the general form of the pathology described above is char-
acterized by the fact that for any functions g;;(X;) and h;;(Y;) such that
-1 8ij(X;)=0and }7_; h;;(Y;) = 0 and any functions f;;(X;, Y;),

Eq’( > f,-j(Xi,Yj)>

1<i, j<n

= E<I>< > (F(Xi,Y)) - g(Xy) — hij(Yj)))

1<i, j<n

(1.2

The compensate for the very real possibility that f,;(X;,Y;) in the LHS of
(1.21) has been locally distorted by quantities such as g;;(X;) and %;;(Y;) as

in the RHS of (1.21), we rewrite f,;(X;, Y;) as a sum of fgjs-)(Xl-, Y;, %;,5,)and
first-order terms, thereby creating quasi-canonical second-order terms which
cancel the effect of any g,;(X;) and h;;(Y;) which may be present in the orig-
inal formulation, plus some remaining (quasi-canonically determined) first-
order terms.

An analogous complication but in simpler form already occurs in the prob-
lem of approximation of the expectation of a sum of independent r.v’s. For that

problem,

E@(i XL-> = E<I><i(Xi + ci)>,

i=1 i=1
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for any real {c;}!_; such that > ; ¢; = 0. To approximate this expectation,
Klass (1981) used a method relying on precentering by medians and then
subtracting the resulting truncated expectations to produce canonical inde-
pendent variates together with the augmentation of an (n + 1)th constant
term to compensate for the constants added to (or, rather, subtructed from)
each individual term. Here, we introduce a different method which extends
more readily to the case of k-component generalized U-statistics.

Our results can be generalized to the case in which (X,Y), (X5, Y5y),...,
(X,,Y,) are independent random vectors such that either ¥; = X, or Y; is
independent of all the other variates, and the marginal distributions { X;} and
{Y;} are otherwise arbitrary as in Klass and Nowicki (1998); see Lemma 4.12,
Remark 4.13, Theorem 4.14 and Remark 4.15 and then further extend to the
k-component case.

The paper is organized as follows: Section 2 introduces some lemmas used
to derive bounds for quantities related to & (P, f,X,Y). Section 3 develops
two-sided bounds for &(®, f,X,Y). Section 4 shows that the previous results
are generalizable to the k-component case

E(D(mlz Foea (X0, X(fj)))

Siysenlp=n

where, for each 1 < j < kand 1 < i < n,Xﬁj) are independent random
elements. Finally, the Appendix provides the reader with some supplementary
results which he may want to have on hand.

2. Preliminaries. Unless augmented or stated to the contrary, the sub-
sequent lemmas and theorems of the paper will be based on the following
assumptions: {X;, X i Y, 17}}?:1 is a collection of 4n independent random ele-
ments such that /(X;,Y;) = A(X;,Y,), for 1 <i, j < n, {f;j(x, y)}1<i. jn i
any array of real valued functions and ® € A, has some parameter « > 0.

Double-symmetrizing, we introduce fﬁ;) and obtain a lower bound for
(D, £,X,Y).

LEMMA 2.1. Let f(s)(Xl, YJ Y ;) be defined as in (1.3). Then

(2.1) Eq)( > fu(X ) “‘1E<IJ< Y XY, X, Y))

1<i, j<n 1<i, j<n

PROOF. First, note that

@( Y XY, R, 17,-))

1<i, j<n

§¢(4 > fij(Xian)>+q)<4 > fij(}?ian)>

1<i, j<n 1<i, j<n

+c1><4 > fu(X ))+‘D<4 > fuX ?)>

1<i, j<n 1<i, j<n
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5401(@( > fij(Xi’Yj))+q)< > fij()?i’Yj)>

1<i, j<n 1<i, j<n

+q)< > fij(Xi,?j))Jr(I)( > fij()?p?j))).

1<i, j<n 1<i, j<n

Observing that /(f;(X;,Y,)) = A(f(X;,Y)) = A(f5(X;,Y)) =
Z(fij(X;,Y;)) and taking expectations

Eq>< 3 fgj)(Xi,Yj,)?i,?j)>54a+1Eq>< 3 f,-j(Xi,Yj)) O

1<i, j<n 1<i, j<n

As already discussed in Section 1, the next lemma follows from Theorem
3.2, in Klass and Nowicki (1998).

LEMMA 2.2. Let fS)(Xi, Y, )Z'l-, 17']) be defined as in (1.3). Then

E(I)( Y XYL X i@))
(2.2) =

~, Ecp( 3 (fﬁ?(xi,yj,)?i,?j)f).

1<i, j<n

The next lemma gives a sufficient condition for approximating E®(S;+ Ss3)
in terms of the simpler quantities E®(S;) and E®D(S,).

LEMMA 2.3. Let S = S, + Sy. If E®(S;) <, ED(S) then
E®(S) ~, max{E®(S,), E®(S,)}.

PROOF.
D(8) = D(S; + 8y) < D(28;) + P(28,) < 2°D(S;) + 2°D(S,).
Taking expectations,

E®(S) < 2¢1 max E®(S)).
<j<

Since Sy = S + (—S;), and since ®(x) = P(|x|) the same argument gives
E®(Sy) < 2°" max{E®(S), E®(S;)} <, ED(S). O

Double symmetrization begins with 2n independent r.v.s (or random ele-
ments) and ends with 4n independent r.v’s (or random elements). The follow-
ing lemma introduces a substitution principle by which one can reduce back
to 2n independent r.v’s (or random elements).
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LEMMA 2.4. Let

oA, = {(5" ¥y): Eq’( Y (A Y &, 51))2>

1<i, j<n

(2.3)

§cE<I>< > (fﬁf)(Xi,Yj,??ijj))Q)}-

1<i, j<n
Then for all ¢ > 1,
oy # D,

PrOOF. It suffices to observe that P((f(, ?) ¢ o7,) < 1. This holds since not
all values assumed by a r.v.,

HX,Y) = E(@( > (XY, X 17,-))2) X, 171}>

1<i, j<n

can exceed its expectation

s < ®) ¥ 1)
EH(X,Y):E(D( > (fij(Xi’YjaXi’Yj)>)‘ =

1<i, j<n

Used to approximate the RHS of (2.3), Theorem 4.3 in Klass and Now-
icki (1997) can also be applied to approximate the LHS of (2.3). To do so, let
Uli(x’ ji’ 5’)5 U2j(5’9 ia 5’])) Ul*(ia 5’)7 UZ*(ia 57), and w*(ia 5’) be defined as

Jj=1
< o < () = 5 V)2 2 2

(2.5) vy(y, X, yj):SUP{U >0, ZE<(fU (X, ¥, %, yj)) AU ) >V }7

(2.6) 01,(X,¥) = sup {v >0, > E(v%i(Xi, xi,y) A 02) > 1;2}’

(2.7 Vo, (X, ¥) =supiv >0, > E(vgj(Yj, X, ¥;) A 02) > UZ}

j=1
and
_ (s) ~ 2 2
w*(X,Y)—SuP{W>O > E((fu (X, Y, %, 5) Aw)
1<i, j<n
(2.8) X1(|f§j.>(Xi, Y, %, 5;)|
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LEMMA 2.5.

() - 1\ ~ (s) e
29 E®( | (f (X;,Y;, l,yj)) ~, O(f®,X,Y, %, §),

1<i, j<n
where
. ) ®) i p
PEOXY,%.9) = max{ B max O(f) (X0 V). %.5,)).
E{Ei)flq)@ll(X“x“y))
(2.10)

E max cp(sz(Yj,i, yj)),

1<i<n

D(01,(5% §)), P(v2.(%, 3), Dw. (%, 3) |

3. Two-sided uniform bounds for generalized U-statistics. We begin
Sectlon 3 by introducing an explicit method of adjusting > y.; ., f}; ()
(X;,Y;,x;, y;) by a sum of first-order terms so that the relevant functlonal
expectation of the adjusted quantity is of order no larger than ®(f*), X, Y, %, §).
To expedite the derivation of this fact we define the following sets of events:

(3.1 A%, y) = fgj)(Xb Y, %, 5’1)| > vy (X5, &5, 5’)},
(3.2) Agij(X,¥;) = hf(s)( Y, %, 37J)i > vg;(Y. X, 5’j)},
(3.3) Bj(x,y) = hfgj)(Xij’-’Eiryj)i Sw*},
(3.4) Cu(x,y) = {Uli(Xia %;,¥) < vp.(X, 5’)],
(3.5) C2i(%.9) = {02,(¥;. %, 7)) = v2.(%.9).

and note, for the further reference, that, for all X and y,

(3.6) i P<A1ij(3zia5’)|Xi> =1
j=1

(3.7 i P(AZLJ(X y])|Y) 1,
i=1

(3.8) i P(Ch(x y)) <1,

1

~
Il

NIE

(3.9) P(Cs,%.9)) =1

.
Il
-
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and

(3.10) Y. P(Bj(%,9)A;(%;, ) A%, 7)) < 1.

1<i, j<n
THEOREM 3.1. Let
GL_] = fg;)(X“ YJ’ ii) y])I(Cll(fK’ S,)(CZJ()}’ S,))
x I(By;(%,§) U A, (£, §) U A5 (%, 5))).
Then, for any X and §,

Eq’( > fgjs')(Xian,fi,&j)_Zf_li(XiQiaS’)—Zlf_zj'(Yj;fi,S’))
i

1<i, j<n i=1

Sa q)(f(s), X: Ya ia 5’)’

where
F1(X5%,9)
- I(Cii(ﬁ’ 57)) Z E[fgj)(Xi’ Yj’ Xis yj)I(Aiij(fiaS’)ﬂXi]
(3.11) pat
+ Z(E(Gij|Xi) - %E(Glj))
j=1
and
fo,(Y;;%,¥)
N G - ¢ e -
(3.12) =1(Cy;(%. %) g E[fij (X5, Y, &, 5,)1(Ag;(%, yj))|Yj]

+ Z(E(Gij|Yj) - %E(Gij))'
i=1
If, in addition, (X,¥) € o4 (or o, for some bounded c > 1), then

1<i, j<n i=1 j=1
~, O(f®),X,Y,x,¥).

PrROOF. We begin the proof of Theorem 3.1 by introducing the
decomposition

314 Y XL YNE05) -2 Fu(Xax9) - Y Fo,(Yi%.9) =Y U,

1<i,j<n i=1 J=1 i=1
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where

= Y105 9) X (75X ¥, 520 5)

i=1 j=1

Uy = 3 1(C3,.9) (15X, ¥, 5.5

j=1 i=1

B (0507, 0,51 (45,5 5,)) 17, )

Us=— ¥ [ (X Y5 & 5))1(C(% $))1(C5(%. 9)).
1<i, j<n
U4_ Z fgj)(Xwaxu .)7])
1<i, j<n

x I(C1i(%, 9)C(% 9)Aryj (%1, 9) Azij (%, 7)) BG(X, 9)),

Us= ¥ (Gy— E(GylX)) - E(GylY)) + E(Gy)).

1<i, j<n

The first part of Theorem 3.1 and the bound <, in formula (3.13) are proved
by means of the next two lemmas. To then show the inequality >, in formula
(3.13), take (%X,y) in % as in Lemma 2.4 and write

Eq’( Y (XY, - Y fu(Xaxy) - Y _zj'(Yﬁi’S’))

1<i, j<n i=1

>, ECD( > f(s)( ; )Z'i, i)) (by double symmetrization)

1<i, j<n

~, E(I)( ) (fgj)(X,.,Yj,}?,.,?j))Z) (by Lemma 2.2)

1<i, j<n

= E<D< ) (fﬁj)(Xi,Yj,aZ,-,&j)f)

1<i, j<n
(by assumptions and Lemma 2.4)

~, CID(f(S), X,Y,x,¥) (by Lemma 2.5). O
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LEMMA 3.2.
Ed(U,) <, max{E max @(f(s)(X,-,Yjafiaf’j))’
1<i, j<n
E{nax O (vy,(X, ii,y))}-

Analogously,

ED(U,) <, max{E max O(f0(X,,Y;, &, 5;),

1<i, j<n

E max ®(vy;(Y;, X, yj))}.

1<j<n

Moreover,

Ed(Us) <, B max cp(f§j>( L,Yj,azi,yj))z(cgi(i,y))z(c;j(i,y))

<i, j<n
and

EO(U,) <, E max ¢(f(X,, Y, %, 5,))1(Coi(%,5)Cs, (%, 5)

1<i, j<n
x I(Alij(fi’ ¥)Ag;(%, 3;) B (%, 5’))-
PROOF. To prove the first inequality, write

ED(Uq) <, Y E‘P(Z (fgj)(Xw Y;, %, 7))

i=1 j=1
= B[f3) (X0, Y). % 7)) I (A (%1, 5’))|Xi]))1(cii(i, ¥)

[conditioning on {Y;} and using (3.8) and Lemma A.1 below]

<0 X B0l 3 (£D(X0 Y, 50 5,) (45,51, 9)

i=1 j=1

—B[f(X:, Y}, &, 5)1(AS(%s, 5’))|Xi])}1(cii(ir )

+ ZE‘I)(Z f(S)( j 5’j)I<A1ij(9Eia5’)>I(Cii(§, 5’)))

i=1
[since ®(a + b) < 24(P(a) + P(b))]

Sa Xn: Eq)(vli(Xi’ i’ 57)>I(C§L(i’ S’))

i=1

+Y° E max O£ (X, Y, %, y,-))z(ci,-(ﬁ, ¥))

-1 1<j<n
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[conditioning on {X;}, using Lemma A.2 below for the first sum

and applying (3.6) to Lemma A.1 below for the second sum]
Sa E max q)<Uli()(ia ‘ii’ S’)) + Elmax (D(f(S)(Xw Yja x~ia y~]))
<i, j=n

1<i<n u
[by (3.8) applied to Lemma A.1 below twice].

The second inequality is proved analogously.
To prove the third,

Eq)(US) = Eq)( Z fg;)(Xi’Yj’fia yJ)I(Cil(f(,y))I(ng(f(, 57)))

1<i, j<n
<Y E<I>( > ANXL Y, ;vj))l(c;,(s:, $))1(C4;(%. %))
i=1 j=1

[by conditioning on {Y;} and applying (3.8) to Lemma A.1 below]
<o Y BO(FO(X0 Y &, 5,))1(C5(E ) 1(CS(%,9))

1<i, j<n
[as above but employing (3.9)].
Furthermore, let N; = >/, I(C{;(X,¥)), Ny = '}:1 I(ng(fi, ¥), Ny =
Yz I(CT(X,¥)) and Ny; =3, I(ng'(f‘, ¥)). We have

E max ®(f3(X;,Y;, %, 5,))1(C:(% 3)1(C5,(%,9))

1<i, j<n
> ¥ 1EO(f(X, Y, %, 7))
1<i, j=n

x I(CY;(%, y))l(cgj(ia ¥))I(Ny < 2)I(N, < 2)

= 2 ;{E@(fﬁj)(Xi,Yj,&,-,y”j))

1<i, j<n
X I(Cii(ﬁ,y))l(cgj(i, ¥))P(Ny; < 1)P(Ny; < 1)
(by independence)

=% X BO(F) (XY, % 5)))

1<i, j<n

\

X 1(C3, (. 9)I(C5(%.9)
[since P(N;; <1)=1—-P(Ny; >2) >
1- %ENU > % and similarly for P(Ny; < 1)].
To prove the fourth inequality we let

D;;(x,¥) = {Ci(X,¥)}N{Cy;(X,¥)} N{Ay;;(%;,¥)} N {Ag;; (X, ¥ )} {Bj;(X,¥)},
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Di(x,y) = {Aq;;(%;, ¥)}N{Ag;(X, ¥ )} N{Bj;(X,¥)}
and
~ ~ (s) ~ o~ ~ ~
Wij(X7 y) = fl_] (Xia Yj7 Xis yJ)I(DL](X7 y))
Further, we set

1<i’, j'<n:i'#iand j'#j

Ni(D= X I(Ay(E,9)

1<j'<n:j'#j
and
N-,j(i) = Z I(Azi/j(fi> 5’1))
1<i'<n:i'#i
Then,

Elmax O(W;i(x,y))
<i,j<

>E max (D(WU(X YNI(N};<3,N.(j)<3,N;(1)<3)

1< i =

% Z (W ;(%,9)[(N}; <3, N}.(j) <8, N/;(i)<3)

lj—

1<i,j<n

2Ef Y P(W,;E§)(A-I(N};=4)-I(N.(j)=4) - I(N;(i)=4))
1<i, j<n

=Egq Y. ®(W,(x,9))(1-P(Nj;j=4)— P(N.(j)=4|X))
1<i,j<n

— P(N.;(i)=4]Y;))
> > EQ(W;(X.¥)),

1<i,j<n
since

P(Nj;>4)<iE Y I(D;;(x,¥)<3; by(3.10),

1<i', j'<n

P(N.(j)=4X,)<3E ) I(Aq; (%, ¥)]X;) < 1 by (3.6)

1<j'<n
and similarly,

P(N,(i)=4]Y) <} by@E.7).
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Finally,
Ecb( 3 Wl-,»(s:,y)) <E Y (W& §)(1+Ny+ NG0)+ Nu(j))
1<i, j<n 1<i, j<n

< ¥ E(l + N+ N(E) + N;.(j)>a(D(Wij(5‘, y)

1<i, j<n

= ¥ E(3V (14 Ny 43070 (W)

1<i, j<n
4 gla-D* (N;‘(j))DZ)(D(Wij(s(’ y)

=3V S B(®(Wy(%,9))(E(1+ Ny + E((N()"]Y))

1<i, j=<n
+ E((N.())FIX)))-

Note that

E((N(i)]Y}) =a 1
by applying (3.7) to Corollary 2.4 of Klass and Nowicki (1997), and similarly,

E((N.())'I1X;) =a 1
by applying (3.6) to Corollary 2.4 of Klass and Nowicki (1997). Moreover,

E(1+N})* < E(l + ¥ 1(Dj&, y)))a <1

1<i, j<n

by applying (3.6), (3.7) and (3.10) to Lemma 2.5 of Klass and Nowicki (1997).
Consequently,

Ecb( > W.i(x, 5’)) <a 2 E(¢(Wij(5‘> 5’))) <, E max CD(WU(’@S’))

1<i, j=<n 1<i, j<n 1<i, j<n

which completes the proof. O
LEMMA 3.3.

E0Us) = Bo(_ ¥ (G- E(GylX)) - E(GyIY)) + E(Gy))

1<i, j<n
<, max {P(v1,(X, §)), P(v2.(%, §)), P(w,(X,9))} = P(q.(%, 7)),
where
Gy = (X, Y;, &, 5)1(Cri(%, §)Ca (%, 9))
x I(B;(%,y)U Af(%, ¥) U AG (X, 37))-
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PROOF. To use Lemma A.5 (below) we verify its conditions. First,

ess sup |Gij| = q*(i’ S’)

1<i, j<n

Second,

ess sup > E(G}Y))

1<j<n;—1

< ess sup Y B[ (X0, Y0 51.5))) 1A% 5)1(Co,(%.9))|Y, ]

1<j<n;—1

" S ~ ~ 2 c ~ ~ ~ ~
+ess sup Z E[(fﬁj)(Xi’ Yj7 X5 yj)) I(Alij(xi7y))I(A2ij(xs yj))

1<j=<n;—1

x 1(C14(%, 9))1Y,]

n s R o
+ ess sup ZE[(fﬁj)(Xi,Yj,xi,yj)) I(B;j(x,y))

1<j<n;—1

I(Agj(%, 7))IY,]

= ess sup l;;+ ess sup Iy; + ess sup i3;.
1<j=n 1<j=n 1<j<n

Now,
n s B 2 A -
tij= ziE[(fgj)(Xi’ Y;, %, yj)) I(|fgj)(Xi’ Y, %, 5))l
< vp (Yo &, I DI(02,(Y), %, 5) < 02.(%,9) | ¥, ]
< iE FNX,L YL &, y)) 2/\v2»(Y» x,5,)1Y;
< Z ij irLj> L,yj 2j\* > ’yJ J
X I(U2J'(Yj’i’ 37J) S UZ*(ﬁ’ 5’))
< 03,(Y;, %, 7)1(v2;(Y}, %, ;) < 02.(%, §)) by (2.5)
< V3. (%, 9).
For t,; we have
loj < Z E[v%i(Xia fi’y)I(Azij(ia yj))I(Uli(Xi’ %,¥) < v1.(X,¥)) | Yj]
i=1

<vi(%¥)) P(Ayi(x,5;)Y;) < vL(X,¥) by (3.7).
i=1
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Finally,
ls; = WX, y)il P(Ayy(%, 5,) | ¥;) < wk(%,5) by (3.7,
Hence, ess sup;;., >i; E(G?j|Yj) < 3¢%(%, ).
Analogously,
ess 1s1'1p Zn: E(G?jIXi) <3¢%(x,y).
<izn j—1
Finally, to verify the last condition of Lemma A.5 we write

> BGh = 3 (L B( XY, 59) 145,65 5025 9)))

1<i, j<n

* Z ( ZE (FX0 Y, 2, 5))) (455 HICu(, y)))

B

+

n
1=

(2 B(((rx0 ¥, 50 7) n & 9))

1 \j=1

x I(Ay(E:, ) (Agi(X, @))))
< zl E(v3,(Y;, %, 7 )1(Cy(%,9)))
j=

3 B((X 5,91 (Cu(.9)) + (& 9)
1=1

[by (2.5) and (3.2), (2.4) and (3.1), and (3.1)
and (3.2) applied to (2.8)]
< V3,(%, §) + V(% §) + wi(X,¥) [by (2.6) and (2.7)].

Hence our lemma follows from Lemma A.5. O

By virtue of Theorem 3.1 and the following series of inequalities we obtain
a formula for a suitable first-order adjustment of 3°,_; ;_, f;;(X;, Y;), thereby
enabling us to exhibit a fully constructive method of identifying the order of
magnitude of £(P, f,X,Y), stated below as Theorem 3.4.

Since . # J there exists (X, ¥) such that

E(I)( )D (fgf-)(Xqu’Xian))2>

\
&=
=
)
|
alvg
>
O
L
Ek:
Rall
=21

j))z) (as in Lemma 2.4)
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~, ®(f*),X,Y,%,¥) (as in Lemma 2.5)
> O(f9), X, Y, %%, §°) [by (3.15) (below)]

2 B0 XA 5 - X (X )

1<i, j<n

[by Theorem 3.1 where f;; and £, ; are defined
as in (3.11) and (3.12)]

>, E(D( Y XY, X, Yj)> (by a variant of Lemma 2.1)

1<i, j<n

( Z (fEJS)(X Yj,Xi,Y)) ) (by Lemma 2.2),

where

(3.15) O(f9),X,Y,%°,§°) = inf O(f©, X, Y, %, §).
Xy

REMARK. It is possible that no vector pair (X°, §°) will exist which achieves
the infimum in (3.15). In this case (and even in general) we can use any vector
pair (X, §°) for which the LHS of (3.15) is at most bounded by a known
multiple of the RHS of (3.15) (e.g., by a factor of 2). For any such (x°, §°),

PO T Y ) - X FulXis ) - Ay (7))
3.16) " = =
%a ECI)< Z fgj)(XL’YjﬂXL7YJ)>
1<i, j<n
THEOREM 3.4. Let (X%, §°) satisfy
(3.17) O(F9), X, Y, %% 5% < 2inf O(f¥, X, Y, %, §)
X,y

and set
(3.18)  fUX) =3 Fi(Xi 79 = 33 £i(@0, 59) + Fu(X%°, 3°)
j=1

Jj=1

and

(3.19)  fo,(Y) =2 fy(@.Y,) -1
i=1

||'Ms
L

fl](ig)’ y?) + fzj(Y],i(O, S’O)a
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where f1;(-), f;(-) and ®F®),X,Y) are defined in (3.11), (3.12) and (1.17),
respectively.

Then
E‘D< > fij(Xi’Yj)>

1<i, j<n

(3.20) n n
A, max{db(f'(s),i, ?), E@(Z XD+ fgj(Yj))}'
i—1 j=1

PrOOF. We can rewrite
Z fg;)(‘Xi’ Yj» f?’ 5’3‘) - Z f_li(Xi;iO, 5’0) - Z f_zj'(Yj;fio, 5’0)
1<i, j<n i=1 j=1
as
Z fij(Xi’ Yj) - Z f?i(Xi) - Z fgj(Yj)'
1<i, j<n i=1 j=1

The result then follows from (3.16) and (1.19). O

4, The k-dimensional case. In this section we show in principle how to
construct an approximation for the expectation of the 2-component case given
the existence of an approximation method for the nonnegative k-component
case and the general (£ — 1)-component case. For each 1 < j < kand 1 <
i <nletX §f ) be independent random elements and, for each (i;,...,i;) €
(L..on} let £, 0 (X0, X200 X(P) be a real valued rv. Let @ be a
A,-function. We want to approximate

1 k
4.1) ECI>< Y Fien (X0 Xﬁk))).
1<iy,...,ip<n
Introduce X Ej ’l), two independent copies of the random variables X lj for I =
0,1, j=1,...,kand i = 1,...,n such that ./(XEJ’Z)) = /(X!). Repeating
our lower-bounding symmetrization procedure k. times we obtain

Eq>< > fil.._ik(XEj), o Xf.f)))

1<iq,..,ip<n

1 1 n n
. 2—k(a+1)Eq)< T Y (D) Y Y

Jr=0 J1=0 =1 ip=1

1,5 k,j
Fit (X L x! m))

Ezkml)Ecp( » fﬁf?__ik@}l,...,ifk)).

1<iy,..,ip<n

(4.2)

where ilj = (XEJ’ 0), XE], 1))
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Arguing as in the 2-dim case there must exist {(x(]) ---73E£zj>)}15j5k such
that
() (1) (k) ~(1) ~(k)
ECI>< > Y, ( L X ED g ))
1<iy,...,ip<n
(4.3)

§E<I>< Y L(X “l...,f{ﬁf))).

1<iq,...,ip<n

By the k-fold iterated symmetrization procedure applied to the sum of the
LHS of (4.3) we also have

() (1) (k) ~(1) ~(k)
E(I)( Y AL (XD xR A ))
1<i,

<iy,.,ip<n

(4.4)
> 2—k<a+1>Eq>( > ALED fcgp)).

1<iq,..,ip<n

Hence the two quantities have essentially the same order of magnitude. Since
L(fii, X (1), X(k)) | X(J)) is symmetric for 1 < j < k and (i,...,1;) €

{1,...,n}* it follows by sultable further generalization of Khmtchlnes
inequality that

() (gD (k)
o X L&D LKD)
<iy

Sig,enip<n

SO (D S 1 Y ) D e <)
=i

<iy,.ip<n

(4.5)

and therefore

Eq>< 5
1<iq,.

(X X))
Sl lp=<n

~ (s) {4
A, max{qb(f{imik}, X{i})

G (xD (k) (D) (%)
Bo( 5 [ (X0 XD )
1<i,

<iqemip<n
— Fipeiy (X0 X(f))D }

Though the construction of explicit vectors {(i(l)(j ), s zo ))}15 j<k becomes
increasingly involved it would presumably follow the lines suggested in
Section 3.

(4.6)
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APPENDIX
Supplementary results.

LEMMA A.1 [Klass and Nowicki (1997)l. For 1 < j < n, let the ordered pair
(Bj, Z j) be an event and a nonnegative random variable, respectively. Suppose
there is a o-field F (which could be trivial) such that

Y P(Bjl7)<1 as.
j=1

and such that each 1 < j < n, Z ;I(B}) is conditionally independent of N ; =
Yic1.iz; 1(B;) given 7 and that the {B;} are mutually independent given & .
Then, for ® € Ay with parameter «,

(A1) ECI)(Zn: zjz(Bj)) ~ 3 E®(Z ,)I(B,) ~, E max &(Z)I(B)).

j=1 j=1

Dropping the nonnegativity assumption on Z ;,
EQ(Z ZJI(BJ)) = E@(Z |Zj|I(Bj)>
j=1 j=1
and so by (A.1),
(A.2) E@(Z ZjI(Bj)) <« > E™(Z))I(B;)~, E max O(Z;)I(B)).
j=1 j=1 =Jj=n
In fact, the reverse inequality >, also holds in (A.2).

LEMMA A.2 [Klass and Nowicki (1998)]. Let {Y;})_; be independent,
mean zero random variables. Let ® be any Ag-function with parameter a. Sup-
pose that Z'}:l EYJ-2 < w? and that |Y;| < w,, foreach j=1,...,n. Then

E<I><Z Yj> <, D(w,).
j=1
If, for some 0 < ¢ <A, <1, Y5 EY? = Aw? then
E(I)(Z Yj> e D(w,).
j=1

THEOREM A.3 [Klass (1981)]. Let Y;,Y,,..., Y, be independent random
variables such that min,_;_,{P(Y; > 0), P(Y; < 0)} > %. Let

(A.3) a, = sup{a >0; Y E(Y? Aa?) > az},
j=1
(A4) myp =0+ EY;I(|Y;| <a,)

=1
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and
(A.5) t, = sup{t : i EQ(Y)I(|Y;| >t) > CID(t)}.
j=1

Let ® € A, be of parameter o > 0. Then

(A.6) E<I><b + Z YJ) ~, max{®(a, ), B(m, ), P(t,)}.

=1
For easy reference we also note that

(A7) 1d(t,) < E max &(Y) < 20(t,).
=Jj=n

THEOREM A.4 [Klass and Nowicki (1998)]. Let {X;}/; and {Y;}j,
be two independent sequences of independent random variables, f;; a sequence
of real valued functions and ® a Ay-function with parameter «. Suppose that
either:

) Z(fj(X;, Y)|X;) and £(f;j(X;, Y;)|Y;) are symmetric a.s. for all 1 <
i,j<nor

(11) ® is convex and E[ft](Xl7 YJ)|Xl] = E[fl](XL7 Yj)|Yj] = 0, fOl" all 1 <
i,j<n.Then

Bo( % fyxy))~ome( [ Y )

1<i, j<n 1<i, j<n

LEMMA A.5 [Klass and Nowicki (1998)]. Let {X;};;, {Y;}}_; be two
independent sequences of independent random variables. Let {W;;}1; ;<, be
random variables such that W;; depends only on X; and Y;. Assume further
the existence of a nonnegative real z, such that:

(i) ess supy.; j, |W;| <z,

(ii) ess sup;.;., i E(W7|Y;) < 22.

(iii) ess sup;;., X1 E(W}|X;) < 22.

(IV) Zlfi,jfn EWLZJ < ZE.

Then, for a Ay-function ® with parameter a,

(A8) E®( Y (Wy— E(WylX,)— E(W,|Y))+ EW,)) <, O(2.).
1<i, j<n
If, for some 0 <c <A, <1,
(A.9) > E(W;— E(W;|X,)— E(W;|Y;)+EW;)* = \,2
1<i, j<n
then
w10) B0 S (W= BOW1X) - BOV,[Y) + W) ) %, 0(z.)

1<i, j<n
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