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University of Rochester, Technische Universität Berlin and Technische
Universität Berlin

It has been suggested that stochastic flows might be used to model the
spread of passive tracers in a turbulent fluid. We define a stochastic flow
by the equations

φ0�x� = x�

dφt�x� = F�dt�φt�x���
where F�t� x� is a field of semimartingales on x ∈ �d for d ≥ 2 whose local
characteristics are bounded and Lipschitz. The particles are points in a
bounded set � , and we ask how far the substance has spread in a time T.
That is, we define

�∗T = sup
x∈�

sup
0≤t≤T

�φt�x���

and seek to bound P 	�∗T > z
.
Without drift, when F�·� x� are required to be martingales, although

single points move on the order of
√
T, it is easy to construct examples in

which the supremum �∗T still grows linearly in time—that is, lim infT→∞
�∗T/T > 0 almost surely. We show that this is an upper bound for the
growth; that is, we compute a finite constantK0, depending on the bounds
for the local characteristics, such that

lim sup
T→∞

�∗T
T
≤K0 almost surely

A linear bound on growth holds even when the field itself includes a drift
term.

1. Introduction. It has been proposed that stochastic flows might form
the basis of an instructive model for the spread of “passive tracers” within or
on the surface of a fluid. Individually the tracers are supposed to be diffusing,
while the motions of adjacent particles are correlated, so that they form a
coherent stochastic flow. On an infinitesimal scale this flow is driven by a field
F�t� x� of continuous semimartingales:

φst�x� = x+
∫ t

s
F�du�φsu�x��

We let φt�x� �= φ0t�x�.
Certain questions arise naturally when we imagine the flow to be carrying

a mass of particles—an oil slick, for instance, or some other pollutant which
we would like to confine. A particle begins at a point x within a bounded
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region � , and is transported by time t to a point φt�x�. R. Carmona [3] has
noted that the boundary seems in general to expand exponentially in time,
developing a convoluted fractal structure. C. Zirbel and E. Çinlar [15] have
studied mean properties of the spreading substance (for the special case of
isotropic Brownian flows), and in particular have shown that the center of
mass advances subdiffusively.

In this paper we give a partial answer to one question which was posed, but
not addressed, in the work of Zirbel and Çinlar: the time when the substance
first leaves a ball of radius R. That is, we want to find bounds on

P
{
sup
0≤t≤T

sup
x∈�

�φt�x�� > R

}


While the boundary grows exponentially long, this does not imply that any
individual points move so far. But neither will the fastest point need to move
at the same order of speed as a single diffusion. Even in the absence of drift,
when F�·� x� are martingales, although generic points are displaced only as
the square root of the time, it is not difficult to contrive a system in which
the supremum over all points grows linearly with time. (One example is given
in Section 3. In [5], we show that all isotropic Brownian flows with positive
Lyapunov exponents have this property.) This linear growth was first noticed
several years ago in simulations of a similar model by R. Carmona. He conjec-
tured at the time, but did not prove, that the supremum (or diameter of the
image) could grow no faster than linearly. (R. Carmona [personal communi-
cation]. The conjecture appears in Section 5.2 of his paper with F. Cerou [4],
where it is variously attributed as well to Ya. Sinai, and to M. Isichenko [7].)
A version of this conjecture is stated in Section 2, and is proved in Section 6.

2. Defining the problem. We start, as usual, with a filtered probability
space ���� � ��t�t≥0�P� satisfying the standard conditions, and � , a bounded
subset of �d, for d ≥ 2. On this probability space is defined a field F�t� x�ω� =
M�t� x�ω� +V�t� x�ω� of continuous �d-valued semimartingales which are 0
at time t = 0. HereM�·� x� is a martingale andV�·� x� is a continuous adapted
process of locally bounded variation; t is a time in �0�∞� and x is the spatial
point in �d. We impose the standard continuity condition

�M�·� x�ω��M�·� y�ω��t =
∫ t

0
a�s� x� y�ω�ds�

V�t� x�ω� =
∫ t

0
b�s� x�ω�ds�

where a�s� x� y�ω� and b�s� x�ω� (a d×d matrix and a d-vector, respectively)
are continuous in �x�y� for almost every �s�ω�, and predictable in �s�ω� for
each �x�y�. Defining

� �s� x� y�ω� = a�s� x� x�ω� − a�s� y� x�ω� − a�s� x� y�ω� + a�s� y� y�ω��
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we also assume that there are some constants a�A� b�B such that these func-
tions satisfy

�� �s� x� y�ω�� ≤ a2�x− y�2�(1)

�a�s� x� x�ω�� ≤ A2�(2)

�b�s� x�ω� − b�s� y�ω�� ≤ b�x− y��(3)

�b�s� x�ω�� ≤ B�(4)

for all x�y ∈ �d and all s ∈ �0�∞� almost surely. We will often elide the ω. By
another egregious abuse of notation, we allow �x� to represent the Euclidean
norm when x is a vector, while �� � represents the corresponding operator
norm when � is a matrix.

We observe here that, for each x�y ∈ �d, the matrix � �t� x� y�ω� is non-
negative definite for almost all t ∈ �0�∞� and ω, since for any vector v,

vT� �t� x� y�v = d

dt
�v · �M�·� x� −M�·� y���t

Observe as well that, for any d× d real matrix � ,

Tr� ≤ �d− 1��� � + inf
�v�=1

vT� v(5)

To see this, simply compute the trace in an orthonormal basis which includes
the vector v that minimizes vT� v.

Kunita [8, Theorem 4.5.1] tells us that, under these conditions, the equation

φst�x�ω� = x+
∫ t

s
F�du�φsu�x��

determines a unique continuous stochastic flow φst�x�ω� on 0 ≤ s� t < ∞, of
homeomorphisms in x ∈ �d. We will generally write φt�x� instead of φ0t�x�ω�,
and introduce in addition the notation

�T�x�y� = sup
0≤t≤T

�φt�x� −φt�y���

�∗T = sup
0≤t≤T

sup
x∈�

�φt�x��

We will also have use for a “driftless” version of the flow:

ψt�x� = φt�x� −
∫ t

0
b�s�φs�x��ds

This is not a flow, of course, but it is a martingale for each x. We define
�T�x�y� and �∗

T by analogy to �T and �∗T.
We ignore the case d = 1. The outer boundary of � consists then of only

two points, which means that the supremum is simply the maximum of two
diffusions. The growth is clearly on the order of

√
T (without drift) or T (with

drift), and may be bounded directly by the results of Section 5. The interesting
situation arises when we try to control the maximum over infinitely many
boundary points.
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Theorem 2.1. The growth of �∗T is at most linear in T, in the sense that

lim sup
T→∞

�∗T
T
≤ �d2 − d�aAκ�b̃� +B�(6)

almost surely, where b̃ �= b/a2�d−1�, and κ is a continuous increasing function
given by �28�, with κ�0� ≈ 182. Furthermore, for all positive γ and α′ > 2,

sup
T≥0

E�ργ�α′ ��∗T/�T ∨ 1��� <∞�(7)

where

ργ�α′ �z� = exp	γz2/�1 ∨ log z�α′ 

There is a bound on this supremum which depends only on γ and α′, on the
dimension d, and on the local-characteristic bounds a�A� b and B.

3. Heuristic arguments and an example. We begin by first explaining
why the expansion should be faster than merely diffusive—that is, order

√
T

growth; second, explaining why in the absence of drift the expansion should
not be faster than linear; and third, giving an example to illustrate how the
growth can in fact be linear.

To the first question there is a trivial answer: although each point moves
diffusively (if the drift is zero), there are infinitely many points, and there is
no reason a priori why the maximum should not be significantly larger than
any individual element. But there is more to be said here, because the points
are not free agents: adjacent points are strongly correlated. What drives the
superdiffusive expansion is simply the rate at which the diffusing points lose
their correlation. That is, not only do the points spread out individually, but
as they spread they behave as though there were more of them.

The continuity conditions imply that the distance between two points fol-
lowing this motion will grow no faster than a geometric Brownian motion.
That is,

�φt�x� −φt�y�� ∼ exp�λt+ σWt��
where Wt is a standard Brownian motion and λ is positive. (A precise state-
ment is given in Lemma 5.1.) This short-range exponential expansion is seen
in the aforementioned exponential growth of the boundary.

Suppose for simplicity that d = 2 and that � is the unit disk, and imagine
that we knew that every piece of the boundary would stretch by a factor of no
more than eλt in time t. Then we could choose n = �2πeλt� points �xi�ni=1 on
the unit circle, at intervals of e−λt, and

sup
x∈B1�0�

�φt�x�� ≤ 1+ max
1≤i≤n

�φt�xi���

where Br�x� is the Euclidean ball of radius r around the point x. Each φt�xi�
is a diffusion, so �φt�xi�� has an expectation about σ

√
t and subgaussian tails,

for some positive σ . But the maximum of n positive subgaussian variables with
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expectation bounded by σ
√
t is itself subgaussian with expectation no more

than σ
√
t
√
log n. Thus we should expect supx∈B1�0� �φt�x�� to be subgaussian,

with variance on the order of σ
√
λt.

In fact, this is the essence of the chaining argument, by which we bound the
rate of expansion—only, since it is not literally true that points never separate
at a speed faster than eλt, no one finite set of points will suffice. Instead, we
rely upon ever finer meshes of points to trap the supremum.

We now construct an example which does exhibit linear growth. (In our
following paper [5], we prove that a wide class of somewhat more natural
examples, the isotropic Brownian flows with positive Lyapunov exponents,
also grows linearly.) It is a process in �2 driven by a single standard Brownian
motionWt. It exploits the fact that a tangential Brownian motion—a stochas-
tic rotation—automatically acquires a deterministic radial component.

We take � to be the unit disk. Begin by choosing any a > 0 and k ∈
�0� a2/2�. Let ρ�x� = �x ∧ 1� ∨ �−1�, and define the stochastic differential
equations

dXt = aρ�Yt�dWt�

dYt = −aρ�Xt − kt�dWt

This may be understood as a random rotation, about a center which drifts to
the right with constant rate k. Clearly, these equations satisfy the conditions
(1) through (4), with B = b = 0 and A = √2a. Let φ be the stochastic flow
associated with these equations. We will show that, for every t ≥ 0, we have

φt�B1�0�� ⊃ B1�kt�
almost surely, which implies that

t−1 sup
x∈B1�0�

�φt�x�� ≥ k

almost surely.
Define

Rt =
√
Y2
t + �Xt − kt�2

Itô’s formula implies that

dR2
t = −2aYtρ�Xt − kt�dWt + 2a�Xt − kt�ρ�Yt�dWt − 2�Xt − kt�kdt

+ a2
[
ρ�Xt − kt�2 + ρ�Yt�2

]
dt

When Rt ≤ 1, the right-hand side becomes

�−2�Xt − kt�k+ a2R2
t �dt

Since a2 − 2k > 0, there is a positive ε such that dRt/dt > 0 when 1 − ε ≤
Rt ≤ 1. If R0 ≥ 1, it follows that

P	Rt ≥ 1 for all t ≥ 0
 = 1
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By the continuity of φt�x� (with respect to x), this implies that

P	φt�B1�0�� ⊃ B1�kt� for all t ≥ 0
 = 1

Note that the lower bound for the speed here, k = a2/2, is about a factor of
50 smaller than the upper bound 18.2

√
2a2 given by Theorem 1.

4. Basic results: chaining. The proof relies on two well-known, elemen-
tary tools—or, rather, on one well-known and one elementary tool. The well-
known tool is Itô’s formula, certainly a sophisticated result, but familiar to
the point of banality. We use the comparison theorem, a direct consequence of
Itô’s formula, to derive effective bounds on the separation of two given points
under the action of the stochastic flow. These will be presented in Section 5.

The elementary technique which turns these two-point approximations into
a bound on the supremum is “chaining”: a local hero within its home province
of empirical-process theory but somewhat neglected in the wider world, ever
since it was first introduced by Lévy to derive the modulus of continuity for
Brownian motion. The idea is as simple as it is powerful: Given a totally
bounded metric space �� � d� and a random continuous function φ� � → �+,
we seek to bound supx∈� φ�x�, on the basis of information only about the
action of φ on single points and pairs of points.

This project relies upon a sequence of metric skeletons: given some positive
real numbers δj such that

∑∞
j=0 δj < ∞, we find finite sets �j in � such

that, for every point x ∈ � , there is a point xj ∈ �j with d�x� xj� ≤ δj. For
simplicity we also assume that �0 = 	x0
, with d�x� x0� ≤ δ0 for all x ∈ � .

There are many variations on this theme: extensive accounts of the chaining
method, theory and practice may be found in D. Pollard’s expository paper
[10] and in his lecture notes [11], as well as in the texts by M. Ledoux and
M. Talagrand [9] and J. Wellner and A. van der Vaart [14]. There is no single
most general form, and we will derive here a version which is optimized for
our present applications. We make no claims for the originality of this lemma,
but we have not found an exactly equivalent result in the literature.

Most renditions of the chaining concept rely upon Orlicz norms, but these
are too crude in our context, because it requires that the tail bounds have
the same form throughout the range of δ’s. To obtain the best results, we
will need to split up the δ’s into three different ranges, so that we will need to
work throughout directly with probability bounds. The increased power is paid
for with a significant burden of extra bookkeeping, which we have attempted
to hold to the sunny side of opaque. One prior work which takes a similar
approach is K. Alexander [2].

Lemma 4.1. Let φ� � → �+ be an almost-surely continuous random func-
tion, with ��j� and �δj� defined as above. For any positive z and ε and any
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sequence of positive εj with ε+∑∞
j=0 εj ≤ 1,

P
{
sup
x∈�

φ�x� > z

}
≤P	φ�x0� > εz


+
∞∑
j=0
!�j+1! sup

d�x�y�≤δj
P	!φ�x� −φ�y�! > εjz


(8)

Proof. First, for each j and each x ∈ �j+1, define gj�x� to be a point
in �j such that d�x�gj�x�� ≤ δj. We claim that, for each x ∈ � , there is
an infinite sequence x0� x1�    with xj ∈ �j, such that x = limj→∞ xj and
xj = gj�xj+1�.

Define δ∗j =
∑∞

i=j δi, and let �̃j be the set of points in �j within a distance

δ∗j of x. Also let �̃ be the disjoint union over j of all the �̃j—that is, �̃ =
	�j� x�� x ∈ �̃j
. These sets are all nonempty, and if x̃ ∈ �̃j+1, then gj�x̃� ∈ �̃j.
The tree whose vertices are �̃ and whose edges connect x̃ ∈ �̃j+1 to gj�x̃� is
infinite and connected, and every vertex has finite degree, so it must have at
least one infinite path (by König’s Infinity Lemma [13], Theorem 2.1). Since
limj→∞ δ∗j = 0, this infinite path fulfills the claim. For every x ∈ � , we choose
one such sequence, and denote it by �xj�x��.

By continuity, for almost every φ and every point x, we have

φ�x� = φ�x0� +
∞∑
j=0
�φ�xj+1�x�� −φ�xj�x���

Thus,

sup
x∈�

φ�x� ≤ φ�x0� + sup
x∈�

∞∑
j=0
!φ�xj+1�x�� −φ�xj�x��!

≤ φ�x0� +
∞∑
j=0

max
xj+1∈�j+1

!φ�xj+1� −φ�gj�xj+1��!

It follows then that

P
{
sup
x∈�

φ�x� > z

}
≤ P

{
φ�x0� +

∞∑
j=0

max
x∈�j+1

!φ�gj�x�� −φ�x�! > z

(
ε+

∞∑
j=0

εj

)}

≤ P
(
	φ�x0� > εz
 ∪

∞⋃
j=0

⋃
x∈�j+1

	!φ�gj�x�� −φ�x�! > εjz

)

≤ P	φ�x0� > εz
 +
∞∑
j=0

∑
x∈�j+1

P	!φ�x� −φ�gj�x��! > εjz


≤ P	φ�x0� > εz
 +
∞∑
j=0
!�j+1! sup

d�x�y�≤δj
P	!φ�x� −φ�y�! > εjz
 ✷
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If the skeletons are not too big (this particular topic of concern is referred
to as “metric entropy” in the chaining business), and if the probabilities in
this last expression fall sufficiently quickly as d�x�y� → 0, then we may hope
to obtain a reasonably well-behaved sum.

5. Basic results: the two-point motion. The first part of the solution
is an estimate on the rate of separation of any two starting points x and y,
under the action of the stochastic flow. The difference φt�x�−φt�y� is a semi-
martingale. Its local diffusion and drift rate are bounded according to the
conditions (1) through (4) on the one hand by 4A2 and 2B, on the other hand
by a2�φt�x�−φt�y��2 and b�φt�x�−φt�y��. The former provides an irreproach-
able global bound on the distance between the two points, to wit 2A!Wt!+2Bt,
where Wt is a Brownian motion. Such a bound is adequate when x and y are
far apart, but is much too coarse when they are adjacent, when the Lipschitz
properties of the flow are essential to chain together the motions. There we
bound the spread instead by a multiplicative Brownian motion—much worse
in the long run, but with the advantage that the separation remains a multiple
of �x− y�.

The goal is to merge these two bounds. When the initial interval �x−y� is
manageably small, we run with (1) and (3), until the exponential growth rate
destroys the initial correlation. At that point we switch to the global diffusion
bounds (2) and (4).

Lemma 5.1. If the conditions �1� through �4� are satisfied, we may define,
for each pair of points x�y in � , a standard Brownian motion Ws such that

�T�x�y� ≤ sup
0≤s≤T

{
�x− y� exp	aWs + λT


}
for all T ≥ 0, where λ = b+ �d− 1�a2/2.

Proof. If x = y, the statement is trivial; so assume x #= y. Define the
stochastic process 1t = �φt�x� − φt�y��. By Itô’s formula, this satisfies the
differential equation

d1t=
φt�x� −φt�y�

1t
· �M�dt�φt�x�� −M�dt�φt�y���

+ φt�x� −φt�y�
1t

· �V�dt�φt�x�� −V�dt�φt�y���

+ 1
2

d∑
i� j=1

1−1t
(
δi�j − 1−2t �φi

t�x� −φi
t�y���φj

t �x� −φ
j
t �y��

)
×�ij�t�φt�x�� φt�y��dt

(9)

Writing � for � �t�φt�x�� φt�y��, the drift component is bounded by

b1t +
Tr �

21t
− 1
21t

inf
�v�=1

vT� v ≤ λ1t(10)
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Here we have used the bound (5), together with the assumption that
�� � ≤ a212

t .
Let

Nt =
∫ t

0

φs�x� −φs�y�
12
s

· �M�ds�φs�x�� −M�ds�φs�y���

Nt�t ≥ 0� is a continuous local martingale, with

d�N�t
dt

= 1−4t �φt�x� −φt�y��T� �t�φt�x�� φt�y���φt�x� −φt�y�� ≤ a2�(11)

and let 1̃t�t ≥ 0� be the solution of the stochastic differential equation

d1̃t= 1̃t dNt + λ1̃t dt�

1̃0=�x− y�
(12)

The diffusive components and the initial conditions of the two equation
systems are identical, while the drift component of (9) is smaller than that
of (12). By the Comparison Theorem [6, Theorem VI.1.1], this implies that
1̃t ≥ 1t almost surely for all t ≥ 0. (N.B.: Ikeda and Watanabe state their
theorem for Nt a Brownian motion, but in fact their proof does not call on
any special properties, and is just as valid if N is a general continuous local
martingale.)

By an application of Itô’s formula, the solution of (12) is simply

1̃t = �x− y� exp
{
Nt −

1
2
�N�t + λt

}


Since Nt is a continuous local martingale, with N0 = 0 almost surely and
quadratic variation bounded by (11), we may represent N (possibly on an
enriched probability space) in the form Nt = aWτ�t�, where Wt is a standard
Brownian motion, and τ�t� is a family of stopping times with τ�t� ≤ t almost
surely (cf. [12, Theorem V.1.4]). In particular, on this probability space,

�T�x�y� ≤ sup
0≤s≤T

1̃s ≤ �x− y� sup
0≤s≤T

exp	aWs + λT
 ✷

We may now use simple facts about Brownian motion to derive useful
bounds on the two-point separation. We assume that A and a are nonzero.

Proposition 5.2. For all x�y in� , all positive times T, and any positive z,
the two-point separation �T�x�y� satisfies

P	�T�x�y� > z
 ≤ 2√
π
exp

{
− 1
2a2T

(�log z− log �x− y� − λT�+)2}�(13)

P	�T�x�y� > z
 ≤ 4d√
π
exp

{
− 1
8A2T

((
z

d
− �x− y� − 2BT

)+)2}
�(14)
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where λ = b+ �d− 1�a2/2. We also have the one-point bound

P
{
sup
0≤t≤T

�φt�x�� > z

}
≤ 4d√

π
exp

{
− 1
2A2T

((
z

d
− �x� −BT

)+)2}
(15)

Proof. By Lemma 5.1, if a > 0,

P	�T�x�y� > z
 ≤ P
{
sup
0≤t≤T

Wt ≥
1
a
�log z− log �x− y� − λT�

}


Applying the reflection principle and the approximation∫ ∞
z

exp �−x2/2�dx ≤
√
2 exp �−z2/2�

for z positive (see, e.g., [1], 7.1.13) proves (13).
The bound (14) is obtained by ignoring the continuity of the stochastic flux,

and pretending that the points move diffusively, with diffusion constant no
more thanA and drift no more thanB. Formally, for each coordinate 1 ≤ i ≤ d,∣∣φi

t�x� −φi
t�y�

∣∣ = ∣∣∣∣xi − yi +
∫ t

0

[
bi�s�φs�x�� − bi�s�φs�y��

]
ds

+
∫ t

0
Mi�ds�φs�x�� −

∫ t

0
Mi�ds�φs�y��

∣∣∣∣
≤ !xi − yi! + 2Bt+ !M̃i

t!�

where M̃i
s is a local martingale with quadratic variation

d�M̃i�t
dt

= �ii�t�φt�x�� φt�y�� ≤ 4A2

By the same argument as in Lemma 5.1, this implies that we may define d
standard Brownian motions (not necessarily independent) with

sup
0≤t≤T

!φi
t�x� −φi

t�y�! ≤ !xi − yi! + 2BT+ 2A sup
0≤t≤T

!Wi
t!

Thus,

P	�T�x�y� > z
 ≤ d max
1≤i≤d

P
{
sup
0≤t≤T

!Wi
t! ≥

1
2A

(
z

d
− !xi − yi! − 2BT

)}

≤ 4d√
π
exp

{
− 1
8A2T

((
z

d
− �x− y� − 2BT

)+)2}


The one-point bound (15) is proved identically. ✷

The corresponding bounds for the driftless version follow directly.
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Corollary 5.3. For all x�y in � , all positive times T, and any positive z,
the two-point separation �T�x�y� satisfies

P	�T�x�y�>z
≤
2√
π
exp

{
− 1
2a2T

((
log

z

bT+1−log�x−y�−λT
)+)2}

(16)

and

P	�T�x�y� > z
 ≤ 4d√
π
exp

{
− 1
8A2T

((
z

d
− �x− y�

)+)2}
�(17)

where λ = b+ �d− 1�a2/2. We also have the one-point bound

P
{
sup
0≤t≤T

�ψt�x�� > z

}
≤ 4d√

π
exp

{
− 1
2A2T

((
z

d
− �x�

)+)2}
(18)

Proof. We note first that by (3),

�T�x�y� = sup
0≤t≤T

�ψt�x� − ψt�y��

= sup
0≤t≤T

∥∥∥∥φt�x� −φt�y� −
∫ t

0
�b�s�φs�x�� − b�s�φs�y���ds

∥∥∥∥
≤ sup

0≤t≤T
�φt�x� −φt�y�� +

∫ T

0
�b�s�φs�x�� − b�s�φs�y���ds

≤ �T�x�y� +
∫ T

0
b�φs�x� −φs�y��ds

≤ �1+ bT��T�x�y�
The bound (16) is thus an immediate consequence of (13).

The bounds (17) and (18) follow exactly the same scheme as their analogues
in Proposition 5.2, since

!ψi
t�x� − ψi

t�y�! =
∣∣∣∣xi − yi +

∫ t

0
Mi�ds�φs�x�� −

∫ t

0
Mi�ds�φs�y��

∣∣∣∣
≤ !xi − yi! + !M̃i

t! ✷

6. Proof of the theorem. Observe first that

�∗T = sup
0≤t≤T

sup
x∈�

∥∥∥∥ψt�x� +
∫ t

0
b�s�ψs�x��ds

∥∥∥∥ ≤ �∗
T +BT

Thus, it will suffice to prove that

lim sup
�∗
T

T
≤ d�d− 1�aAκ�b̃��

and that the exponential moment bounds (7) hold for �∗
T in place of �∗T.
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By [8], Theorem 4.5.1, there is a modification of the system �φt� in which
the maps are homeomorphisms depending continuously on t. It is a simple
consequence of the bounds (3) and (4) on b�s� x� that, for any t� u ∈ �+ and
x�y ∈ � ,∥∥∥∥∫ t

0
b�s�φs�x��ds−

∫ u

0
b�s�φs�y��ds

∥∥∥∥ ≤ bt�t�x�y� + !t− u!B

almost surely, so the functions ψt�x� are also almost-surely continuous in t
and x, allowing us to apply chaining bounds.

Without loss of generality, we may assume that � is the unit ball in �d.
The maximum must occur on the boundary, so we may ignore the interior of
the ball: �∗

T = supt≤T sup�x�=1 �ψt�x��. For simplicity we throw in the origin,
and take � = 	0
 ∪ 	x ∈ �d� �x� = 1
.

Choose ε ∈ �0� 14�, and α ∈ �2�2e�. Let k, T and θ be positive, so that

kT > 16
d2

ε2
�(19)

k >
1
θep

(
a2

(
e+ 1

2

)
�d− 1� + b+ a2

θepkT
+ 5+ log�bT+ 1�

T

)
�(20)

where p = �log kT� − log kT ∈ �0�1�. Define δ0 = 1, and δj = exp�−θej�
for j ≥ 1. We may find a sequence of δj-skeletons ��j� for � , taking �0 =
	0
, such that the number of points in �j is !�j! ≤ γdδ

−d+1
j , where a crude

calculation shows that γd ≤ 2dd�d+1�/2. We also define

j1 = $log kT− α log log kT%�
j2 = �log kT��
β = �√e− 1��1− 2ε�

We use these to define a sequence �εj� with
∑
εj ≤ 1:

εj =
 ε/�j1 + 1�� if 0 ≤ j ≤ j1,
β exp��j− j2�/2�� if j1 + 1 ≤ j ≤ j2 − 1,
�1− 2ε�e−j−1� if j ≥ j2.

The sum of the εj is

∞∑
j=0

εj = �j1 + 1� ε

j1 + 1
+ �√e− 1��1− 2ε� exp�−j2/2�

j2−1∑
j=j1+1

ej/2

+ �1− 2ε�
∞∑

j=j2
e−j−1

= ε+ �1− 2ε� exp�−j2/2��exp�j2/2� − exp�j1 + 1�/2�

+ exp�−j2��1− 2ε�
e− 1
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≤ ε+ �1− 2ε�
(
1− 1√

e�log kT�α/2
)
+ 1− 2ε
�e− 1�kT

≤ 1− ε

(Note that 2 < α < 2e implies that �log x�α/2 < x for all x > 1.)
Since the supremum of a sum is smaller than the sum of the suprema,

we may apply the chaining inequality (8) to the function ��x� �= sup0≤t≤T
�ψt�x��:

P	�∗
T > kT
≤P

{
sup
0≤t≤T

�ψt�0�� > εkT

}

+
∞∑
j=0
!�j+1! sup

�x−y�≤δj
P	�T�x�y� > εjkT


(21)

By inequality (18), the first term is bounded by

P
{
sup
0≤t≤T

�ψt�0�� > εkT

}
≤ 4d√

π
exp

{
− �εkT�2
2A2d2T

}
(22)

We consider now the sum. Using Corollary 5.3, this may be bounded by

4dγd√
π

j1∑
j=0

exp
{
�d−1�θej+1− 1

8d2A2T

((
εkT

j1+1
−d

)+)2}

+ 4dγd√
π

j2−1∑
j=j1+1

exp
{
�d−1�θej+1− 1

8d2A2T

(�β√kTe�j−p�/2−d�+)2}

+ 2γd√
π

∞∑
j=j2

exp
{
�d−1�θej+1− 1

2a2T

×
((
−j+log kT

bT+1+θe
j−λT−3

)+)2}


(23)

In the first sum the terms are increasing, so it is bounded by

�j1 + 1� exp
{
�d− 1�θ exp�j1 + 1� − 1

8d2A2T

((
εkT

j1 + 1
− d

)+)2}

≤ log�kT� exp
{
e�d− 1�θkT
�log kT�α − 1

8d2A2T

((
εkT

log kT
− d

)+)2}
≤ log�kT� exp

{
e�d− 1�θkT
�log kT�α − ε2k2T− 2dεk log kT

8d2A2�log kT�2
}


Since ε2kT > 4dε
√
kT > 4dε log kT (by (19)), this bound may be simplified to

log�kT� exp
{

kT

�log kT�2
(
e�d− 1�θ�log kT�−α+2 − ε2k

16d2A2

)}
(24)
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For the middle sum we have
j2−1∑

j=j1+1
exp

{
θej+1�d− 1� − 1

8d2A2T

(�β√kTe�j−p�/2 − d�+)2}

≤
j2−1∑

j=j1+1
exp

{
θej+1�d− 1� − ej�β2e−pkT− 2β

√
kTe−j/2d�

8d2A2T

}
≤ �1+ α log log kT�

× exp
{
kT�8ed2�d− 1�θA2 − β2e−pk+ 2dβ�log kT�α/2/T�

8d2A2�log kT�α
}
�

(25)

as long as the quantity in the braces is negative. (If positive, it is in any case
tautologous as a probability bound.)

In the last (infinite) sum, the ratio of successive terms with indices j and
j+ 1 is

exp
{
θej+1�d− 1� − 1

2a2T

((
−j− 3+ log

kT

bT+ 1
+ θej − λT

)+)2

− θej+2�d− 1� + 1
2a2T

((
−j− 4+ log

kT

bT+ 1
+ θej+1 − λT

)+)2}


We know from (20) that θej�e − 1� − 1 is nonnegative, so we may apply the
elementary inequality

��y+ z�+�2 − �y+�2 ≥ 2yz for z ≥ 0

with z = θej�e− 1� − 1, to conclude that the ratio is bounded below by

exp
{
−θej+1�e−1��d−1�

+ �θe
j�e−1�−1��−j−3+log�kT/�bT+1��+θej−λT�

a2T

}
≥exp

{
−θej+1�e−1��d−1�

+ �θe
j�e−1�−1��−logkT−4+log�kT/�bT+1��+θepkT−λT�

a2T

}
≥exp

{
θej�e−1�

[
−e�d−1�+ θepkT−4−λT−log�bT+1�

a2T

]
− θepkT

a2T

}
≥exp

{
θepkT�e−1�

(
−e�d−1�− 4+�e−1�−1+log�bT+1�

a2T
+ θepk−λ

a2

)}


The second step uses (20), which implies that the map j &→ −j + θej is non-
decreasing on �j2�∞�. The last step uses the fact that the quantity in square
brackets is positive, again by (20). Remember that λ = b+�d−1�a2/2, so that
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a final application of (20) shows the ratio in question to be at least 2. It follows
that the infinite sum is bounded by

2 exp
{
θ exp�j2 + 1��d− 1�

− 1
2a2T

(
−j2 − 3+ log

kT

bT+ 1
+ exp�j2�θ− λT

)2}
= 2 exp

{
e1+p�d− 1�θkT

− 1
2a2T

��epθk− λ�T− 3− p− log�bT+ 1��2
}

≤ 2 exp
{
T

(
e1+p�d− 1�θk− �e

pθk− λ�2
2a2

)
+ �4+ log�bT+ 1���epθk− λ�

a2

}


(26)

Putting all of this together, we see that the sum in the chaining inequal-
ity (21) is bounded by

4dγd√
π

(
log�kT� exp

{
kT

�log kT�2
(
e�d− 1�θ�log kT�2−α − ε2k

16d2A2

)}
+�1+ α log log kT�

× exp
{
kT�8eθd2�d− 1�A2 − β2e−pk+ 2dβ�log kT�α/2/T�

8d2A2�log kT�α
}

+ exp
{
T

(
e1+pkθ�d− 1� − �e

pkθ− λ�2
2a2

)
+ �4+ log�bT+ 1���epkθ− λ�

a2

})


As T gets large, the first terms will go to 0 nearly exponentially fast, no matter
what k is (provided, of course, that the conditions (19) and (20) are satisfied).
The other two terms, on the other hand, will go to 0 only if k is chosen to
make the coefficients of T in the exponents negative. There will be a critical
value of k above which this will be true, and since this will be our bound on
the speed, we want to make it as small as possible. This is accomplished when
the same k is the critical value for both, and we may manipulate θ to make
this happen. That is, we fix θ to make

8eθd2�d− 1�A2

β2e−p
= �d− 1�a2

epθ

(
e+ 1

2
+ b̃+

√
e2 + e+ 2eb̃

)
�(27)

the latter being the larger root of

e1+pθ�d− 1�k− �e
pkθ− λ�2
2a2

= 0�
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seen as an equation in k. (Here we have substituted the definitions
λ = �d − 1�a2/2 + b, and b̃ = b/�d − 1�a2.) This definition involves k and
T, through p, which might in principle threaten to confound the relation (20)
already assumed. But in fact, θ appears there only as epθ, which the defini-
tion (27) fixes as a constant. Now choose k to be greater than the quantity
in (27), which is (once we have eliminated θ)

k >

√
8e1+pA2d2�d− 1�

β2
· �d− 1�a2e−p

(
e+ 1

2
+ b̃+

√
e2 + e+ 2eb̃

)

=
√
8e

(
e+ 1

2
+ b̃+

√
e2 + e+ 2eb̃

)
�√e− 1�−1�1− 2ε�−1d�d− 1�aA

The condition that k be greater than the left-hand side of (27) will make
the middle sum go to zero with increasing T, while k being greater than the
right-hand side will do the same for the infinite tail sum. Note that the latter
bound implies (20) for T sufficiently large.

Define κ�b̃� to be

κ�b̃� �=
√
8e

(
e+ 1

2 + b̃+
√
e2 + e+ 2eb̃

)
�√e− 1�−1(28)

Since we may take ε as small as we like (but still positive), this yields an
upper bound on the speed

K0 = κ�b̃��d2 − d�aA(29)

Along with (22), this means that if we fixK∗
0 > K0, there are positive constants

c and T0 ≥ 1 (depending on d� a� A� b� α, but not k) such that, for any k ≥K∗
0

and T ≥ T0,

P	�∗
T > kT
 ≤ exp

{
−c k2T

�log kT�α
}
(30)

The intermediate bound K∗
0 may seem superfluous, but we need it to make

this exponential bound uniform in k. As k approaches K0, we would need to
let ε go to 0, sending c to 0 and T0 to ∞. Above K∗

0 we may leave ε fixed.
Since T &→ �∗

T is nondecreasing,

P
{
lim sup
T→∞

�∗
T

T
> K∗

0

}
≤ P

{
lim sup
N→∞

�∗
N+1
N

>K∗
0

}
= P

{
lim sup
N→∞

�∗
N

N
> K∗

0

}
≤ P	�∗

N > K∗
0N infinitely often
�
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where N runs over positive integers. This last probability is 0, by
Borel–Cantelli and (30). Since this holds for all K∗

0 > K0, it follows that

lim sup
T→∞

�∗
T

T
≤K0

almost surely. By the comment which began this section,

lim sup
T→∞

�∗T
T
≤K0 +B�

completing the proof of (6). Observe that in the driftless setting, with
B = b = 0, this speed K0 goes to 0 as a goes to 0. This is to be expected,
since a = 0 implies that the flow is pushing all points exactly the same way,
so the whole region � moves like a single diffusion. This means that the
growth of �∗T is on the order of

√
T, so the linear speed should be 0.

Now consider the nearly Gaussian moments given by the functions ργ�α.
Let K∗

0 be as above, but required to be at least ee, so that the function ργ�α′ is
increasing in x ≥K∗

0 for every α
′ ∈ �α�2e�. For T ≥ T0,

E
[
ργ�α′

(
�∗
T

T

)]
≤ ργ�α′ �K∗

0� +
∫ ∞
K∗

0

ρ′γ� α′ �x� P
{
�∗
T

T
> x

}
dx

≤ ργ�α′ �K∗
0�

+γ
∫ ∞
K∗

0

(
x�2 log x− α′�
�log x�α′+1

)
exp

{
γx2

�log x�α′ −
cTx2

�logTx�α
}
dx

This is finite and decreasing in T ≥ 1—the exponent α′ is less than 2e—
so evaluating it when T is T0 provides a uniform bound β�γ� α′� α� on the
expectation for all T ≥ T0:

E
[
ργ�α′

(
�∗
T

T

)]
≤ β�γ� α′� α�

For 0 ≤ T < T0, �
∗
T ≤ �∗

T0
, so

sup
T≥0

E
[
ργ�α′

(
�∗
T

T ∨ 1

)]
≤ sup

T≥0
E

[
ργ�α′

(
�∗
T0

T ∨ 1

)
∨ exp

(
γe2e−2

)]
≤ β�γT2

0� α
′� α� + exp

(
γe2e−2

)


The cutoff at exp
(
γe2e−2

)
is there to make the function ργ�α′ monotonic. Since

α was an arbitrary number between 2 and 2e, this implies that

sup
T≥0

E
[
ργ�α′

(
�∗
T

T ∨ 1

)]
<∞

for all α′ > 2. Finally, we use the fact that �∗T ≤ �∗
T + BT to complete the

proof.
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