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ON THE WULFF CRYSTAL IN THE ISING MODEL

By Raphaël Cerf1 and Ágoston Pisztora2

University Paris Sud and Carnegie Mellon University

We study the phase separation phenomenon in the Ising model in
dimensions d ≥ 3. To this end we work in a large box with plus boundary
conditions andwe condition the system to have an excess amount of negative
spins so that the empirical magnetization is smaller than the sponta-
neous magnetization m∗. We confirm the prediction of the phenomeno-
logical theory by proving that with high probability a single droplet of the
minus phase emerges surrounded by the plus phase. Moreover, the rescaled
droplet is asymptotically close to a definite deterministic shape, the Wulff
crystal, which minimizes the surface free energy. In the course of the proof
we establish a surface order large deviation principle for the magnetization.
Our results are valid for temperatures T below a limit of slab-thresholds
T̂c conjectured to agree with the critical point Tc. Moreover, T should be
such that there exist only two extremal translation invariant Gibbs states
at that temperature, a property which can fail for at most countably many
values and which is conjectured to be true for every T. The proofs are based
on the Fortuin–Kasteleyn representation of the Ising model along with
coarse-graining techniques. To handle the emerging macroscopic objects
we employ tools from geometric measure theory which provide an ade-
quate framework for the large deviation analysis. Finally, we propose a
heuristic picture that for subcritical temperatures close enough to Tc, the
dominant minus spin cluster of the Wulff droplet permeates the entire box
and has a strictly positive local density everywhere.

1. Introduction and statement of results. In order to develop heuris-
tics we begin with an informal discussion of phase separation and phase
coexistence phenomena, the main subject of this paper, with a simplistic des-
cription of a physical system familiar from everyday experience. The system
we propose to consider is the mixture of two substances: oil and water. For our
purpose it will be enough to recall that water and oil tend to repel each other,
and yet a certain (even if only a very small) amount of oil can be dissolved in
water, and vice versa. (A mixture of phenol and water would be a more realis-
tic choice since they are more miscible, however the potential reader is hardly
familiar with that mixture. A mixture of salt and water is also a good example
but the phenomenon we want to describe is more complex in that case.)
As we know, solubility is not unlimited. Depending on the temperature T,

there exist threshold densities do/wc �T� and d
w/o
c �T� (both increasing in T)

corresponding to saturated solutions of oil in water and water in oil, respec-
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tively. These two types of saturated solutions are called the pure phases
“o/w” and “w/o” and they correspond to a perfect balance between energy and
entropy.
In order to see phase separation in this system all we have to do is to take

an almost saturated solution of oil in water with density d at temperature T
and let the system cool down to a temperature T′ such that d > d

o/w
c �T′�. The

excess amount of oil precipitates and macroscopic droplets emerge. The inside
of the droplets does not contain pure oil, rather the droplets are regions where
we see the phase w/o. They swim around in the phase o/w (assuming there is
no gravitation, otherwise the phase w/o gathers at the top.) What is the law
which governs the behavior of the coexisting phases?
The classical phenomenological theory asserts that there is a positive “sur-

face free energy”� associated with the macroscopic phase boundaries and the
system will settle down in a state minimizing this energy. Assuming isotropy,
� is proportional to the surface area. Hence, in perfect equilibrium, there
should be one single droplet of the phase w/o with a spherical shape floating
in the phase o/w, since, by the isoperimetric inequality, this is the energetically
most favorable configuration.
A mathematical challenge is to confirm this theory starting from a micro-

scopic description of the system, to explain the existence and breakdown of sol-
ubility, the occurrence of phase separation on a macroscopic scale, and to verify
the prediction about the existence of a single droplet with a specific shape.
Let us try to set up a simple model for our system. A convenient choice is a

lattice model: each site of the lattice is occupied either by a water particle or an
oil particle which we indicate by +1 or −1. The interaction between particles
is repulsive and occurs when the substances are in immediate contact. Hence
a repulsive nearest neighbor interaction is a sensible choice. If we want to
focus only on the dominant repulsive interaction between different molecules,
we could simplify the model by making the two substances “symmetric” by
assuming that their self-interactions are of equal magnitude, or equivalently,
equal to zero. Thus the total energy of a configuration should be simply the
sum of all nearest neighbor pairs with different sign. Recall that in our exper-
iment the density of oil is fixed, therefore we have a constraint on the possible
configurations: the proportion of +1-s and −1-s has to be fixed. The reader
familiar with the Ising model has already observed that our simple model is
equivalent to the Ising model with plus boundary conditions (guaranteeing the
water dominance) conditioned on the event that the magnetization is fixed and
is smaller than the spontaneous magnetization (corresponding to the satura-
tion density do/wc ) at the given temperature. Note that this event is extremely
unlikely when the system is large. In fact, the study of this restricted system
leads to questions about large deviations in the (unrestricted) Ising model.
There is an additional difficulty due to the use of the lattice: the system

is anisotropic; thus we have to deal with a surface energy depending on the
direction which leads to a nonspherical droplet. It is called the Wulff droplet
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orWulff crystal after Wulff [69] who first studied and solved the corresponding
isoperimetric problem.
The goal of the present paper is to continue the study of the questions

stated above in the context of the Ising model (which is, as we have just seen,
a fairly natural choice) with the specific aim of developing methods which
work independently from dimension and temperature. Before we start with
the presentation of our results we give a brief summary of the previous work
on this subject.
The first efforts were devoted to the study of large deviations of the empir-

ical magnetization, that is, the average value of the spins in a large box.
A volume order large deviation principle (LDP) has been established for the
Ising model by various authors: Comets [18], Ellis [30], Föllmer and Orey
[34], Olla [56]. The corresponding rate function has been found to vanish
in [−m∗�m∗] where m∗ denotes the spontaneous magnetization. In fact, it
was suspected that the correct order of decay is exponential to surface order.
Indeed, Schonmann [62] found a proof of this conjecture, valid for any dimen-
sions and low enough temperatures and Chayes, Chayes and Schonmann [17]
extended the result for the supercritical β > βc regime in the two-dimensional
case. Föllmer and Ort [35] investigated this phenomenon on the level of empiri-
cal measures. Finally, inspired by the work of Kesten and Zhang [47] on related
questions in percolation, Pisztora [59] established surface order upper bounds
for the remaining dimensions d ≥ 3 above the slab-threshold β̂c, introduced
in the same work, which is conjectured to agree with the critical point βc.
In that work a coarse-graining scheme has been developed for supercritical
Fortuin–Kasteleyn percolation (or random cluster model) in conjunction with
a stochastic domination argument (generalized and improved in [50]) which
allows controling the renormalized process, and so, the original one.
The monograph of Dobrushin, Kotecký and Shlosman [27] opened the way

to the rigorous study of the phase separation phenomenon, creating thereby
an immense interest and activity which has lasted up to the present time.
Their analysis, which provided the first mathematical proof of phase sepa-
ration, had been performed in the context of the Ising model. The main tool
of their work is the cluster expansion, which, on the one hand allowed the
derivation of results much finer than necessary to verify the Wulff construc-
tion, on the other hand restricted the validity of the results to two dimensions
and low temperatures. It was a challenge to improve on those results. Pfister
[57] simplified the proof through duality arguments. Alexander, Chayes and
Chayes [5] have proved the Wulff construction in the entire supercritical phase
of two-dimensional Bernoulli percolation. Alexander [4] subsequently refined
the probabilistic estimates. By using Pfister’s approach and certain coarse-
graining techniques from [59], Ioffe [44, 45] extended the basic large deviation
principle for the magnetization up to the critical temperature. Finally, Ioffe
and Schonmann [46] extended the results of [27] up to Tc. The results around
the Wulff construction for the two-dimensional Ising model are now fairly pre-
cise. They go far beyond large deviations statements. Dobrushin and Hryniv
[26, 43] managed to describe the Gaussian fluctuations around the interface.
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This whole area of research is now very active (see [16, 58, 63, 64, 65]). Nev-
ertheless these works are confined to dimension two. The main reason is that
the probabilistic estimates for the presence of an interface separating the two
phases rely on the skeleton coarse-graining technique. Through the skeleton,
one can approximate a polygonal line drawn on the lattice by a coarser one
and then use a combinatorial bound for the number of polygonal lines. Unfor-
tunately, it seems hard to find a higher-dimensional analogue of this elegant
and efficient technique.
A next challenge was to analyze phase separation for short range models

in higher dimensions. A first step towards this goal was accomplished by Cerf
[14]: large deviations statements are proven for the cluster shapes in three-
dimensional Bernoulli percolation, from which a picture of the Wulff crystal
of this model emerges. From the very beginning, the problem is embedded
in a continuous setting, and adequate tools from geometric measure theory
(à la Caccioppoli and De Giorgi) are used with the crucial benefit that the two-
dimensional combinatorial argument associated with skeletons can be circum-
vented by a compactness argument. The key ingredients to get the required
probabilistic estimates are the coarse-graining results of Pisztora [59], spe-
cialized to the case of Bernoulli percolation.
The current paper is a natural successor to [14] and [59]. We proceed by

using the FK representation of the Ising model. Equipped with the renormal-
ization technology of [59], we follow the same strategy as in [14] to derive a full
large deviation principle for the shape of the minus phase with respect to the
unconstrained Ising measure with plus boundary conditions. A novel issue is
that thereby we need a very accurate control of the dependence between events
occurring in distant regions; the corresponding decoupling results, Proposition
3.1 and Lemma 3.2, might be of independent interest. The aforementioned
LDP then allows deriving the desired results on the large deviations of the
(empirical) magnetization (Theorem 1.1) and on the existence of the Wulff crys-
tal (Theorem 1.2). (These results were announced at the statistical mechanics
conference in Paris on January 27, 1999.)
In an independent line of development, fundamental ideas were already

present in a series of works in the context of the Ising model with Kac poten-
tials. Alberti, Bellettini, Cassandro, Presutti [3] and Bellettini, Cassandro,
Presutti [7] developed the general philosophy of embedding the problem in
a continuous setting in order to use the BV framework (the equivalent func-
tional formulation of the sets of finite perimeter). For that aim, they introduced
the local averaging of the magnetization to study surface order large devia-
tions. The subsequent works of Benois, Bodineau, Buttà and Presutti [8] and
Benois, Bodineau and Presutti [9] contain useful techniques for handling the
renormalized picture. In particular, the idea of transforming adequately the
configuration in order to get estimates on certain probabilities, which is an
important element of the interface lemma, appears there as well. However,
these works lose the microscopic structure of the model: they perform a mean-
field limit where the range of interaction tends to infinity and everything
becomes isotropic. While preparing the manuscript of this article, we received



WULFF CRYSTAL IN THE ISING MODEL 951

the preprint [11]. Building upon [8, 9, 14, 59], Bodineau has proved results
similar to ours for sufficiently low temperatures. A discussion of similarities
and differences between [11] and the present paper is postponed to after the
description of the strategy of our proofs.
We next state our results and outline the strategy of the proofs.
Range of validity of the results. We consider Fortuin–Kasteleyn (FK) per-

colation (also known as the random cluster model) in dimensions d ≥ 3 in
the regime q ≥ 1, p > p̂c, θf�p� = θw�p�. Here p̂c is the slab percolation
threshold introduced in [59] and θf�p�, θw�p� are the densities of the infi-
nite open cluster for the infinite volume FK measures �f

∞, �w
∞ corresponding

to free and wired boundary conditions. The equality θf�p� = θw�p� implies
that there exists a unique infinite volume FK measure �∞ on the cubic lat-
tice �d corresponding to the parameters �p�q�, by results of Lebowitz and
Martin-Löf [49, 48] and Grimmett [41]. It is also known that the condition
θf�p� = θw�p� holds for values of p close to 1 and might only be violated at
countably many values. It is conjectured that θf�p� = θw�p� for every p �= pc
and that p̂c coincides with the critical point pc. (This is the case at least
for Bernoulli percolation �q = 1� by the result of Grimmett and Marstrand
[42] or [40].) For the Ising model, we choose q = 2 and the inverse tem-
perature β = 1/T is related to p via the relation p = 1 − exp�−β�. The
spontaneous magnetization is denoted by m∗�β� and it is well known that
m∗�β� = θ�p�. We set β̂c = 1/T̂c = − log�1− p̂c� and ��d� = �−log�1− p� 
 p
such that θf�p� = θw�p��. The set��d� is the domain of inverse temperatures
where there exist only two extremal translation invariant Gibbs states. Our
results for the Ising model hold in the region d ≥ 3, β > β̂c, β ∈ ��d�.
Results. We first extract from the FK percolation model a direction-

dependent surface tension τ. For a unit vector ν, let A be a unit hypersquare
orthogonal to ν, let cyl A be the cylinder A+�ν, then τ�ν� is equal to the limit

lim
n→∞ − 1

nd−1 log�∞


inside n cylA there exists a finite set of closed edges
E cutting n cyl A in at least two unbounded com-
ponents and the edges of E at distance less than 2d
from the boundary of n cyl A are at distance less
than 2d from nA.


This function τ satisfies the weak simplex inequality, is continuous, positive
and invariant under the isometries which leave �d invariant. The Wulff crystal
�τ of τ is

�τ = {
x ∈ �d

∣∣x · ν ≤ τ�ν� for all unit vectors}�
The crystal �τ is convex, closed, bounded and contains the origin in its interior.
We define the surface energy � ��τ� of the Wulff crystal by

� ��τ� = sup
{∫

�τ

divf�x�dx
 f ∈ C1
0��d��τ�

}
�
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where C1
0��d��τ� is the set of the compactly supported C1 vector fields taking

values in the Wulff crystal �τ and div is the usual divergence operator; cf. (6)
for an explanation of this formula.
Our first theorem gives the logarithmic asymptotics of the probability of

having a defect of magnetization in the cubic box ��n� of diameter n with
plus boundary conditions. For m ∈ �−m∗�m∗�, we define the rescaled Wulff
crystal

� �m� =
(

m∗ −m

2m∗ vol�τ

)1/d
�τ�

Let m be such that � �m� fits completely into the unit box. It is easy to see
that this is the case if

1− 2�diam�τ�−dvol�τ < m/m∗ < 1

and we call such m admissible.
We denote by µ+

��n� the Ising Gibbs measure in the box ��n� at temperature
1/β with plus boundary conditions.

Theorem 1.1 (Logarithmic asymptotics of the magnetization). Let d ≥ 3,
β > β̂c, β ∈ ��d� and m be admissible. Then

lim
n→∞

1
nd−1 logµ

+
��n�

[
1
nd

∑
x∈��n�

σ�x� ≤ m

]

= −
(

m∗ −m

2m∗vol�τ

)�d−1�/d
� ��τ� = −� �� �m���

Here we choose to work with finite boxes rather than with the infinite
volume measure since usually a finite volume result is more useful in applica-
tions. As a benefit, on the technical side, we gain compactness after rescaling.
The drawback is that we have to pay attention to the boundary; it is necessary
to handle separately the case of an interface sitting on the boundary, for the
probabilistic estimates as well as for the geometric approximations.
Our second theorem gives further information on the mechanism creating

a defect of magnetization in ��n�. Alternatively, it describes the equilibrium
of the system when forced to have an excess amount of negative spins. As
indicated earlier, a single Wulff droplet of the minus phase emerges (with a
local magnetization close to −m∗) which is surrounded by the plus phase and
contains all the excess amount of negative spins. A convenient way to localize
this droplet is to look at local averages of the magnetization over a (small)
intermediate scale.
For x ∈ �d and r > 0 we define the box ��x� r� by
��x� r� = {

y = �y1� � � � � yd� ∈ �d
∣∣ − r/2 < yi − xi ≤ r/2� 1 ≤ i ≤ d

}
�

The L1 distance between two Borel sets E�F is the volume of their symmetric
difference; that is,

distL1�E�F� = vol �E F��
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The mass center mc�E� of a (bounded) Borel set E is

mc�E� = 1
volE

∫
E
xdx�

We make the convention that mc��� = 0. Let f�n� be a fixed function
from � to � such that both n/f�n�d−1 and f�n�/ log n tend to ∞ as n → ∞.
The locally averaged magnetization σn is the map from the closed unit cube
! = �−1/2�1/2�d to �−1�1� defined by

∀x ∈ ! σn�x� = 1
f�n�d

∑
y∈��nx�f�n��∩��n�

σ�y��

We partition ! into the random sets !−
n , !

0
n and !

+
n according to whether the

value of the local magnetization is smaller, equal to or larger than zero.

Theorem 1.2 (Typical configuration of the locally averagedmagnetization).
Let d ≥ 3, β > β̂c, β ∈ ��d�. For δ > 0,

lim sup
n→∞

1
nd−1 log µ

+
��n�

[∫
!−
n

�σn�x� +m∗�dx+ vol!0n

+
∫
!+
n

�σn�x� −m∗�dx > δ

]
= −∞�

Letm be admissible. There exist constants b= b�d�β�m� δ�, c= c�d�β�m�δ�>0
such that

µ+
��n�

[
distL1

(
!−
n �mc�!−

n � + � �m�) < δ

∣∣∣∣ 1nd ∑
x∈��n�

σ�x� ≤ m

]
≥ 1− b exp�−cnd−1��

We finish the presentation of our results with some comments and
speculations.

Remarks on the Microscopic Structure of the Wulff Droplet. It is
well known [27, 46] that in two dimensions the Wulff droplet can be identified
with a (random) region surrounded by a minus spin cluster (a set surrounds
itself). Its external boundary is therefore a large contour separating plus and
minus spins and its shape (when rescaled) follows closely the Wulff shape in
the sense of the Hausdorff metric. It has already been realized in [27] that in
higher dimensions this picture might be false; long but very thin “hairs” (or
spikes) might be attached to the droplet without significantly increasing its
surface energy. A single hair is depicted in [27], Figure 1.3.
Without addressing the question of hairs here, we argue that for d ≥ 3

the situation is even more cumbersome. We expect that the crossing of the
threshold βp, indicating the onset of percolation of minority spins, implies a
drastic change in the physical appearance of the Wulff droplet as seen in the
spin model on the microscopic level. In the low-temperature regime β > βp,
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we expect that the situation is as predicted by [27]: there is a big minus spin
cluster surrounding the Wulff droplet with attached tiny (logarithmic) hairs.
In particular, there is a well-defined sharp interface between the two phases.
We recall that in dimensions d ≥ 3, βp�d� is conjectured to be strictly larger

than βc, meaning that minus spins (as well as plus spins) percolate in the plus
phase for βc < T < βp, but not when β > βp. It is known [1] that this is the
case for dimensions large enough. In the case of d = 2 this phenomenon does
not occur; that is, βp = βc, cf. [17].
In the regime �βc�βp�, however, we expect that the dominant minus spin

cluster S− of the Wulff droplet will percolate all the way to the boundary of
the box. In fact, it permeates the entire box with a certain positive density in
the complement of the Wulff region. More precisely, there exist two big spin
clusters in the box, S+ and S−, which are both omnipresent in the entire box.
Moreover there exist densities 0 < ρ1 < ρ2 < 1 such that the (local) density
of S− within the Wulff region and the density of S+ in the complement are
both concentrated around ρ2 while the density of S− outside and S+ inside the
Wulff region is close to ρ1. This means that in this regime the phase boundaries
cannot be described directly with contours. In fact, it seems that there is no
unique phase boundary on the microscopic level; a phenomenon which we call
interface fuzziness. It has to be contrasted with the picture observed at low
temperatures where a sharp interface is present.
At the same time the corresponding object at the FK percolation level does

not show this strange phenomenon: in the entire regime β > βc, the Wulff
region can be identified with a region associated with a single big FK cluster
C− with the right shape. The phenomenon described above occurring at the
spin level is simply a consequence of the percolation of negatively colored small
FK clusters starting at small FK clusters sitting next to the Wulff cluster C−.
In our view, this phenomenon is one of the numerous examples where the

FK picture captures certain features of the physics of the Ising model in a
more efficient and transparent way than the original spin picture does. Finally
we remark that in this paper we make no attempt to prove the phenomenon
described above; that remains a challenging open problem.

The strategy of the proofs. One of our main tools is the FK representation
to relate the events occurring at the Ising level to events occurring at the
FK level.
It is natural to ask about the significance of this representation in our (or,

in fact, in any) approach. To prove a large deviation upper bound it is, in gen-
eral, necessary to show that there is enough independence in the system. This
will be achieved in this type of model by some kind of decoupling results. It is
here that the FK representation provides a decisive advantage: in FK percola-
tion we do have asymptotic independence from (imposed) boundary conditions,
which is definitely not the case in the spin model. (This corresponds to the
uniqueness of infinite volume FKmeasures versus the multiple Gibbs states in
the spin model.) The aforementioned decoupling property has been utilized in
[59] in the form of the stochastic domination inequality ([59], Proposition 4.1)
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on the level of the renormalized process which is of course used in this work
as well. Another even more explicit instance of the decoupling property is for-
mulated in Proposition 3.1 and Lemma 3.2 of the present paper: they assert
a high level of independence of boundary conditions. They are crucial ingredi-
ents for recovering the exact surface energy. Finally, we remark that, at least
for low enough temperatures, there might be ways to prove decoupling proper-
ties within the spin framework but at moderate temperatures we don’t know
how to achieve that.
In the present paper we try to provide simple and efficient proofs of

Theorems 1.1 and 1.2; hence we do not care to describe accurately the pic-
ture at the FK level. A defect of magnetization in a cubic box with positive
boundary conditions is caused with overwhelming probability by the presence
of one or several large open FK clusters which have been colored negatively
(“large” means here of diameter exceeding f�n�). Thus we keep track of the
region M− consisting of the points of n! whose f�n� neighborhood intersects
only large clusters colored negatively. We first show that

1
nd

∑
x∈��n�

σ�x� = m∗�1− 2 vol �M−/n�� + δ�n��(1)

where the (random) correction term δ�n� goes to 0 in probability faster than
exponential to surface order. Therefore everything boils down to getting prob-
abilistic estimates on the law of the random set M−/n as n → ∞. Obviously
the law of M−/n converges to the Dirac mass at the empty set: the typical
state of the system is the pure phase µ+. We are interested in the large devi-
ations event �vol�M−/n� ≥ �m∗ − m�/�2m∗��. We first obtain a lower bound:
for λ� x such that 0 < λdiam�τ ≤ 1 and x+ λ�τ ⊂ !, for any δ > 0,

lim inf
n→∞

1
nd−1 log�

+
��n�

[
distL1�M−/n� x+ λ�τ� < δ

] ≥ −λ�d−1�� ��τ��(2)

where �+
��n� is the measure on edge–spin configurations realizing the coupling

between the FK measure �w
��n� and the Ising Gibbs measure µ

+
��n�. The dif-

ficult part is to get the upper bound. In order to control the combinatorial
explosion of all possible discrete shapes for M−/n, we embedM−/n in a con-
tinuous space and we use a compactness argument. This is the place where
geometric measure theory enters the game. Notice that the use of this the-
ory has been suggested already in [27] (see Remark 1.11.2c, page 14.). The
general philosophy of embedding the problem in a continuous space appeared
for the first time in the context of the Ising model with Kac potentials [3, 7].
The appropriate geometric setting, namely, the BV-framework, was then suc-
cessfully combined with large deviations techniques [8, 9]; the Van der Waals
surface tension, however, could only be recovered in the Lebowitz–Penrose
mean-field limit where the range of interactions tends to infinity and the model
becomes isotropic.
We consider the random rescaled region M−/n as an element of the space

	�!� of the Borel subsets of ! endowed with the metric distL1 . We define the
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surface energy � �E� of a Borel set E by [see (6) for another form]

� �E� = sup
{∫

E
divf�x�dx
 f ∈ C1

0��d��τ�
}
�(3)

Notice that the surface energy might be infinite. First, we prove that the law of
M−/n concentrates fast near sets having a finite surface energy: there exists
a positive constant c = c�d�p� q� such that

∀ λ� δ > 0�

lim sup
n→∞

1
nd−1 log�

+
��n�

[
distL1

(
M−/n�� −1��0� λ��) ≥ δ

] ≤ −cλ�(4)

Second, we estimate the probability that M−/n is close to a fixed set having
finite surface energy: for E in 	�!� such that � �E� < ∞ and for ε > 0, there
exists δ = δ�E�ε� > 0 such that,

lim sup
n→∞

1
nd−1 log�

+
��n��distL1�M−/n�E� < δ� ≤ −�1− ε�� �E��(5)

The essential tools for the bound (5) are the coarse-graining results of [59] to
get the probabilistic estimates and the Vitali covering theorem for Hausdorff
measures to get appropriate geometric approximations.
The surface energy � �E� is infinite unless E is a set of finite perimeter

in the sense of Caccioppoli and De Giorgi. The Gauss–Green theorem shows
that, in case the boundary ∂E of E is smooth, then

� �E� =
∫
∂E
sup
y∈�τ

�y · νE�x��
 d−1�dx� =
∫
∂E
τ�νE�x��
 d−1�dx��(6)

where νE�x� is the exterior normal vector to E at x and 
 d−1 is the �d− 1�-
dimensional Hausdorff measure in �d. The theory of the sets of finite perime-
ter was historically invented by Caccioppoli [12, 13] and subsequently devel-
oped by De Giorgi [19, 20, 21, 22]. The goal of Caccioppoli was to build a
general theory of integration for differential forms and to extend the classical
Gauss–Green theorem to sets whose boundary is not � 1. Independently, De
Giorgi was seeking to generalize some isoperimetric problems, starting with
the Gauss–Green theorem. This framework is extremely convenient for deal-
ing with variational problems. Indeed the surface energy � is lower semicon-
tinuous (l.s.c.) with respect to the L1 convergence. In fact, the surface energy
defined in (3) is the largest l.s.c. extension of the expression (6) to the class of
all Borel sets. Moreover the level sets �E ∈ 	�!�
 � �E� ≤ λ�, λ ≥ 0, are com-
pact. This crucial compactness property, in conjunction with the local estimate
(5) and the exponential tightness given by (4), yield the upper bound

∀v > 0 lim sup
n→∞

1
nd−1 log�

+
��n��vol�M−/n� ≥ v� ≤ − inf

volE≥v
� �E��(7)
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It turned out that the class of the sets of locally finite perimeter (also called
Caccioppoli sets) is isomorphic to the currents of codimension one of the gen-
eral geometric measure theory developed by Federer [33]. Taylor [66, 67, 68]
proved the Wulff isoperimetric theorem with the theory of currents. This
theorem (originally due to Wulff [69], followed by Dinghas [25]) states that
the Wulff crystal �τ is the only solution to the variational problem

minimize � �E� under the constraint volE ≥ vol�τ�

The Wulff isoperimetric theorem has been reworked and slightly generalized
in the framework of the Caccioppoli sets by Fonseca [36] and Fonseca and
Müller [37]. Theorem 1.1 is an easy consequence of (1), (2), (7) and the Wulff
isoperimetric theorem. For Theorem 1.2, one needs in addition some slightly
refined coarse-graining estimates from [59].
Finally, we address the question of the relation between [11] and the present

paper. There is a lot in common in these works; namely, the large deviations
framework, the geometric setting (functions of bounded variation and sets of
finite perimeter are equivalent), and the coarse-graining results of [59]. The
basic difference between the two approaches is the following. In [11] almost
everything is described in the spin language. In order to recover the exact
surface tension factor (along the lines of [14]) the author resorts to the FK
representation and verifies that the spin and the percolation definitions of
the surface tension agree. It is here that the results have to be confined to
low enough temperatures. (Of course this is a crucial step in the proof since
this is the very place where the surface tension will be linked to the rate
function of the desired LDP). In our approach, the relevant quantities of the
spin model are translated into (FK) percolation terms from the very beginning
and we work then only at the FK level. The decoupling property for FK mea-
sures allows us to push all the results until the limit of the slab-percolation
thresholds. There is no analogous result in [11].

2. Preliminaries. In this section we introduce the notation first and we
give some basic definitions. In the second part, we recall some useful properties
of FK (or random clusters measures and we give a short description of the Ising
model and its FK representation.
Notation. The cardinality of a set A is denoted by �A�. The symmetric

difference between two sets A1, A2 is denoted by A1�A2. If � is a family of
sets we write cup � for

⋃
A∈� A. For r ∈ �, �r� denotes the integer part of r

and �r� stands for the smallest integer larger or equal to r.
Metric. We denote by dp the metric associated with the p-norm, that is,

dp�x�y� = �x − y�p for any x�y in �d. We will only use the 1�2 and ∞
norms. The dp distance between two subsets E1 and E2 of �d is dp�E1�E2� =
inf��x1 − x2�p
 x1 ∈ E1, x2 ∈ E2�. The r-neighborhood of E ⊆ �d with respect
to the dp metric is the set 
p�E�r� = �x ∈ �d
 dp�x�E� < r�. The dp diame-
ter of a subset E of �d is diampE = sup��x− y�p
 x�y ∈ E�. We will usually
work with the Euclidean distance d2 on the continuous space �d and with the
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distance d1 or d∞ on the discrete lattice �d. By default, when we speak of the
diameter of a set without any specification, we mean the d∞ diameter.
Geometric objects. We denote by ! the closed unit cube ! = �−1/2�1/2�d.

Let x = �x1� � � � � xd� be a point of �d and let r be positive. The closed ball of
center x and Euclidean radius r is denoted by B�x� r�. The sphere of center x
and radius r is ∂B�x� r�. When x = 0 we usually drop x from the notation; for
instance B�r� = B�0� r�. This convention applies to all of the objects described
below. The unit sphere of �d is denoted by Sd−1. The projective sphere PSd−1

is obtained by identifying opposite points on Sd−1. Let w be a unit vector. We
set

hyp�x�w� = {
y ∈ �d � �y− x� ·w = 0

}
�

The specific hyperplane containing the origin and perpendicular to the dth
axis is denoted by �d. For r1, r2 in � ∪ �−∞�+∞�, we define

slab�x�w� r1� r2� = {
y ∈ �d � r1 ≤ �y− x� ·w ≤ r2

}
�

The half spaces slab�x�w�0�∞� and slab�x�w�−∞�0� are denoted by �+�x�w�
and �−�x�w�, respectively. We set

B−�x� r�w� = B�x� r� ∩ �−�x�w�� B+�x� r�w� = B�x� r� ∩ �+�x�w��
The “upper” half space �x ∈ �d�xd ≥ 0� is denoted by �d. By disc�x� r�w� we
denote the closed disc centered at x of radius r and normal vector w. A box is
a set of the form

��x� r� = {
y = �y1� � � � � yd� ∈ �d

∣∣ − ri/2 < yi − xi ≤ ri/2� i = 1� � � � � d
}
�

where x� r ∈ �d. Clearly, x is the center and r determines the side lengths
of the box. If ri = t for each i = 1� � � � � d, where t ∈ �, then we write simply
��x� t�. Notice that ��x� t� has diameter t and is neither open nor closed. If
d∞�x�y� ≥ t then ��x� t� and ��y� t� are disjoint. Let A be a subset of �d of
linear dimension d− 1; that is, A spans a hyperplane of �d, which we denote
by hypA. We call such a set a hyperset. By norA we denote one of the two unit
vectors orthogonal to hypA, or equivalently, the element of PSd−1 orthogonal
to hypA. The cylinder of basis A is the set

cylA = �x+ t norA � t ∈ �� x ∈ A��
We set also cyl�A�r� = �x + tnorA
 �t� ≤ r x ∈ A� = cylA ∩ slab�x�norA�
−r� r�. A hyperrectangle is a hyperset which, up to an orthonormal change of
coordinates, is a �d− 1�-dimensional box.
Topology and measures. Let E be a subset of �d. We denote its interior by

intE, its closure by cloE, its boundary by ∂E. WheneverA is a hyperset of �d,
that is, A spans a hyperplane of �d, we use the induced �d− 1�-dimensional
topology of hypA to define ∂A, intA, cloA. The collection of all the Borel
subsets of a set E of �d is denoted by 	�E�. The volume volE of a Borel set
E is simply its Lebesgue measure. A Borel set is said to be negligible if its
volume is zero. We define a (pseudo) metric distL1 on 	��d� by

∀E�F ∈ 	��d� distL1�E�F� = vol�E�F��
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When dealing with topological questions on the space 	��d�, we consider
the equivalence classes of the Borel sets modulo negligible sets. Notice that
	�!� is a closed subset of	��d�. We denote by
 k the standard k-dimensional
Hausdorff measure, for k = 1�2� � � � � d (see Section A.1 for the definition).
The lattice �d. We turn �d into a graph with vertex set �d and edge set

Ɛd ={�x�y�∣∣x ∈ �d� y ∈ �d� d1�x�y� = 1
}
�

This graph is called the d-dimensional cubic lattice and is denoted by �d. We
often think of this graph as embedded in �d, the edges �x�y� being straight
line segments �x�y� between nearest neighbors. If x and y are nearest neigh-
bors, we denote this relation by x ∼ y.
Let D be a subset of �d. An edge �x�y� of Ɛd is said to be included in

D if both sites x�y belong to D. We denote by Ɛd�D� the set of the edges
of Ɛd included in D. For D a subset of �d, the graph �D�Ɛd�D�� will be often
identified with its vertex setD. For E a subset of Ɛd, a formula like E ⊂ Ɛd�D�
will be abbreviated into E ⊂ D.
To simplify notation, we will sometimes identify subsets of �d with their

traces on the lattice; that is, we identifyA ⊆ �d withA∩�d. For example, ��n�
denotes a box both in the continuum and in the lattice. On the other hand, if
A ⊆ �d, we define an associated thickened region, regarded as a continuum
object in �d, by

cubeA = ⋃
x∈A

��x�1��

Discrete topology. Let A be a subset of �d. We define its

edge boundary: ∂edgeA = ��x�y� ∈ Ɛd �x ∈ A�y ∈ Ac� 
inner vertex boundary: ∂inA = �x ∈ A � ∃y ∈ Ac such that y ∼ x� 
outer vertex boundary: ∂outA = �x ∈ Ac � ∃y ∈ A such that y ∼ x��

These definitions are extended to the subsets of �d by setting, for any E ⊂ �d,
∂∗E = ∂∗��d ∩E�, where ∗ stands for edge, in or out.
A path γ in (�d, Ɛd) (or in any graph) is an alternating sequence x0� e0� x1,

e1� � � � � en−1� xn� � � � of distinct vertices xi and edges ei, where ei is the edge
between xi and xi+1. The path is said to connect every pair of its vertices. If
the path terminates at some vertex xn it is said to have length n; otherwise
it is infinite. Two paths are disjoint if they have no edges in common. The set
A is said to be connected if the graph �A�Ɛd�A�� is connected. Let A�B�D
be subsets of �d. A set of edges E ⊆ Ɛd is said to separate A and B in D if
there is no path in the graph ��d ∩D�Ɛd�D�\E� connecting A and B. The set
E separates ∞ in D if the graph ��d ∩ D�Ɛd�D�\E� has at least two infinite
components.
The lattice �d�∞. We introduce another graph structure on �d. First we

define the edge set Ɛd�∞ = ��x�y� �d∞�x�y� = 1�. The lattice �d�∞ is defined
to be the graph ��d�Ɛd�∞�. The relevance of this lattice stems from the fact
that the exterior boundary of any connected finite setA in �d is itself connected
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when regarded as a subgraph of �d�∞ (but not of �d�. To be more precise, let us
define the residual components ofA as the connected components of the graph
�Ac�Ɛd�Ac��. A subset A of �d is �d�∞-connected if the graph �A�Ɛd�∞�A�� is
connected, where Ɛd�∞�A� is the set of the edges of Ɛd�∞ whose both endpoints
belong to A. Note that connectedness in the usual ��d� sense implies �d�∞-
connectedness. Let A be a �d�∞-connected subset of �d. If R is a residual
component of A, then its inner and outer vertex boundaries are also �d�∞-
connected (cf. [23]). Suppose in addition that A is finite. Then exactly one of
these residual components, say R1, is infinite. The boundary between R1 and
A is called the exterior (edge, inner vertex, outer vertex) boundary of A. For
future reference, we prove next a little geometrical lemma.

Lemma 2.1. For any finite �d�∞-connected subset A of �d, for r ≥ 4,

vol 
∞�A�r� ≤ 4d+1rd−1��A� ∨ r��

Proof. If diamA ≤ r, then vol 
∞�A�r� ≤ �3r�d. Suppose now that r <
diamA < ∞. Let �x1� � � � � xl� be a collection of vertices of A of maximal car-
dinality such that

∀ i� j ∈ �1 · · · l�� i �= j� ��xi� r� ∩ ��xj� r� = ��

The maximality of the collection implies that A ⊂ ��x1�2r� ∪ · · · ∪ ��xl�2r�.
Because l is necessarily larger than or equal to two and A is �d�∞-connected,
for each i in �1� � � � � l�,

�A ∩ ��xi� r�� ≥ d∞�xi� ∂in��xi� r�� ≥ r/2− 1

so that �A� ≥ l�r/2− 1�. Since 
∞�A�r� is included in l boxes of diameter 4r,
we obtain

vol 
∞�A�r� ≤ l�4r�d ≤ �4r�d�r/2− 1�−1�A� ≤ 4d+1rd−1�A�� ✷

Ising Gibbs measure. Let � ⊂ �d be a box. A spin configuration in � is an
element σ of �−�+��. We denote by σ�x� the spin at site x in the configura-
tion σ . We define the Hamiltonian or energy H��σ� of a spin configuration σ
in � by

H��σ� = − 1
2

∑
�x�y�∈Ɛd��� σ�x�σ�y��

Let β > 0. The Ising Gibbs measure µ+
��β in � with + boundary conditions

at inverse temperature β is the probability measure on �−�+�� defined by
µ+
��β�σ� = 0 if σ�x� = − for some x ∈ ∂in� and

µ+
��β�σ� = �Z+

��β�−1 exp�−βH��σ��
otherwise, where Z+

��β is a normalizing factor called the partition function.
The following is known. The limit limn→∞ µ+

��n�� β�σ�0�� exists for any β > 0.
We denote it by m∗. For d ≥ 2, there exists a critical value βc = βc�d� in
�0�∞� such that m∗ > 0 for β > βc and m∗ = 0 for β < βc.
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FK percolation.
Edge configurations. The basic probability space for edge processes is

given by 7 = �0�1�Ɛd ; its elements are called edge configurations in �d. The
natural projections are given by pre
 ω ∈ 7 %→ ω�e� ∈ �0�1�, where e ∈ Ɛd. An
edge e is called open in the configuration ω if pre�ω� = 1, and closed otherwise.
For E ⊆ Ɛd with E �= �, we write 7�E� for the set �0�1�E; its elements

are called configurations in E. Note that there is a one-to-one correspondence
between cylinder sets and configurations, which is given by η ∈ 7�E� %→
�η� 
= �ω ∈ 7 �ω�e� = η�e� for every e ∈ E�. We will use the following
convention: the set 7 is regarded as a cylinder (set) corresponding to the
“empty configuration” (with the choice E = �.) We will sometimes identify
cylinders with the corresponding configuration. For A ⊆ �d, let 7A stand
for the set of the configurations in A
 �0�1�Ɛd�A� and 7A for the set of the
configurations outside A 
 �0�1�Ɛd\Ɛd�A�. In general, for A ⊆ B ⊆ �d, we set
7A
B = �0�1�Ɛd�B�\Ɛd�A�. Given ω ∈ 7 and E ⊆ Ɛd, we denote by ω�E� the

restriction of ω to 7�E�. Analogously, ωA
B stands for the restriction of ω to the

set Ɛd�B�\Ɛd�A�.
Given η ∈ 7, we denote by � �η� the set of the edges of Ɛd which are open

in the configuration η. The connected components of the graph ��d�� �η�� are
called η-clusters. The path γ = �x1� e1� x2� � � �� is said to be η-open if all the
edges ei belong to � �η�. We write �A ↔ B� for the event that there exists an
open path joining some site in A with some site in B. Similarly, we denote by
�A ↔ ∞� the event that there exists x ∈ A lying in an infinite component.
If V ⊆ �d and E consists of all the edges between vertices in V, the graph

G = �V�E� ⊆ �d is called the maximal subgraph of �d on the vertices V.
Let ω be an edge configuration in �d (or in a subgraph of �d). We can look at
the open clusters in V or alternatively the open V-clusters. These clusters are
simply the connected components of the random graph �V�� �ω�E���, where
ω�E� is the restriction of ω to E.
Given E ⊆ Ɛd, we write � �E� for the σ-field generated by the finite-

dimensional cylinders associated with configurations in 7�E�. Similarly, for
A ⊆ B ⊆ �d, we use the notation � A

B for the σ-field generated by finite-
dimensional cylinders associated with configurations in 7A

B . If A = � or
B = �d, then we omit them from the notation.
Stochastic domination. There is a partial order ' in 7 given by ω ' ω′

iff ω�e� ≤ ω′�e� for every e ∈ Ɛd. A function f
 7 → � is called increasing
if f�ω� ≤ f�ω′� whenever ω ' ω′. An event is called increasing if its char-
acteristic function is increasing. Let � be a σ-field of subsets of 7. For a
pair of probability measures µ and ν on �7�� �, we say that µ (stochastically)
dominates ν if for any � -measurable increasing function f the expectations
satisfy µ�f� ≥ ν�f�. If, in addition, for each � -measurable cylinder Z with
µ�Z� ∧ ν�Z� > 0, we have µ�f �Z� ≥ ν�f �Z�, then we say that µ strongly
dominates ν, and we denote this relation by µ ) ν.
FK measures. Let V ⊆ �d be finite and E = Ɛd�V�. We first introduce

(partially wired) boundary conditions as follows. Consider a partition π of the
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set ∂inV, say π = �B1� � � � �Bn�. (The sets Bi are disjoint nonempty subsets
of ∂inV with

⋃
i=1�����n Bi = ∂inV.) We say that x�y ∈ ∂inV are π-wired, if

x�y ∈ Bi for an i ∈ �1� � � � � n�. Fix a configuration η ∈ 7V. We want to
count the η-clusters in V in such a way that π-wired sites are considered
to be connected. This can be done in the following formal way. We introduce
an equivalence relation on V
 x and y are said to be π · η-wired if they are
both joined by η-open paths to (or identical with) sites x′� y′ ∈ ∂inV which
are themselves π-wired. The new equivalence classes are called π ·η-clusters,
or η-clusters in V with respect to the boundary condition π. The number of
clusters with respect to the boundary condition π (i.e., the number of π · η-
clusters) is denoted by clπ�η�. (Note that clπ is simply a random variable.)
For fixed p ∈ �0�1� and q ≥ 1, the FK measure with parameters �p�q� and

boundary conditions π is a probability measure on the σ-field �V, defined by
the formula

∀η ∈ 7V �
π�p�q
V ��η�� = 1

Z
π�p�q
V

( ∏
e∈E

pη�e��1− p�1−η�e�
)
qcl

π�η��(8)

where Zπ�p�q
V is the appropriate normalization factor. Since �V is an atomic

σ-field with atoms �η�, η ∈ 7V, (8) determines a unique measure on �V. Note
that every cylinder has nonzero probability. There are two extremal b.c.s: the
free boundary condition corresponds to the partition f defined to have exactly
�∂inV� classes, and the wired b.c. corresponds to the partition w with only one
class. The set of all such measures called FK (or random cluster) measures
corresponding to different b.c.s will be denoted by �� �p�q�V�, and we write
c�� �p�q�V� for its convex hull. The stochastic process �pre�e∈Ɛd�V�
 7 → 7V

given on the probability space �7�� ��
π�p� q
V � is called FK percolation with

boundary conditions π.
We will list some useful properties of FK measures. A property of crucial

importance is that for q ≥ 1, every � ∈ �� �p� q� V� is strong FKG. This
means that for every �V-measurable cylinder Z, and for all �V-measurable
increasing functions f�g, we have

��fg �Z� ≥ ��f �Z���g �Z��(9)

In some cases it is possible to compare FK measures with different b.c.s. There
is a partial order on the set of partitions of ∂inV. We say that π dominates
π ′, π ≥ π ′, if x�y π ′-wired implies that they are π-wired. We then have
�
π ′� p� q
V ' �

π�p�q
V . This implies immediately that for each � ∈ �� �p�q�V�,

�
f�p�q
V ' � ' �

w�p�q
V . Next we discuss properties of conditional FK measures.

For given U ⊆ V and ω ∈ 7, we define a partitionWU
V�ω� of ∂inU by declaring

x�y ∈ ∂inU to be WU
V�ω�-wired if they are joined by an ωU

V-open path. Fix a
partition π of ∂inV. We define a new partition of ∂inU, denoted by π ·WU

V�ω�,
by considering x�y ∈ ∂inU to be π · WU

V�ω�-wired if they are both joined by
ωU
V-open paths to (or identical with) sites x

′� y′, which are themselves π-wired.
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Then, for every �U-measurable function f,

�
π�p�q
V �f �� U

V ��ω� = �
π·WU

V�ω�� p� q
U �f�� �

π�p� q
V a.s.(10)

Note that (10) can be interpreted as a kind of Markov property. A direct con-
sequence of this formula is that the restriction of every FK measure � in
�� �p�q�V� to �U is contained in the convex hull c�� �p�q�U�.
FK Ising coupling. We describe the fundamental coupling between the FK

measures and the Ising Gibbs measure (see [29, 38, 55] for more details). Let
� ⊂ �d be a box. An edge–spin configuration in � is an element �ω�σ� of
�0�1�Ɛd��� × �−�+��. Let p belong to (0,1). Let �+

� be the probability measure
on the space of edge–spin configurations in � obtained through the following
procedure.
The edges in � are opened with probability p and closed with probability

1 − p. The spin value of the sites in ∂in� is set to +. The spin value of the
sites in �\∂in� is drawn randomly with the uniform distribution on �−�+�.
The previous operations are performed independently. Finally the measure is
conditioned on the event that there is no open edge in � between two sites
with different spin values.
The support of �+

� consists of the edge–spin configurations �ω�σ� in � such
that σ�x� = + for any x ∈ ∂in�, and all the sites belonging to one ω-cluster
C have the same spin value, which we denote by σ�C�. The first marginal of
�+
� on �0�1�Ɛd��� is the FK measure �w�p�2

� , its second marginal on �−�+�� is
the Ising Gibbs measure µ+

��β where β = − log�1 − p�. Therefore, to draw a
spin configuration in � according to µ+

��β we can proceed as follows. First, we
draw an edge configuration in � according to �w�p�2

� . Second, we color each
open cluster independently, with + for clusters intersecting ∂in� and with the
uniform distribution on �−�+� for the other clusters.

Coarse graining of FK processes.
The blocks and the rescaled lattice. Let K be a fixed positive integer. We

divide �d into small boxes called blocks of size K in the following way. For
x ∈ �d, we define the block indexed by x as B�x� = ��Kx�K�. Note that the
blocks partition �d (or �d). Let A be a region in �d (or �d). Depending on
the context, we define the rescaled region A as either A = �x �B�x� ⊆ A� or
A = �x �B�x� ∩ A �= ��. In general, we use underlining in the notation to
emphasize that we are dealing with rescaled objects. For instance, we denote
by ��n� = �x �B�x� ⊆ ��n�� the box ��n� rescaled by a factor K. Clearly, the
rescaled lattice inherits the structure of �d. In particular, we can equip it with
the graph structures corresponding to �d or �d�∞.
With a block we often associate events which can be observed in the block

or in a certain neighborhood of the block. Let α be a positive integer, called
the event-block size. For x ∈ �d, we introduce a larger block B′�x� around Kx,
called the event-block, by setting

B′�x� = ⋃
x d∞�z� x�<α

B�z��(11)
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When rescaling a finite object, like a large box �, some care is needed in
the definition of the blocks sitting close to the boundary if a partition of � is
desired. For x ∈ ∂in�, we modify the definition of the block associated with x
as follows. First we set

� �x� = �x� ∪ �z ∈ �d �d1�z� x� = 1� ��Kz�K� ∩� �= �� ��Kz�K� ∩�c �= ���
The block B�x� is then defined as the smallest box containing the set � ∩
�⋃z∈� �x� ��Kz�K��; see Figure 1. Note that B�x� is a box with (in general
unequal) side-lengths between K and 2K, and the blocks B�x�, x ∈ �, par-
tition �. For x ∈ �, the event-blocks are still defined with formula (11) but
using the enlarged blocks.
Block events. Let � be a box with side lengths between n and 2n. An open

cluster within � is called “crossing for �” if it intersects each of the 2d faces
of ∂in�. Let g be an increasing function from � to �+ such that g�n� ≤ n for
all n and let δ > 0. We consider the following events:

U��� = �there exists a unique open crossing cluster C∗ in �� 
R���g� = U��� ∩ �∃! open cluster with diameter ≥ g�n�� 
O���g� = R���g� ∩ �C∗ intersects every sub-box(12)

of � of diameter ≥ g�n�� 
V��� δ� = U��� ∩ ��θ− δ���� < �C∗� < �θ+ δ����� 

T���g� δ� = O���g� ∩ {
for any box �′ ⊂ � of diameter ≥ g�n��

�θ− δ���′� < �C∗ ∩ �′� < �θ+ δ���′�}�
Theorem 3.1 in [59] implies that for d ≥ 3, q ≥ 1, p > p̂c, θf�p� = θw�p�,
δ > 0, there exist positive constants b = b�p�q�dδ�� c = c�p�q�dδ� and κ =
κ�p�q�dδ�, such that for each n ≥ 1, each box with side-lengths between n
and 2n, and each measure � ∈ c�� �p�q���,

��U���c� ≤ ��V��� δ�c� ≤ b exp�−cn��(13)

Moreover, if κ log n ≤ g�n� ≤ n for all n in �,

��R���g�c� ≤ ��O���g�c� ≤ ��T���g� δ�c� ≤ b exp�−cg�n���(14)

Fig. 1. A rescaled box.
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Notice that we have introduced a new type of event named T���g� δ�. The
corresponding estimate follows from Theorems 3.1 and 1.2 in [59].
Block variables. In the course of the proofs we will often use coarse

graining in ��n� by looking at a block process �X�x��x∈��n�, indicating the
non-occurrence of one of the typical events listed in (12) in the correspond-
ing event-block. By controlling the coarse-grained process X we can extract
useful information about the underlying FK process; in fact that is our main
tool for analyzing the microscopic behavior of the model. The definition of the
events and estimates (13) and (14) guarantee that the block process satisfies
the following properties:

The variable X�x� depends only on the edges in B′�x� 
(15)

max
�∈c�� �p�q�B′�x��

��X�x� = 1� ≤ ε�

These two properties imply furthermore

max
�∈c�� �p�q���n��

�
[
X�x� = 1 �σ�X�z�� d∞�x� z� ≥ 2α− 1�] ≤ ε�(16)

The properties (15), (16) alone imply some simple estimates for the block pro-
cess. For future reference we formulate them in the subsequent lemmas.

Lemma 2.2. Consider a 0–1 valued random field �Xz�z∈��m� with the prop-
erty that there exist a positive integer D and ε ∈ �0�1� such that for each
z ∈ ��m�,

P
[
Xz = 1 �σ�Xy d∞�z� y� ≥ D�] ≤ ε�(17)

Then, for every δ ∈ �ε�1�,

P

[
1
md

∑
z∈��m�

Xz ≥ δ

]
≤ Dd exp

(
−�∗

ε�δ�
⌊
m

D

⌋d)
�

where �∗
ε�δ� = δ log�δ/ε�+�1−δ� log��1−δ�/�1−ε�� is the Legendre transform

of the logarithmic moment generating function of a Bernoulli variable with
parameter ε. �We remark that if ε < δ ≤ 1/2, then �∗

ε�δ� ≥ δ log�δ/ε� − log 2��

Proof. We introduce an equivalence relation on ��m� 
 z ≈ y iffD divides
each component of z− y. The corresponding equivalence classes V1� � � � �VDd

partition ��m�. Condition (17) guarantees that each of the fields �Xz�z∈Vi
, i =

1� � � � �Dd, is stochastically dominated by i.i.d. Bernoulli variables with param-
eter ε. By applying optimized exponential Chebyshev estimates (cf. the section
on Cramér’s Theorem in [24]), and using �Vi� ≥ �m/D�d for i = 1� � � � �Dd, we
arrive at the claim. ✷
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Applying the previous lemma to a block process satisfying (16), we obtain
that for every � ∈ �� �p�q���n�� and δ > ε,

�

[
1

���n��
∑

x∈��n�
X�x� ≥ δ

]
≤ �2α�d exp

(
−�∗

ε�δ� 1
�2α�d

⌊
n

K

⌋d)
�(18)

Note that this estimate is valid for each fixed n� ε� α�K (with αK < n). In
particular ε� α�K may depend on n.
The block process can be viewed as a (dependent) site percolation process

where a site x is occupied iff X�x� = 1. The occupied ∞-cluster of the site x,
that is, the ∞-connected component of the occupied sites containing x, is then
denoted by C�x�.

Lemma 2.3. Assume (15) holds. There exists a dimension-dependent con-
stant b�d� > 0 such that, for any � ∈ �� �p�q���n��, any s� t > 0,

�
[∣∣{x ∈ ��n�∣∣�C�x�� ≥ t

}∣∣ ≥ s
]

≤ ∑
j≥s

2 expj
(
2d log�n/K�/t+ log b+ �2α�−d log ε

)
�(19)

For the proof, which is based on a standard counting (Peierls) argument, we
refer to the proof of Lemma 7.9 in [14].

3. Decay of boundary effects and decoupling. The main results of
this section are Proposition 3.1, which gives sufficient control of boundary
effects and leads directly to Lemma 3.2, which allows decoupling rare events
in distant regions. This lemma is one of the key results which allows extending
the large deviations results for percolation of [14] to FK percolation. We begin
with the statement of the main result and a useful consequence of it. The proof
will be given at the end of the section after a series of preparatory lemmas.
Let G ⊆ �d be a box building, that is, the union of finitely many d-

dimensional boxes with nonempty interior. Fix a monotone increasing func-
tion φ
 � → � satisfying limn→∞ φ�n� = ∞ and limn→∞ φ�n�/n = 0. We will
consider the φ�n�-interior of the building nG which is defined as

int �nG�φ�n�� = �x ∈ nG �d∞�x� ∂innG� > φ�n���

Proposition 3.1. Assume d ≥ 3, q ≥ 1, p > p̂c with θ
f�p� = θw�p�. Let Sn

be a sequence of events such that Sn depends only on the edges in int�nG�φ�n��
and for each n ∈ �, let π�n� be a partially wired b.c. on nG. Then

lim sup
n→∞

1
nd−1 log�

π�n�� p� q
nG �Sn� = lim sup

n→∞
1

nd−1 log�
f�p�q
nG �Sn��(20)

The same equality is valid when lim sup is replaced by lim inf .
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Remark. (i) Note that free b.c.s on the right-hand side could be replaced
by wired b.c.s as well. A direct consequence of (20) is

lim sup
n→∞

1
nd−1 log�

f�p�q
nG �Sn� = lim sup

n→∞
1

nd−1 log sup
�∈c�� �p�q�nG�

��Sn�
(21)

= lim sup
n→∞

1
nd−1 log inf

�∈c�� �p�q�nG�
��Sn��

(ii) We will work in the box ��n� with wired boundary conditions; hence we
will need the following slight generalization of Proposition 3.1, whose proof
is similar. Assume d ≥ 3, q ≥ 1, p > p̂c with θf�p� = θw�p�. Let G be a
box building included in ��1�. We define the φ�n�-interior of the building nG
relative to ��n� by

int ��n��nG�φ�n�� = {
x ∈ nG �d∞�x� ∂innG\∂in��n�� > φ�n�}�

For n ∈ �, let Sn be an event depending only on the edges in int ��n��nG�φ�n��
and let π�n� be a partially wired b.c. on nG such that the sites in ∂innG ∩
∂in��n� are wired together. We have

lim sup
n→∞

1
nd−1 log�

π�n�� p� q
nG �Sn� = lim sup

n→∞
1

nd−1 log�
w�p�q
��n� �Sn��(22)

Lemma 3.2 (Decoupling lemma). Let d ≥ 3, q ≥ 1, p > p̂c with θ
f�p� =

θw�p�. Let Di� i ∈ I, be a finite collection of disjoint compact subsets of the
unit cube ! = �−1/2�1/2�d. Assume that these sets have nonempty connected
interiors. For i ∈ I let Sin be a sequence of events such that S

i
n depends on the

edges in nDi ∩ ��n�. Then

lim sup
n→∞

1
nd−1 log�

w
��n�

[ ⋂
i∈I
Sin

]
≤ ∑

i∈I
lim sup
n→∞

1
nd−1 log�

w
��n�

[
Sin

]
�

Remark. The same result is valid for lim inf with the opposite inequality.
Again, w could be replaced by f. The statements are valid also for the infinite
volume measure.

Proof. It is sufficient to prove the statement for two sets D1 and D2 only.
We suppose that D1 and D2 are closed subsets of the interior of !. Let G1 be
a box building such that D1 ⊂ intG1, D2 ∩ cloG1 = �. Let φ
 � → � be an
increasing function such that limn→∞ φ�n� = ∞ and limn→∞ φ�n�/n = 0. For
n large enough, the event S1n depends only on the edges in int �nG1� φ�n��,
while S2n is in the σ-field �

nG1
��n� . Therefore

�w
n!

[
S1n ∩S2n

] = �w
n!

[
1S2n�

w
n!

[
S1n �� nG1

��n�
]]

(23)
≤

(
max

�∈c�� �nG1�
��S1n�

)
�w
n!

[
S2n

]
�
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Hence taking the lim sups and using (21) we obtain the claim of Lemma 3.2.
For sets intersecting the boundary of !, the argument is analogous and it
relies on (22). ✷

We next present the lemmas involved in the proof of Proposition 3.1. The
first lemma is a simple observation which, nonetheless, plays a crucial role in
the derivation of the results mentioned above.

Lemma 3.3 (Monotone perturbation of boundary conditions in FK percola-
tion). Let q ≥ 1 and π ′ ' π be two (partially wired) b.c.s on the regionV ⊆ �d.
We denote by �π� the number of equivalence classes in π (note �π� ≤ �π ′�). Assume
�π ′� − �π� ≤ C for a certain constant C. Then for any event S depending only
on the edges in V,

q−C ≤ �π ′
V �S�

�π
V�S� ≤ qC�

Proof. Note that �π ′�−�π� ≤ C together with π ) π ′ imply that for each ω,

0 ≤ clπ
′ �ω� − clπ�ω� ≤ C�

For any event A we define the partition sum Zπ�A� by

Zπ�A� = ∑
ω∈A

( ∏
e∈E

pω�e��1− p�1−ω�e�
)
qcl

π�ω��

We have the inequalities Zπ�A� ≤ Zπ ′ �A� ≤ qCZπ�A�. The first inequality is
obvious and the second follows from

Zπ ′ �A� = ∑
ω∈A

( ∏
e∈E

pω�e��1− p�1−ω�e�
)
qcl

π�ω�qcl
π′ �ω�−clπ�ω� ≤ qCZπ�A��

The inequalities of the lemma can be proved as follows:

�π
V�S� = Zπ�S�

Zπ
≤ Zπ ′ �S�
q−CZπ ′ = qC�π ′

V �S��

�π ′
V �S� = Zπ ′ �S�

Zπ ′ ≤ qCZπ�S�
Zπ

= qC�π
V�S�� ✷

The other ingredient of the proof of Proposition 3.1 is the control of (ran-
dom) boundary conditions on int �nG�φ�n�� induced by the measures �π�n�

nG .
Denote by A�n� the “boundary region” nG\int �nG�φ�n��. We will show that
the average number ofA�n�-clusters per site is concentrated around κ+, which
is the half-space analogue of the expected number of clusters per site κ. We
begin the lengthy but rather simple proof with the introduction of half-clusters.
Given an edge configuration in �d, the half-clusters are simply the �d-clusters,
that is, the open clusters of the configuration restricted to �d. For A ⊆ �d =
�x ∈ �d�xd = 0� we denote by K′

Athe number of half-clusters intersecting A.
Finally, we set κ′

n�p�q� = �
p�q
∞ �K′

D�n�/n
d−1�, where D�n� is the hypersquare

�d ∩ ��n�.
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Lemma 3.4. Assume d ≥ 3, q ≥ 1, 0 ≤ p ≤ 1, θf�p� = θw�p�. The limit
limn→∞ κ′

n = κ+ exists and is equal to infn κ′
n.

Remark. If 0 < p < 1, the limit κ+ is easily seen to be confined to (0,1).

Proof of Lemma 3.4. The proof is based on the following subadditive
property: if A�B ⊆ �d and ω is a configuration, then

K′
A∪B�ω� ≤ K′

A�ω� +K′
B�ω�

and the same is true for the expectations. The claim of the lemma follows from
a well-known d-dimensional generalization of the subadditive inequality. For
the reader’s convenience we sketch the argument. It is enough to show that
for each fixed m, lim supn→∞ κ′

n ≤ κ′
m. Let n ≥ m and divide the hypersquare

D�n� ⊆ �d into disjoint hypersquares congruent toD�m�. There are �n/m�d−1

boxes which fit into D�n� and it remains an uncovered region of size not
exceeding 2�d−1�mnd−2. By subadditivity and translation invariance of �p�q

∞ ,

�∞
[
K′

n/n
d−1

]
≤ �n/m�d−1�m/n�d−1�∞

[
K′

m/m
d−1

]
+ 1
nd−1 2�d− 1�mnd−2�

Taking lim supn→∞ we arrive at the claim. ✷

We next introduce the number Kn of ��n� ∩ �d-clusters intersecting the
hypersquare D�n− √

n� and set κn = �
p�q
∞ �Kn/n

d−1�.

Lemma 3.5. Assume d ≥ 3, q ≥ 1, p > p̂c, θ
f�p� = θw�p�. Then

limn→∞ κn = κ+.

Proof. We define the event

Rn = {∃!��n� ∩ �d-cluster C∗ with diameter ≥ √
n

(24)
and C∗ ∩D�n− √

n� �= �
}
�

On Rn, if two sites in D�n − √
n� are connected in �d then they are already

connected in ��n� ∩ �d. Hence, on Rn,

�Kn −K′
n� ≤ �D�n�\D�n− √

n�� ≤ 2�d− 1�nd−2√n�
By Theorem 3.1 in [59] we know that limn→∞ �

p�q
∞ �Rc

n� = 0. Thus

lim sup
n→∞

�κn − κ′
n� ≤ lim sup

n→∞
�p�q

∞
[
n1−d�Kn −K′

n� Rn

]
+ lim sup

n→∞
�p�q

∞
[
Rc
n

] = 0� ✷
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Lemma 3.6. Assume d ≥ 3� q ≥ 1, p > p̂c with θ
f�p� = θw�p�. The quantity

Kn/n
d−1 concentrates around κ+ as n goes to ∞, that is, for each ε > 0,

lim
n→∞ max

�∈c�� �p�q���n��
�
[∣∣Kn/n

d−1 − κ+∣∣ > ε
]

= 0�

Proof. Let ε > 0. Since Kn is decreasing, we need only to show

lim
n→∞�

w
��n�

[
Kn/n

d−1 < κ+ − 5ε
]

= 0�(25)

lim
n→∞�

f
��n�

[
Kn/n

d−1 > κ+ + 5ε
]

= 0�(26)

By Theorem 3.1 in [59] and Lemma 3.5, there exists N = N�ε� such that
max

�∈c�� �p�q���N�∩�d�
�
[
Rc
N

] ≤ ε/2�(27)

κ+ − ε/2 ≤ κN = �∞
[
KN/N

d−1] ≤ κ+ + ε/2(28)

[the event RN was defined in (24)]. We require in addition that

2�d− 1�/
√
N < ε�(29)

Note that Kn is also a local variable. Since according to our assumptions
�
f
∞ = �w

∞�= �∞�, then the measures �∗
��m�� ∗ = f or w, converge weakly

toward �∞ as m → ∞, and there exists M0 = M0�ε�N� such that for every
m ≥ M0,

�
f
��m�

[
KN/N

d−1] − ε/2 ≤ �∞
[
KN/N

d−1]
≤ �w

��m�
[
KN/N

d−1] + ε/2�
(30)

Therefore, by (28) and (30), forM ≥ M0�ε�N�,
κ+ − ε ≤ �w

��M�
[
KN/N

d−1] ≤ �
f
��M�

[
KN/N

d−1] ≤ κ+ + ε�(31)

LetM ≥ M0�ε�N� be such thatM/N is an odd integer greater than or equal
to 3. Thus for these values N�M the conditions (27) and (31) hold true. Let
n > M2 and l = ��n− √

n�/N�. We use the blocks B�i� = ��iN�N�, i ∈ D�l�,
to rescale D�n − √

n�. For given i, we introduce the corresponding “middle
square” D�i� = iN + D�N − √

N� and we denote by K�i� the number of
clusters in B�i� ∩ �d intersecting D�i�. We call the block B�i� regular if the
event described in (24) occurs in B�i�∩�d [instead of ��n��; in this case we set
X�i� = 0 and X�i� = 1 otherwise. Condition (27) guarantees that the block
process �X�i��i∈D�l� is stochastically dominated by i.i.d. Bernoulli variables
with parameter ε/2.
Let Tn denote the event that the proportion of irregular blocks B�i�,

i ∈ D�l�, exceeds ε. By Cramér’s theorem there exists c = c�ε� > 0 such that

�w
��n�

[
Tn

] ≤ exp�−c�D�l��� = exp
( − c��n− √

n�/N�d−1)�(32)
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We next observe thatKn ≥ ∑
i∈D�l� K�i��1−X�i��−�D�l��, since the number

of clusters in �d∩��n� intersectingD�i�, when i is regular, can be determined
by looking at the configuration in �d ∩ B�i�. Moreover, in each such block
there exists at most one half-cluster which can intersect another block. Hence
the maximal overcount is bounded by the number of regular blocks (which is
bounded by �D�l���� On Tc

n we can use the following estimate:

Kn ≥ ∑
i∈D�l�

K�i� − �D�l�� − ε�D�l��Nd−1 ≥ ∑
i∈D�l�

K�i� − 2εnd−1�(33)

The term ε�D�l��Nd−1 is a bound on the number of sites in D�n − √
n� not

covered by regular blocks, which itself is a crude upper bound on the (extra)
overcount. The second inequality follows from (29).
It will be useful to subdivide all blocks in the collection B�i�� i ∈ D�l� into

further classes containing blocks which are sufficiently separated in space.
First we set B′�i� = ��iN�M�. Recall that M/N is an odd integer greater
than or equal to 3. Thus the blocks B�k�� k ∈ D�M/N�, partition B′�0�. For
k ∈ D�M/N�, we look at the collection of (indices of ) blocks

J�k� =
{
j ∈ D�l� �j = k+ i�M/N� for some i ∈ �d

}
�

Note that J�k�� k ∈ D�M/N� is a partition of D�l� and the d-dimensional
blocks B′�j�� j ∈ J�k� are all disjoint and contained in ��n� (since √

n > M.)
Returning to the proof of (25),

lim sup
n→∞

�w
��n�

[
Kn/n

d−1 < κ+ − 5ε
]

≤ lim sup
n→∞

�w
��n�

[
Tn

]
+ lim sup

n→∞
�w
��n�

[
1

nd−1
∑

k∈D�M/N�

∑
j∈J�k�

K�j� < κ+ − 3ε Tc
n

]

≤ lim sup
n→∞

�w
��n�

[
∃ k ∈ D�M/N� �D�M/N��

nd−1
∑

j∈J�k�
K�j� < κ+ − 3ε

]
≤ lim sup

n→∞
�D�M/N��

× max
k∈D�M/N�

�w
��n�

[
1

�J�k��
∑

j∈J�k�
K�j�/Nd−1 < κ+ − 2ε

]
�

(34)

(Note that �D�M/N��/nd−1 ∼ 1/��J�k��Nd−1� ∼ �M/nN�d−1 as n → ∞�. In
order to estimate the probabilities above we use the decoupling event

F�k� = ⋂
j∈J�k�

�each edge connecting two sites in ∂inB′�j� is open��

Under the conditional measure �w
��n��·�F�k��, the variables K�j�/Nd−1� j ∈

J�k�, become i.i.d., and by (31) we know that their expected values are at
least κ+ −ε. Hence, for any k ∈ D�M/N�, by the FKG inequality and Cramér’s
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theorem we have

�w
��n�

[
1

�J�k��
∑

j∈J�k�
K�j�/Nd−1 < κ+ − 2ε

]

≤ �w
��n�

[
1

�J�k��
∑

j∈J�k�
K�j�/Nd−1 < κ+ − 2ε

∣∣∣F�k�
]

≤ exp�−c′�J�k���

(35)

for some c′ = c′�ε� > 0. Note finally that �J�k�� ≥ �n/M�d−1/2 for n large
enough, which together with (34) and (35) implies (25).
The proof of (26) is very similar; in fact it is easier since subadditivity can

be used instead of the regularity argument. The block construction is the same
as before except that we set l = ��n − √

n�/N� to have a complete cover of
D�n−√

n� and we chooseN = N�ε� andM = M�ε�N� such that (27) and (31)
are satisfied andM/N is an odd integer ≥3. In this case,

Kn ≤ ∣∣D�n�\D�n− √
n�∣∣ +

∣∣∣∣ ⋃
i∈D�l�

�B�i� ∩ �d�\D�i�
∣∣∣∣ + ∑

i∈D�l�
K�i��

By (29), both �D�n�\D�n− √
n�� and �⋃i∈D�l��B�i� ∩�d�\D�i�∣∣ are bounded by

εnd−1. Hence,

lim sup
n→∞

�
f
��n�

[
Kn/n

d−1 > κ+ + 5ε
]

≤ lim sup
n→∞

�
f
��n�

[
n1−d ∑

i∈D�l�
K�i� > κ+ + 3ε

]

≤ lim sup
n→∞

�
f
��n�

[
∃ k ∈ D�M/N� �D�M/N��

nd−1
∑

j∈J�k�
K�j� > κ+ + 3ε

]

≤ �D�M/N�� lim sup
n→∞

max
k∈D�M/N�

�
f
��n�

[
1

�J�k��
∑

j∈J�k�
K�j�/Nd−1 > κ+ + 2ε

]
�

To estimate the probabilities above, we use the decoupling event

F�k� = ⋂
j∈J�k�

�each edge in ∂edgeB′�j� is closed��

Note that under the conditional measure �
f
��n��· �F�k��, the variables

K�j�/Nd−1, j ∈ J�k�, are i.i.d. with expected value smaller than κ+ + ε. The
proof can be finished as in the previous case by employing the FKG inequality
and Cramér’s theorem. ✷

Proof of Proposition 3.1. To preserve transparency, in particular to sim-
plify notation, we will give the proof for the choice G = ��1�; the generalization
to arbitrary buildings is straightforward. Note that for G = ��1�, nG = ��n�.
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We begin with the description of the idea behind the proof. Let us first recall
Lemma 3.3 which says that whenever two b.c.s π�π ′ given on a region are not
too different, more precisely when π ′ ' π and the difference of the number
of equivalence classes is bounded by some number C, then the correspond-
ing probabilities of any event S given in that region are comparable in the
following sense:

q−C ≤ �π ′ �S�/�π�S� ≤ qC�

We will use a certain monotone coupling of the two measures �f
��n� and �

π
��n�

where π is a partially wired boundary condition on ��n�. Our first goal is to
show that for any ε > 0, with exceedingly high probability (i.e., up to LDs of
higher than surface order) we are able to find a random (centered) box B in
��n� [only a little smaller than ��n� itself] such that the b.c.sWf

B andW
π
B on

B, induced by the configuration in ��n�\B, satisfy 0 ≤ �Wf
B� − �Wπ

B� ≤ εnd−1.
It is then easy to show, by using Lemma 3.3, that

q−εnd−1 ≤ �π
��n��S�/�f

��n��S� ≤ qεn
d−1

for any event S which is measurable in a region not too close to the boundary
of ��n�. Since ε is arbitrarily small, the result follows easily.
We begin the proof with the description of the before-mentioned monotone

coupling ���n� of the measures �
f
��n� and �

π
��n� governing two layers of configu-

rations ω = �ωf�ωπ� with ωf ≤ ωπ . We first choose an arbitrary inward spiral
ordering of all the bonds, b1� b2� � � � in the box ��n� beginning with some edge
on the boundary [such an edge links two sites in ∂in��n�] and we assign i.i.d.
variables Xi to the bonds bi in ��n� which are uniformly distributed on [0,1].
By an inward spiral ordering we simply mean that form = 1� � � � � n, each bond
between sites in ∂in��m� has a smaller index than every bond linking ∂in��m�
to ∂in��m−1�which themselves have smaller indices than bonds in ∂in��m−1�,
etc. The coupling will be constructed in an algorithmic way as follows: one
takes the first bond b1 and declares the corresponding bond on the ∗-layer to
be open �Y∗

1 = 1� if X1 ≤ �∗
��n�[b1 is open], otherwise b1 is closed (Y

∗
1 = 0).

Note that the monotonicity of the coupling is guaranteed simply by the FKG
property. The second bond on the ∗-layer will be open or closed according to
whether X2 ≤ �∗

��n� [b2 is open � the status of b1 is given by Y∗
1]. Again, the

strong FKG inequality (and the relation Yw
1 ≥ Y

f
1 ) guarantees the monotonic-

ity of the coupling. In general, the kth bond on the ∗-layer is open iff Xk

≤ �∗
��n� [bk is open � the status of b1� � � � � bk−1 is given by Y

∗
1� � � � �Y

∗
k−1]. One

proceeds in this way until all the bonds have been assigned their status. One
important property of this coupling is that by construction, for each k and each
configuration η = �ηf�ηw� ∈ �0�1��b1�����bk�×�0�1��b1�����bk�, the conditional mea-
sure ���n��·�η� restricted to the ∗-layer agrees with �∗

��n��·�η∗�. In particular, if
η is a (double) configuration defined on ��n�\��m� with m = 1� � � � � n− 1, the
same statement is true due to the particular choice of the ordering of the edges.
Recall that φ
 � → �+ is a fixed monotone increasing function such that

limn→∞ φ�n� = ∞ and limn→∞ φ�n�/n = 0. Set L = L�n� = �φ�n�1/�d+1�� if
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Fig. 2. The blocks and the shells.

this number is odd and letL = �φ�n�1/�d+1��−1 otherwise. We assume that n is
large enough such that L ≥ 3. We divide �d into blocks of side length L in the
usual way: for i ∈ �d we set B�i� = ��Li�L�. Set ��n�φ� = int ���n�� φ�n��
and let ��n�φ� be the set of indices i such that ��n�φ� ∩B�i� �= �. Note that
��n�φ� is itself a box of the form ��j′

0� for some j′
0 ∈ �. We set j0 = j′

0 if
this is an odd number and j0 = j′

0 + 1 otherwise. For k ≥ 1, the set S�k� =
��j0 + 2k�\��j0 + 2�k − 1�� is called the kth rescaled shell around ��n�φ�
and S�k� = ⋃

i∈S�k� B�i� is the kth shell around ��n�φ�. Note that S�k� ⊆
��n�\��n�φ� for k = 1�2� � � � � s, where s = s�n� = �φ�n�/�2L�n��� − 1. We
divide the kth rescaled shell into corner and noncorner sites (blocks) according
to whether their d1 distance to ��j0+2�k−1�� is equal to or strictly larger than
one. In the subsequent arguments the middle hypersquares of these blocks will
play an important role. They are contained in the inner vertex boundary of
the box

!�k� = ���j0 + 2k�L��

Note that ∂in!�k� intersects every noncorner block of the kth shell in its middle
hypersquare. We define for k = 1� � � � � s, i ∈ S�k�, i noncorner,

B+�i� = B�i� ∩
(
∂in!�k� ∪ ���n�\!�k��

)
�

D�i� =
{
x ∈ B�i� ∩ ∂in!�k� ∣∣d∞�x� ∂inB�i�� ≥

√
L
}
�

K�i� = number of B+�i�-clusters intersecting D�i��
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Fig. 3. The blocks B�i�, B′�i� and the middle plane D�i�.

Finally, for ε > 0, we define the block event

Ri�ε� = { ∃!B+�i�-cluster C∗ with diameter ≥
√
L

intersecting D�i�� �K�i�/Ld−1 − κ+� < ε
}
�

A noncorner block i is called regular if Ri�ε� occurs in both layers. We denote
the corresponding block process byXi. HenceXi = 0 if i is regular andXi = 1
otherwise. For k = 1� � � � � s, we set

Gk�ε� = {
the proportion of regular noncorner blocks

in the kth shell is larger than 1− 2ε
}
�

The uniform estimates (14), Lemma 3.6 and the specific coupling guarantee
that for every n ≥ n0�ε�d�p� q�, the process Xi, indexed by noncorner blocks
in the kth shell, is stochastically dominated by i.i.d. Bernoulli variables with
parameter ε. Hence, there exists c = c�ε� > 0 such that for every n ≥ n0,

���n�

[ ⋂
k=1�����s

Gc
k

]

≤ ���n�

[(
the proportion of regular blocks in

⋃
k=1�����s

S�k�
)

≤ 1− 2ε
]

(36)

≤ exp
(

− c′
∣∣∣∣ ⋃
k=1�����s

S�k�
∣∣∣∣) ≤ exp�−c′nd−1L�n���

where we used Cramér’s theorem. In words: we know that up to negligible
events, we can find a shell in the φ�n�-boundary of ��n� where most of the
blocks are regular. As we will show, this implies that the induced boundary
conditions in each layer are close to each other. For ∗ = f or π, we denote
by W∗

!�k��ω∗� the induced b.c.s ∗ · W!�k�
��n��ω∗� (see Section 2 for the notation).
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Note that these are random b.c.s on !�k� which arise as a combination of the
b.c.’s on ��n� and of the configuration occurring in the annulus

A�k� = ��n�\!�k��
We claim that there exists n0 = n0�ε�d�φ� such that for every n ≥ n0 and
k = 1� � � � � s, we have on the event Gk,

0 ≤ ∣∣Wf
!�k�

∣∣ − ∣∣Wπ
!�k�

∣∣ ≤ 9ε 2dnd−1�(37)

Note that the first inequality is a simple consequence of the monotonicity of
the coupling. To prove the other bound we first observe that if B�i� is a regular
noncorner block in the kth shell then for ∗ = f and ∗ = π,K�i��ω∗� is equal to
the number ofA�k�-clusters on the ∗-layer which intersectD�i�. The next step
is to derive an appropriate upper bound on the number �Wf

!�k��ω�� of A�k�-
clusters intersecting ∂in!�k� in the f layer, when ω ∈ Gk. We estimate it (using
subadditivity) by the sum of the numbers ofA�k�-clusters intersecting ∂in!�k�:

in corner blocks, = N1 
in irregular non-corner blocks, = N2 
in regular noncorner blocks, B�i� “outside” D�i��

that is, in �∂in!�k� ∩B�i��\D�i��= N3 
in D�i� when B�i� is a regular noncorner block, = N4�

The corresponding estimates are as follows:

N1 ≤ εnd−1 for n large enough depending on ε�d�φ 
N2 ≤ 2d2ε�n/L�n��d−1L�n�d−1 = 4dεnd−1 on Gk 

N3 ≤ 2d�n/L�n��d−1 ×L�n�d−2
√
L�n� < εnd−1

for n large enough depending on ε�d�φ 
N4 ≤ ∑

i∈S�k��B�i� is
regular�noncorner

K�i� ≤ L�n�d−1�κ+ + ε�2d�n/L�n��d−1

= 2d�κ+ + ε�nd−1�

This implies ∣∣Wf
!�k�

∣∣ ≤ N1 +N2 +N3 +N4 ≤ 2d�κ+ + 4ε�nd−1�(38)

To get a lower bound on �Wπ
!�k��ω�� when ω ∈ Gk we first observe that in

a regular noncorner block B�i�, i ∈ S�k� there are K�i� −1≥ �κ+ − ε�Ld−1 −1
A�k�-clusters with diameter strictly smaller than √

L intersecting D�i�. Note
that these clusters cannot intersect any other block B�j�, j ∈ S�k�\�i�. Thus
the total number of A�k�-clusters intersecting ∂in!�k� is certainly not smaller
than the sum of the numbers of A�k�-clusters with diameter strictly smaller
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than
√
L intersecting D�i� for some i ∈ S�k�, B�i� noncorner and regular. The

number of such blocks is bounded from below by

(
n− 2φ�n�
L�n�

)d−1
2d�1− 2ε� > �1− 3ε�2d�n/L�n��d−1�

where n is large enough (depending on ε�d�φ only). Hence for ω ∈ Gk and
n large,∣∣Wπ

!�k��ω�∣∣ ≥ �1− 3ε�2d�n/L�d−1��κ+ − ε�Ld−1 − 1� ≥ 2d�κ+ − 5ε�nd−1�

This, together with (38) gives (37).
The remainder of the proof of Proposition 3.1 is based on Lemma 3.3. For

an integer m < n we set

Jm = Jm�ε� =
{
ω
∣∣∣ ∣∣Wf

��m�
∣∣ − ∣∣Wπ

��m�
∣∣ < εnd−1

}
�

By (36) and (37) we know that

lim sup
n→∞

n1−d log���n�

[( ⋃
n−φ�n�<m<n

Jm

)c]
= −∞�(39)

Let Sn be an event which depends only on the edges in ��n�φ�. In the coupled
model denote by S∗

n� ∗ = f or π, the event that Sn occurs on the ∗-layer. Let
η = �ηf�ηπ� be a configuration in ��n�\��m� and assume η ∈ Jm�ε�. Then

���n�
[
S∗
n

∣∣η] = �∗
��n�

[
Sn

∣∣η∗] = �
W∗

��m��η∗�
��m�

[
Sn

]
�

Recall that the first equality is a consequence of the specific choice of the
coupling and the second one follows from (10). By Lemma 3.3 we have

q−εnd−1
���n�

[
Sπn

∣∣η] ≤ ���n�
[
Sfn

∣∣η] ≤ qεn
d−1

���n�
[
Sπn

∣∣η]�(40)

Hence

���n�
[
Sfn ∩Jm

] = ∑
η
 config� on��n�\��m�

�η�⊆Jm

���n�
[
Sfn

∣∣η]���n�
[
η
]

≤ ∑
�η�⊆Jm

qεn
d−1

���n�
[
Sπn

∣∣η]���n�
[
η
]

(41)

= qεn
d−1

���n�
[
Sπn ∩Jm

] ≤ qεn
d−1

���n�
[
Sπn

]
�
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Therefore, by using (39) and (41),

lim sup
n→∞

n1−d log�f
��n�

[
Sn

] = lim sup
n→∞

n1−d log���n�

[
Sfn ∩

( ⋃
n−φ�n�<m<n

Jm

)]

≤ lim sup
n→∞

n1−d log
(
φ�n� max

n−φ�n�<m<n
���n�

[
Sfn ∩Jm

])
≤ lim sup

n→∞
n1−d log qεn

d−1
���n�

[
S
π�n�
n

]
≤ ε log q+ lim sup

n→∞
n1−d log�π�n�

��n��Sn��

Since ε > 0 can be chosen arbitrarily, we have

lim sup
n→∞

n1−d log�f
��n�

[
Sn

] ≤ lim sup
n→∞

n1−d log�π�n�
��n�

[
Sn

]
�(42)

By interchanging the roles or f and π�n� and using the first inequality in (40)
we derive similarly the opposite inequality which gives the claim (20). The
derivation of the inequality involving lim inf is analogous. ✷

4. Surface tension. We will have to work with enlargements of contin-
uous subsets of �d so that they have a significant trace on the discrete lat-
tice �d. We fix a real number ζ > 2d and we enlarge a subset A of �d by
considering its ζ-neighborhood 
2�A�ζ�. A minimal requirement for choos-
ing ζ is that, whenever A is an arcwise connected subset of �d, the graph
(�d ∩ 
2�A�ζ�, Ɛd�
2�A�ζ��� is also connected. Some of the constants appear-
ing in the statements and the proofs depend on ζ. However the direction-
dependent surface tension and the probabilistic estimates are independent of
the particular choice of ζ > 2d.
We next identify the surface tension of the model, whose existence is guar-

anteed by subadditivity and the FKG inequality. We work here in the following
regime: d ≥ 3, q ≥ 1, p > p̂c, θf�p� = θw�p�. We study the surface tension of
the infinite volume FK measure �∞.
Let A be a closed hyperrectangle and let s be positive or infinite. Recall

that cyl ∂A = �x+ t nor A�x ∈ ∂A, t ∈ ��. We denote byW�∂A� s� ζ� the event
that there exists a finite set of closed edges E ⊆ 
2�hypA� s� such that:
1. E separates ∞ in cylA.
2. The edges in E∩
2�cyl ∂A� ζ� are closed to hypA so that they are contained
in 
2�hypA�ζ�.
Loosely speaking, the second condition means that the “boundary” of E is

“pinned down” at ∂A within a distance ζ. Note that the event W�∂A� s� ζ� is
decreasing and it depends only on edges inside cyl A ∩ 
2�hypA� s�.
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Proposition 4.1. Let A be a hyperrectangle. Let φ�n� be a function from
� to �+ ∪ �∞� such that limn→∞ φ�n� = ∞. The limit

lim
n→∞ − 1


 d−1�nA� log �∞
[
W

(
∂nA�φ�n�� ζ)]

exists ∈ �0�∞� and depends only on norA. We denote it by τ�norA� and call
it the surface tension in the direction norA.

For the proof, see Section A.2.

Remark. It turns out that our definition in the case of integer q agrees
with the classical one for spin systems. We are planning to give a proof in a
subsequent paper [15].
Properties. We derive next some basic properties of the surface tension. In

the context of lattice spin systems, where the definition of surface tension is
significantly different, the corresponding properties have been derived in [53].
Although the techniques are not original (apart perhaps from Proposition 4.2),
for the sake of completeness, we include the proofs in Section A.2.
The surface tension τ inherits automatically some symmetry properties

from the model. For instance, if f is a linear isometry of �d such that f�0� = 0
and f��d� = �d then τ ◦ f = τ. Besides, the surface tension τ satisfies
another important inequality called the weak triangle inequality. For details
and results concerning this kind of inequality, see [28, 53, 54].

Proposition 4.2 (Weak triangle inequality). Let (ABC) be a nondegener-
ate triangle in �d and let νA, νB, νC be the exterior normal unit vectors to the
sides �BC�, �AC�, �AB� in the plane spanned by A�B�C. Then


 1([BC])
τ�νA� ≤ 
 1([AC])

τ
(
νB

) + 
 1([AB])
τ
(
νC

)
�

Proof. We consider first the case where BA ·BC ≥ 0 and CA ·CB ≥ 0. Let
ε� h be positive with ε ≤ 1 ≤ h. Let �e1� � � � � ed� be an orthonormal basis of �d

such that e1� e2 belong to the two-dimensional space spanned by A�B�C. Let
K be the compact convex set defined by

K =
{
x+ ∑

3≤i≤d
uiei

∣∣x ∈ (
ABC

)
�
(
u3� � � � � ud

) ∈ [
0� h

]d−2}
�

The boundary ofK consists of the three hyperrectanglesRA,RB,RC defined by

RA =
{
x+ ∑

3≤i≤d
uiei

∣∣x ∈ [
BC

]
�
(
u3� � � � � ud

) ∈ [
0� h

]d−2}
�

RB =
{
x+ ∑

3≤i≤d
uiei

∣∣x ∈ [
AC

]
�
(
u3� � � � � ud

) ∈ [
0� h

]d−2}
�

RC =
{
x+ ∑

3≤i≤d
uiei

∣∣x ∈ [
AB

]
�
(
u3� � � � � ud

) ∈ [
0� h

]d−2}
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and the set

T = ⋃
3≤j≤d

{
x+ ∑

3≤i≤d
uiei

∣∣x ∈ �ABC�� uj ∈ �0� h��

(
u3� � � � � uj−1� uj+1� � � � � ud

) ∈ �0� h]d−3
}
�

Notice that the set T is connected in dimension d ≥ 4 and consists of two
disjoint triangles in dimension d = 3. The intersection of the hyperrectangles
RA andRB is a d−2-dimensional rectangle and it is denoted byRA�B. Similar
notation is used for the other intersections. Let E0 be the set of the edges
included in(

cyl
(
hyp nRA ∩ 
2

(
∂nRA�4εn

)) ∩ 
2�hypnRA� ζ
))

∪ 
2
(
nRB�C�2ζ

) ∪ 
2�nRA�C�2ζ
) ∪ 
2

(
nRA�B�2ζ

) ∪ 
2
(
nT�2ζ

)
�

There exists a constant c = c�d� ζ� such that∣∣E0

∣∣ ≤ c
(
εnd−1hd−2 + �nh�d−2 + 2�d− 2�nd−1hd−3

)
�(43)

Let Rε be a hyperrectangle in hypRA such that RA ⊂ Rε ⊂ 
2�RA�4ε� and
d2�∂Rε�RA� > 2ε. For n large enough, so that εn > ζ, if the events

W
(
∂nRC� εn� ζ

)
� W

(
∂nRB� εn� ζ

)
� �all the edges of E0 are closed�

occur simultaneously, then the event W�∂nRε�∞� ζ� occurs as well; by the
assumptions BA · BC ≥ 0 and CA · CB ≥ 0, the set 
2�nRC ∪ nRB� εn� is
included in 
2�cylnRA� εn� and does not intersect 
2 (cyl ∂nRε� ζ�, so that
the separating sets will be correctly localized. By the FKG inequality, this
inclusion implies

�1− p��E0��∞
[
W�∂nRC� εn� ζ�]�∞

[
W�∂nRB� εn� ζ�]

(44)
≤ �∞

[
W�∂nRε�∞� ζ�]�

The inequalities (43), (44) and Proposition 4.1 yield


 d−1(Rε
)
τ�νA� ≤ 
 d−1(RC

)
τ�νC� + 
 d−1(RB

)
τ�νB�

− c
(
εhd−2 + 2�d− 2�hd−3) log (1− p

)
�

(45)

We observe


 d−1(RB

) = hd−2
 1([AC])
�


 d−1(RC

) = hd−2
 1([AB])
� hd−2
 1([BC]) ≤ 
 d−1(Rε

)
�

By substituting this into the inequality (45) and dividing by hd−2,


 1([BC])
τ
(
νA

) ≤ 
 1([AC])
τ
(
νB

) + 
 1([AB])
τ
(
νC

)
− c

(
ε+ 2�d− 2�/h) log (1− p

)
�



WULFF CRYSTAL IN THE ISING MODEL 981

By letting h go to ∞ and ε go to 0, we obtain the weak triangle inequality for
the triangle �ABC�. Let now A�B�C be three points such that BA ·BC < 0,
CA · CB ≥ 0. LetD be the orthogonal projection of B on �AC�. Then BC ·BD >
0, DB · DA = 0, BA · BD > 0. We apply the weak triangle inequality to the
triangles �BCD� and �BDA�:


 1([BC])
τ
(
νA

) ≤ 
 1([BD])
τ
(
νBD

) + 
 1([DC])
τ
(
νB

)
�


 1([BD])
τ
(
νBD

) ≤ 
 1([AB])
τ
(
νC

) + 
 1([AD])
τ
(
νB

)
�

where νBD is a unit vector orthogonal to �BD�. Combining the two inequal-
ities, we get the weak triangle inequality for the triangle �ABC�. The case
BA ·BC ≥ 0, CA ·CB < 0 is similar. ✷

The weak triangle inequality implies a lot of nice properties for the surface
tension.

Corollary 4.3. The homogeneous extension τ0 of τ to �d defined by
τ0�0� = 0 and

∀w ∈ �d\�0�� τ0�w� = �w�2τ�w/�w�2�
is a convex function.

The convexity of τ0 is in fact equivalent to the weak triangle inequality.
The next corollary is a consequence of [28], Theorem 3.1: the weak triangle
inequality automatically implies the weak simplex inequality.

Corollary 4.4 (Weak simplex inequality). Let A0� � � � �Ad be d+ 1 points
in general position in �d. For i in �0 · · ·d� let  �i� be the hypersimplex defined
by the points �A0� � � � �Ad�\�Ai�. Up to the sign, there exists a unique family
of unit vectors ν0� � � � � νd such that for i in �0 · · ·d�, the vector νi is orthogonal
to the vector space spanned by the hypersimplex  �i�. Then


 d−1( �0�)τ(ν0) ≤ 
 d−1( �1�)τ(ν1) + · · · + 
 d−1( �d�)τ(νd)�
Proposition 4.5. The surface tension τ 
 Sd−1 %→ �+ is bounded, continu-

ous and does not vanish.

For the proof, see Section A.2.
The previous properties of τ can equivalently be described through its

Wulff crystal,

�τ = {
x ∈ �d

∣∣x ·w ≤ τ�w� for all w in Sd−1}�
Corollary 4.6. The Wulff crystal �τ associated with τ is bounded, closed,

convex and contains 0 in its interior. If f is a linear isometry of �d such that
f�0� = 0 and f��d� = �d then f��τ� = �τ. The surface tension τ is the support
function of its Wulff crystal, that is,

∀ ν ∈ Sd−1� τ�ν� = sup�x · ν �x ∈ �τ��
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These properties are equivalent to the symmetry properties of τ and
Corollary 4.3, Proposition 4.5. The function τ is the support function of �τ

because τ0 is convex and coincides with its bipolar; see, for instance, [60],
Corollary 13.2.1, [36], Proposition 3.5, or [28], Theorem 2.1, Corollary 3.6.
Separating sets. With the help of the surface tension, we next estimate

the probability of the occurrence of a separating set of closed edges near
an hyperplane. Let A be a hyperset in �d and let r be positive or infinite.
We denote by S�A�r� the event that there exists a finite set of closed edges
in cylA ∩ 
2�hypA�r� which separates ∞ in cylA; that is,

S
(
A�r

) = {∃E ⊂ cylA ∩ 
2
(
hypA�r

)
�

�E� < ∞�∀ e ∈ E�ω�e� = 0�E separates ∞ in cyl A
}
�

From now on, we work with a fixed value of ζ larger than 2d and we drop ζ in
the notationW�∂A� s� ζ�, thus writing simplyW�∂A� s�. The proofs of Lemmas
4.7, 4.8, 4.9 and Corollary 4.10 are to be found in Section A.2.

Lemma 4.7. Let O be an open hyperset in �d and let φ�n� be a function
from � to �+ ∪ �∞� such that limn→∞ φ�n� = ∞. We have

lim inf
n→∞

1
nd−1 log�∞

[
S�nO�φ�n��

]
≥ −
 d−1�O�τ�norO��

Lemma 4.8. There exists a positive constant c = c�p�d� ζ� such that, for
any hyperrectangle A of �d, for any positive r,

lim sup
n→∞

1
nd−1 log�∞

[
S
(
nA�nr

)] ≤ −τ�norA�
 d−1�A� + cr
 d−2�∂A��

Lemma 4.9. There exists a positive constant c = c�p�d� ζ� such that for any
open hyperset O in �d, for any finite family �Ai� i ∈ I� of disjoint hyperrectan-
gles included in O, for any positive r,

lim sup
n→∞

1
nd−1 log�∞

[
S
(
nO�nr

)]
≤ −τ(nor O)∑

i∈I

 d−1�Ai� + cr

∑
i∈I


 d−2(∂Ai

)
�

Corollary 4.10. There exists a positive constant c = c�p�d� ζ� such that,
for any x in �d, any positive ρ�η with η ≤ ρ, any w in Sd−1,

lim sup
n→∞

1
nd−1 log�∞

[
S
(
ndisc

(
x� ρ�w

)
� nη

)] ≤ −αd−1ρ
d−1τ�w� + cηρd−2�

5. The surface energy. We work here within the region d ≥ 3, q ≥ 1,
p > p̂c, θf�p� = θw�p�. With the help of the surface tension τ defined in
Proposition 4.1, or equivalently its Wulff crystal �τ, we build a surface energy
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functional defined on the collection of the Borel sets of �d. The surface energy
� �A� of a Borel set A is defined as

� �A� = sup
{ ∫

A
divf�x�dx

∣∣∣f ∈ C1
0��d��τ�

}
�

where C1
0��d��τ� is the set of the compactly supported C1 vector fields tak-

ing values in the Wulff crystal �τ and div is the usual divergence operator.
The definition readily implies that the map � 
 �	��d��distL1� → �0�∞� is
lower semicontinuous. We denote by � �A� the isotropic perimeter of a set A,
introduced by Caccioppoli [12, 13]. Some references and basic results on the
theory of sets of finite perimeter are recalled in Section A.1. In case A is a set
of finite perimeter, we denote by ∂∗A its reduced boundary. Let τmin and τmax
be the infimum and supremum of τ over Sd−1. Then B�τmin� ⊆ �τ ⊆ B�τmax�
so that for every A ∈ 	��d�,

τmin� �A� ≤ � �A� ≤ τmax� �A��(46)

By Proposition 4.5, we have 0 < τmin ≤ τmax < ∞. Thus a set A has finite
surface energy if and only if it has finite perimeter. In this case

� �A� =
∫
∂∗A

τ�νA�x��
 d−1�dx�

(see Proposition 6.5 in [14] for a detailed proof ). Of crucial importance is the
following compactness result.
Compactness of the level sets of � in !. The sets �E ∈ 	�!� �� �E� ≤ λ�,

λ > 0, are compact.
Since � is lower semicontinuous, its level sets are closed. By inequality

(46), the level set of � in ! associated to λ is included in �E ∈ 	�!�
 � �E� ≤
λ/τmin�, which is compact for the metric distL1 (see Section A.1).
We state next the geometric approximation results needed to prove the

lower bound (2) and the local upper bound (5).
The lower bound (2) relies on the possibility of approximating the Wulff

crystal by a polyhedral set. A Borel subset of �d is polyhedral if its boundary
is included in the union of a finite number of hyperplanes.

Lemma 5.1. For any ε > 0, there exists a polyhedral convex set E such that
�τ ⊂ E ⊂ 
2��τ� ε� and � �E� < � ��τ� + ε.

Remark. This result is stronger than the general polyhedral approxima-
tion result for Caccioppoli sets (see [14], Proposition 6.9). Indeed, we are able
to approximate the Wulff crystal from the outside and with respect to the
Hausdorff metric, thanks to its convexity.

Proof of Lemma 5.1. We first recall some results from the theory of con-
vex sets (for details, see [61]). Let A be a convex compact set with nonempty
interior. A point x of ∂A is called “smooth” if the supporting hyperplane
of A at x is unique. By a classical result due to Reidemeister (see [61],
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Theorem 2.2.4), the boundary of a convex compact set admits 
 d−1-almost
everywhere a unique supporting hyperplane. In particular, 
 d−1�∂A\∂∗ A� =
0. The area measure Sd−1�A� ·� associated to A is the Borel measure on the
sphere Sd−1 defined by

∀E ∈ 	�Sd−1�� Sd−1�A�E� = 
 d−1
(

�x ∈ ∂A � νA�x� ∈ E�
)
�

We can express the surface energy � �A� of A with the help of Sd−1�A� ·�:
� �A� =

∫
Sd−1

τ�ν�Sd−1�A�dν��
Moreover, if �An�n∈� is a sequence of convex compact sets converging for the
Hausdorff metric to a convex compact setA having nonempty interior, then the
sequence of the area measures Sd−1�An� ·�n∈� converges weakly to Sd−1�A� ·�
(see, e.g., the proof of Theorem 4.2.5 in [61]).
Let �νn�n∈� be a dense subset of Sd−1 and let for n in �,

An = ⋂
1≤i≤n

{
x ∈ �d �x · νi ≤ τ�νi�

}
�

Since τ is bounded (by Proposition 4.5), then for n large enough, the set An

is convex polyhedral and compact. The sequence �An�n∈� is decreasing and
converges to �τ. Therefore Sd−1�An� ·�n∈� converges weakly to Sd−1��τ� ·�.
Since the surface tension τ is continuous (Proposition 4.5), the surface energy
� �An� converges toward � ��τ�. ✷

The proof of the local upper bound (5) relies on the following covering
lemma.

Lemma 5.2. Let E be a Borel subset of ! having finite perimeter. For ε,
δ > 0 there exists a finite collection of disjoint balls B�xi� ri�� i ∈ I, such that
for any i ∈ I:

(i) Either xi ∈ ∂∗E ∩ int ! and B�xi� ri� ⊆ int !,
(ii) or xi ∈ ∂∗E ∩ ∂!� B−�xi� ri� νE�xi�� ⊆ !.

In both cases distL1�E ∩B�xi� ri�� B−�xi� ri� νE�xi��� ≤ δrdi .
Moreover, ∣∣∣∣� �E� − ∑

i∈I
αd−1r

d−1
i τ�νE�xi��

∣∣∣∣ ≤ ε�

Proof. Let ε� δ be positive with ε < 1/2. By definition of the measure
theoretic normal, for any x ∈ ∂∗E there exists a positive r1�x� δ� such that for
any r < r1�x� δ�,

distL1

(
E ∩B�x� r�� B−�x� r� νE�x��

)
≤ δrd�

Since E ⊂ !, then ∂∗E ⊂ int ! ∪ ∂∗!. If x belongs to ∂∗E ∩ ∂∗!, then νE�x� =
ν!�x�. The map x ∈ ∂∗E %→ νE�x� is .∇χE. measurable and the map
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τ
 Sd−1 → �+ is continuous and bounded, thus the map x ∈ ∂∗E %→ τ�νE�x�� is
.∇χE. measurable and bounded. By the Besicovitch differentiation theorem
(see Section A.1), for 
 d−1 almost every x in ∂∗E,

lim
r→0

(
αd−1r

d−1
)−1


 d−1�∂∗E ∩B�x� r�� = 1�(47)

lim
r→0

(
αd−1r

d−1
)−1 ∫

∂∗E∩B�x�r�
τ�νE�y��
 d−1�dy� = τ�νE�x���(48)

Let ∂∗∗E be the set of the points of ∂∗E where (47) and (48) hold simultane-
ously. Clearly 
 d−1�∂∗E\∂∗∗E� = 0. For any x ∈ ∂∗∗E, there exists a positive
r2�x� ε� such that for any r < r2�x� ε�,∣∣∣
 d−1�∂∗E ∩B�x� r�� − αd−1r

d−1
∣∣∣ ≤ εαd−1r

d−1�∣∣∣ ∫
∂∗E∩B�x�r�

τ�νE�y��
 d−1�dy� − αd−1r
d−1τ�νE�x��

∣∣∣ ≤ εαd−1r
d−1�

The family of the balls B�x� r�� x ∈ ∂∗∗E and 0 < r < min�r1�x� δ�� r2�x� ε�,
d∞�x� ∂!\∂∗!�� is a Vitali class for ∂∗∗E (where ∂!\∂∗! is the union of the
boundaries of the faces of !). By the Vitali covering theorem for 
 d−1, we can
select a countable collection of disjoint balls B�xi� ri�, i ∈ I, belonging to this
family such that either 
 d−1�∂∗∗E\ ∪i∈I B�xi� ri�� = 0 or

∑
i∈I r

d−1
i = ∞. By

our assumption, � �E� = 
 d−1�∂∗E� is finite. For each i ∈ I, ri is smaller
than r2�xi� ε�, thus

�1− ε�∑
i∈I
αd−1r

d−1
i ≤ 
 d−1�∂∗∗E� < ∞�

Therefore, the first case must occur and we may select a finite subset J ⊆ I
such that


 d−1
(
∂∗∗E

∖ ⋃
i∈J

B�xi� ri�
)
< ε
 d−1�∂∗∗E��

We claim that the collection of balls indexed by J enjoys the desired properties.
Indeed, there is only the last condition to be checked:∣∣∣∣� �E� − ∑

i∈I
αd−1r

d−1
i τ�νE�xi��

∣∣∣∣
≤

∫
∂∗∗E\⋃i∈J B�xi�ri�

τ�νE�y��
 d−1�dy�

+ ∑
i∈J

∣∣∣∣ ∫
∂∗∗E∩B�xi�ri�

τ�νE�y��
 d−1�dy� − αd−1r
d−1
i τ�νE�xi��

∣∣∣∣
≤ ε
 d−1�∂∗E��τmax + 2�
≤ ε� �E��τmax + 2�/τmin�

where we have used inequality (46) in the last step. ✷
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6. The interface lemma. This section is devoted to the proof of a lemma
which is crucial for linking the surface tension to the desired large deviation
upper bounds. The interface lemma gives a probabilistic estimate for the local
presence of a collection of open clusters creating a small flat interface near
a middle hyperplane of a ball. “Near” is understood with respect to the L1

topology. The estimate is uniform with respect to the location, the size and
the direction of the interface. Moreover, this lemma suggests an alternative
way for defining the surface tension, which is physically more natural.
Notation. Let B�x� r� be a ball in ! = �−1/2�1/2�d, let w belong to Sd−1,

n to � and let r� δ be positive. Recall that for a collection � of sets we
denote by cup � the union of all the sets belonging to the collection � . If
A ⊆ �d we denote its “thickened” version, regarded as a continuous object
of �d, by cube A = ⋃

x∈A ��x�1�. Recall that the open B�nx�nr�-clusters are
the open clusters in the configuration restricted to the ball B�nx�nr�. Let
Sep�n�x� r�w� δ� be the event: there exists a collection � of open B�nx�nr�-
clusters such that

distL1

(
cube cup� � B �nx�nr�w�

)
≤ δrdnd�(49)

We will work in the unit cube !, hence we have to examine the possibil-
ity of having an interface intersecting ∂!. Let B�x� r� be a ball such that x
belongs to ∂∗! and B �x� r� ν!�x�� is included in !. Let n ∈ � and δ > 0.
Let Sepbd�n�x� r� δ� be the event: there exists a collection � of open
B �nx�nr� ν!�x��-clusters such that none of them intersects ∂in��n� and the
inequality (49) is satisfied with w replaced by ν!�x�.

Lemma 6.1 (Interface lemma). Let d ≥ 3, q ≥ 1, p > p̂c, θ
f�p� = θw�p�.

There exists a constant c = c�p�q�d� ζ� such that for every r in �0�1�, every
ball B�x� r� ⊆ !, every unit vector w in Sd−1 and every δ in �0� θ/2�,

lim sup
n→∞

1
nd−1 log

(
max

�∈c�� �p�q���n��
��Sep�n�x� r�w� δ��

)
≤ −αd−1r

d−1τ�w��1− cδ1/2��

Remark. (i) Note that the event Sep�n�x� r�w� δ� depends only on the sta-
tus of the edges inside B�nx�nr� and it can be seen as an event guaranteeing
the existence of a certain set of closed edges inside B�nx�nr�, hence it is
decreasing.

(ii) For η sufficiently small (depending on δ), we have S�ndisc�x� r�w��
nη� ⊂ Sep�n�x� r�w� δ�. Proposition 3.1 and Lemma 4.7 together imply the
corresponding lower bound

lim inf
n→∞

1
nd−1 log

(
max

�∈c�� �p�q���n��
��Sep�n�x� r�w� δ��

)
≥ −αd−1r

d−1τ�w��
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(iii) The event Sepbd�n�x� r� δ� is also decreasing. By the monotonicity of
FK measures with respect to boundary conditions,

�w
��n�

[
Sepbd�n�x� r� δ�

]
≤ �∞

[
Sepbd�n�x� r� δ�

]
≤ �∞

[
Sep�n�x� r� ν!�x�� δ�

]
so that the interface lemma yields also an upper bound for �w

��n��Sepbd�n� x�
r� δ��. This upper bound turns out to be of the correct order. Indeed, the L1

constraint is weak and the interface might be created at a positive distance
from the boundary: for η small enough (depending on δ),

S
(
ndisc�x− ην!�x�� r� ν!�x��� nη

)
⊂ Sepbd�n�x� r� δ�

and we get the lower bound with the help of Proposition 3.1 and Lemma 4.7
as in Remark (ii) above. However, the situation could be radically different
with another kind of boundary condition.
(iv) In the different context of the Ising model with Kac potentials, a proce-

dure has been developed to get a probabilistic estimate for the local presence
of an interface, whose spirit is similar to the technique of our proof (see the
paragraph “minimal section” in [8]). In this context, a coarse-graining proce-
dure specific to the Kac model is employed. The coarse-grained configuration
is described by attributing a label −1�0�+1 to each mesoscopic box. The labels
−1�+1 correspond to boxes which have relaxed to the minus and plus phases,
the label 0 to a box in an indeterminate status. The authors of [8] localize the
interface between the minus and the plus phase and cover it with a collection
of parallelepipeds (as we do with balls). Inside a parallelepiped, they map the
configuration of labels on a configuration where there is no sequence of cubes
of the same phase which crosses the parallelepiped, by modifying the labels
in two strips, where the number of bad cubes is minimal (the bad cubes are
the cubes having label 0 or cubes of the wrong phase). An essential difference
is, in our view, that the aforementioned work stays at the mesoscopic level of
the boxes and does not go in depth to handle the microscopic structure of the
model, so that the estimates are not precise when the range of interactions is
finite.

Lemma 6.1 and Remark (ii) suggest the following alternative definition of
surface tension.

Corollary 6.2 (Alternative definition of surface tension). Let d ≥ 3, q ≥
1, p > p̂c, θ

f�p� = θw�p�. Let δ�n�
 � → �0�1� be such that limn→∞ δ�n� = 0,
limn→∞ nδ�n� = ∞. For x ∈ �d and w ∈ Sd−1, the limit

lim
n→∞ −�αd−1n

d−1�−1 log�∞�Sep�n�x�1�w� δ�n���

exists and depends only on w. It is equal to the surface tension τ�w�.

Remark. The above limit does not depend on x because our model is
translation invariant. Yet in a more general model, the surface tension might



988 R. CERF AND Á. PISZTORA

depend simultaneously on the direction and a space variable; hence it might
be more natural to define it as the above limit.

Proof of Corollary 6.2. Since the event Sep�n�x�1�w� δ� is nondecreas-
ing with respect to δ, then, for any δ > 0 and n large enough so that δ�n� < δ,
we have Sep�n�x�1�w� δ�n�� ⊂ Sep�n�x�1�w� δ�, whence by Lemma 6.1,

lim sup
n→∞

�αd−1n
d−1�−1 log�∞�Sep�n�x�1�w� δ�n��� ≤ −τ�w��

Next, we have

S
(
ndisc�x�1�w�� nδ�n�/�2αd−1�

)
⊂ Sep�n�x�1�w� δ�n���

Since limn→∞ nδ�n� = ∞, Lemma 4.7 yields

lim inf
n→∞ �αd−1n

d−1�−1 log�∞�Sep�n�x�1�w� δ�n��� ≥ −τ�w�� ✷

An essential ingredient of the proof is Lemma 6.3 which might be of inde-
pendent interest. This lemma relates the probabilities of events which can
be transformed into each other by closing (or opening) certain configuration-
dependent edges “by force”, a procedure which we refer to as perturbation
or surgery. It can be used for estimating the probability of an event S about
which we know that by “changing it a little bit” we get (a subset of ) another
event whose probability is known or can be controlled. Of course, the change
(surgery) will cost some penalty; the corresponding factors can be seen in (50).
Let E be a finite set of edges in a graph and let S be an event defined

on these edges. Let ψ
 S → 7E be a map changing certain open edges into
closed ones. Assume that the number of changed edges is uniformly bounded
by N�ψ�. Note that the change in the number of clusters is nonnegative since
we destroy connections, and it is bounded by N�ψ�. Let d�ψ� = maxψ�S� �ψ−1�
be the “degree of degeneracy” (noninjectiveness) of the map ψ.

Lemma 6.3 (Monotone perturbation of an event in FK percolation). Let
q > 0, p ∈ �0�1� and � ∈ �� �p�q�E�. Then

��S� ≤ d�ψ�
(
1 ∨ 1

q

)N�ψ�(
1 ∨ p

1− p

)N�ψ�
��ψ�S���(50)

Let Sj, j ∈ J, be a finite partition of S and for j ∈ J, let ψj = ψ�Sj be the
restriction of ψ to Sj. Assume that the number of changed edges in the mapping
ψj is bounded by N�ψj�. Then

��S� ≤ �J�
(
max
j∈J

d�ψj�
)((

1 ∨ 1
q

)(
1 ∨ p

1− p

))maxj∈J N�ψj�
��ψ�S���(51)

Remark. Analogous estimates can be derived for opening edges (instead
of closing) as well as for nonmonotonic perturbations.
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Proof of Lemma 6.3. For ω ∈ 7E and � ∈ �� �p�q�E�, we denote by
cl�ω� the number of clusters in ω counted with respect to the partially wired
boundary conditions associated with �. Then

��S� = Z−1 ∑
ω∈S

qcl�ω�
( ∏
e∈E

pω�e��1− p�1−ω�e�
)

= Z−1 ∑
ω′∈ψ�S�

∑
ω∈ψ−1�ω′�

qcl�ω
′�
( ∏
e∈E

pω
′�e��1− p�1−ω′�e�

)(
1
q

)cl�ω′�−cl�ω�

×
( ∏
e∈E

(
p

1− p

)ω�e�−ω′�e�)

≤ Z−1 ∑
ω′∈ψ�S�

∑
ω∈ψ−1�ω′�

qcl�ω
′�
( ∏
e∈E

pω
′�e��1− p�1−ω′�e�

)(
1 ∨ 1

q

)cl�ω′�−cl�ω�

× ∏
e∈E

(
1 ∨ p

1− p

)ω�e�−ω′�e�

≤ ∑
ω′∈ψ�S�

∑
ω∈ψ−1�ω′�

��ω′�
(
1 ∨ 1

q

)N(
1 ∨ p

1− p

)N

=
(
1 ∨ 1

q

)N(
1 ∨ p

1− p

)N ∑
ω′∈ψ�S�

��ω′� �ψ−1�ω′��

≤
(
max
ψ�S�

�ψ−1�
)(

1 ∨ 1
q

)N(
1 ∨ p

1− p

)N
��ψ�S���

Inequality (51) is a direct consequence of (50). ✷

Proof of the Interface Lemma. The basic idea of the proof is as follows.
We will show that whenever the event “Sep” occurs, it is always possible to
perform a surgery in the spirit of Lemma 6.3 by closing not too many edges
so that in the modified configuration a separating set of closed edges appears
near the middle hyperplane hyp�nx�w� of the ball B�nx�nr�. Recall that the
occurrence of such a separating set of closed edges is directly related to our
definition of surface tension. By controlling the penalty factors in (51) we will
be able to give an estimate for ��Sep� in terms of the surface tension τ�w�.
Throughout the proof, we fix x� r�w� δ as in the statement of the inter-

face lemma and we note Sep�n� = Sep�n�x� r�w� δ�. By Proposition 3.1, the
proof can be carried out for the measure �w

��n�. Let f�n� be a function from
� to � such that n/f�n�d−1 goes to ∞ as n goes to ∞ and f�n� ≥ κ log n
for all n, where κ is a sufficiently large constant, so that the estimate (14)
holds. We work in the box ��n� rescaled by a factor f�n� with event-block
size 1. For x in ��n�, let X�x� be the indicator function of R�B′�x�� f�n� −
1�c ∪ V�B�x�� θ/2�c. Suppose that the event Sep�n�x� r�w� δ� occurs and let
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� be a collection of open B�nx�nr�-clusters realizing it. Let ρ�η be such that
0 < η < ρ < r, 0 < 2η <

√
r2 − ρ2 (ρ will be chosen later to be close to

r). Set Z = cyl�ndisc�x� ρ�w��. We suppose that n is large enough so that
every asymptotic inequality coming up in the proof is fulfilled (like 4ηn > ζ >
f�n�d−1/n, where ζ > 2d is an arbitrary but fixed constant which we used to
define the surface tension). It will be useful to define the following subsets of
B�nx�nr� (see Figure 4):

D = D�n�x�w�η� ζ� ρ� = Z ∩ slab�nx�w�−nη− ζ� nη+ ζ��
D+ = Z ∩ slab�nx�w�1� nη+ ζ��
D− = Z ∩ slab�nx�w�−nη− ζ�0��
∂+D = Z ∩ slab�nx+ nηw�w�−ζ� ζ��
∂−D = Z ∩ slab�nx− nηw�w�−ζ� ζ��
∂−D+ = Z ∩ slab�nx�w�1�1+ ζ��
∂+D− = Z ∩ slab�nx�w�−ζ�0��

Let C be an open D-cluster joining the sets ∂+D and ∂−D. There are two
possibilities: either C is contained in some cluster of � or it is contained in
its complement D\ cup � . In the first case there exits an open D+-cluster C′

connecting ∂−D+ and ∂+D such that C′ ⊂ C and therefore,

C′ ⊂ �cube cup � �\B−�nx�nr�w��
In the second case there exists an open D−-cluster C′ connecting ∂−D and
∂+D− such that C′ ⊂ C and therefore,

C′ ⊂ B−�nx�nr�w�\cube cup � �

Let F be the union of all such clusters C′. Then, on Sep�n�,
�F� ≤ distL1

(
cube cup� �B−�nx�nr�w�) ≤ δrdnd�(52)

We define

F = {
x ∈ ��n�∣∣B�x� ∩F �= ��

B′�x� ⊂ slab�nx�w�1� ηn+ ζ� ∪ slab�nx�w�−ηn− ζ�0�}�
Let x be a regular block in F, that is, X�x� = 0, and such that B′�x� ⊂ Z.
This implies in particular that B′�x� ⊂ D− ∪D+. Since F intersects B�x� and
the diameter of any open cluster contained in F is larger than f�n�, the box
B′�x� contains an open path of diameter larger than f�n� − 1 included in F.
The occurrence of the event R�B′�x�� f�n� − 1� implies that this open path
is contained in the crossing cluster C∗�B′�x��, which in turn implies that the
latter cluster is contained in F. Similarly, the crossing cluster C∗�B�x�� asso-
ciated with the event U�B�x�� has diameter f�n� − 1 and it is thus contained
in C∗�B′�x��. Since the event V�B�x�� θ/2� occurs as well, then

�F ∩B�x�� ≥ �C∗�B�x��� ≥ θf�n�d/2�
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Fig. 4. The sets in B�nx� nr�.

Summing over x yields

�F� ≥ ∑
x∈F�X�x�=0�B′�x�⊂Z

�F ∩B�x��

≥ �θ/2�f�n�d∣∣{x ∈ F
∣∣X�x� = 0� B′�x� ⊂ Z

}∣∣�
In addition, there exists a positive constant γ = γ�d� depending only upon the
dimension such that∣∣{x ∈ F

∣∣B′�x� ∩ ∂Z �= �
}∣∣ < γηnd−1rd−2/f�n��

Combining the two previous inequalities with (52), on Sep�n�, we can bound
the number of the regular blocks in F,

∣∣{x ∈ F
∣∣X�x� = 0

}∣∣ < 2δ
θ

(
rn

f�n�
)d

+ γηrd−2n
d−1

f�n� �

On the other hand, by the estimate (14), the block process X�x� satisfies (15)
with ε = b exp�−cf�n��. Applying (18) with δ = and−1����n��f�n��−1, where
a > 0, we obtain

�w
��n�

[∑
x∈F

X�x� ≥ a
nd−1

f�n�
]

≤ �w
��n�

[
1

���n��
∑

x∈��n�
X�x� ≥ and−1

���n��f�n�
]

≤ 2d exp
(

−2−d�∗
ε

(
and−1

���n��f�n�
)⌊

n

f�n�
⌋d)

≤ b exp�−cand−1��
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where b� c are two positive constants. By setting

Sep∗�n� = Sep�n� ∩
{

�F� ≤ �a+ γηrd−2�n
d−1

f�n� + 2δ
θ

(
rn

f�n�
)d}

and using the previous estimates, we see that

�w
��n��Sep�n�� ≤ b exp�−cand−1� +�w

��n��Sep∗�n���(53)

For i in �, we define the slablike sets

H�i� = {
y ∈ ��n��B�y� ∩D �= ��

if�n� ≤ w · �f�n�y− nx� < �i+ 1�f�n�}�
The setsH�i�, i ∈ �, are pairwise disjoint. Hence for any subset I of �, the sum∑

i∈I �F ∩H�i�� is less than �F� and there exists i in I such that �F ∩H�i�� ≤
�F�/�I�. Applying the preceding remark to the sets �−ηn/f�n� + 3�−3� ∩ �
and �3� ηn/f�n� − 3� ∩ �, whose cardinalities are larger than ηn/f�n� − 7 >
ηn/�2f�n��, we find that there exist two random indices I− and I+ in � such
that −ηn/f�n� + 3 < I− < −3, 3 < I+ < ηn/f�n� − 3 and both F ∩ H�I−�,
F∩H�I+� have a cardinality less than 2f�n��ηn�−1�F�. We choose the indices
I− and I+ with the smallest possible absolute value. We decompose the event
Sep∗�n� according to the values of I−, I+ and the setsF∩H�I−�,F∩H�I+�. For

−ηn/f�n� + 3 < i− < −3� 3 < i+ < ηn/f�n� − 3�

T± ⊆ H�i±� with �T±� ≤ 2f�n�
ηn

�F��

we define the event

G�n� i±�T±� = Sep∗�n� ∩ �I± = i±�F ∩H�I±� = T±��
Notice that the events G�n� i±�T±� corresponding to different values of i−, i+,
T−, T+ are disjoint. Hence these events partition Sep∗�n�. Using Lemma 6.3,
we now derive an estimate for �w

��n��Sep∗�n��. Let ψ
 Sep∗�n� → 7��n� be the
map defined on G�n� i±�T±� by

ψ�ω��e� =
{
0� if e ∈ ⋃

x∈T+∪T− ∂
edgeB�x�,

ω�e�� otherwise.

Assume ω ∈ G�n� i±�T±�. By the definition of F, each open path in D con-
necting ∂+D and ∂−D intersects either

⋃
x∈T+ B�x� or ⋃

x∈T− B�x� depending
on whether it belongs to � or not. Therefore, when we close all the edges in⋃
x∈T+∪T− ∂

edgeB�x�, we destroy every open connection in D between ∂+D and
∂−D. Hence the map ψ has values in the set of configurations S�n disc�x� ρ�w��
nη�; see Section 4 before Lemma 4.7 for its definition. To apply (51), we have
to estimate the penalty factors. We first observe that there exists a dimension-
dependent constant c′ = c′�d� such that for all i ∈ �,

�H�i�� ≤ c′
(
nr

f�n�
)d−1

�
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The first penalty factor in (51), �J�, is easily seen to be bounded by

�J� ≤
(
nη

f�n�
)2
exp

((
max
i+

�H�i+�� +max
i−

�H�i−��
)
log 2

)

≤
(
ηn

f�n�
)2
exp

(
2c′

(
nr

f�n�
)d−1)

�

(54)

To get a bound on the maximal possible number N of edges to close in the
surgery, we observe that(

max
x∈T+∪T−

�∂edgeB�x��
)

× �T+ ∪T−�

≤ 2d2f�n�d−12
2f�n�
ηn

(
�a+ γηrd−2�n

d−1

f�n� + 2δ
θ

(
rn

f�n�
)d)

= 8d2

η

(
�a+ γηrd−2�f�n�d−1

n
+ 2δrd

θ

)
nd−1 = N�

(55)

The degree of degeneracy d�ψj� in our case is simply bounded by 2N [since
on G�n� i±�T±� the location of all the changes is known]. Note that all these
estimates are uniform in i+� i−�T+�T−. Therefore, by (51),

�w
��n��Sep∗�n�� ≤ �J�

(
2p
1− p

)N
�w
��n��ψ�Sep∗�n���

≤ �J�
(

2p
1− p

)N
�w
��n��S�ndisc�x� ρ�w�� nη���

Coming back to (53), we get

�w
��n��Sep�n�x� r�w� δ�� ≤ b exp�−cand−1�

+�J�
(

2p
1− p

)N
�w
��n�

[
S�ndisc�x� ρ�w�� nη�]�

Letting n go to ∞ and using (54), (55) and Corollary 4.10, we get

lim sup
n→∞

1
nd−1 log�

w
��n�

[
Sep�n�x� r�w� δ�]

≤ −min
{
ca� αd−1ρ

d−1τ�w� − cηρd−2 + 16d2rd

θη
δ log

2p
1− p

}
�

where c = c�p�d� ζ�. We choose now η = √
δr/3, ρ = r

√
1− δ and we let

a go to ∞ in the preceding inequality. Because τ is bounded away from 0
(Proposition 4.5), there exists a constant c′′ = c′′�p�q�d� ζ� such that

lim sup
n→∞

1
nd−1 log�

w
��n�

[
Sep�n�x� r�w� δ�] ≤ −αd−1r

d−1τ�w��1− c′′δ1/2��

This inequality holds for every ball B�x� r� ⊆ !� δ in �0� θ/2� and w in Sd−1.
✷
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7. Proofs of the main theorems.

7.1. Asymptotics of the magnetization. We consider an edge–spin config-
uration �ω�σ� in ��n� drawn under the FK–Ising coupling measure �+

��n�.
We analyze the behavior of the magnetization of the Ising model in the box
��n� via the FK representation. The magnetization n−d∑

x∈��n� σ�x� of the
spin configuration σ is related to the open clusters of the FK configuration ω
through the formula

1
nd

∑
x∈��n�

σ�x� = 1
nd

∑
C∈�

σ�C��C��

where � is the collection of the open clusters in ��n� and σ�C� is the color
associated with the cluster C. We first show that the relevant information is
carried by the large (macroscopic) clusters of � . Throughout the proof, we use
a fixed function f
 � → � such that both n/f�n�d−1 and f�n�/ log n tend to ∞
as n → ∞. A cluster in ��n� is called small if its diameter is strictly smaller
than f�n� and large otherwise. The next lemma controls the coloring of the
small clusters.

Lemma 7.1. For any δ > 0,

lim sup
n→∞

1
nd−1 log�

+
��n�


∣∣∣∣ 1nd ∑

C∈�
C small

σ�C��C�
∣∣∣∣ ≥ δ

 = −∞�

Proof. For later use, we will prove the statement with respect to a mea-
sure ���n� describing a coupling between an arbitrary FK measure � ∈
c�� ���n�� and a coloring measure with the property that the colors of the
clusters not touching the boundary are i.i.d. ±1 with probability 1/2 each.
(Clearly, �+

��n� is such a measure). An analogous statement has already been
proved in the proof of Theorem 1.1 [59], hence we will merely sketch the argu-
ment. Set

� ′ = {
C ∈ � �C is small and C ∩ ��n− 2f�n�� �= �

}
�

Let n be so big that 2dnd−12f�n� < δnd. Then
∣∣∣∣ ∑
C∈�

C small

σ�C��C�
∣∣∣∣ ≥ 2δnd

 ⊆
{∣∣∣∣ ∑

C∈� ′
σ�C��C�

∣∣∣∣ ≥ δnd
}
�

There exists α = α�p�d� > 0 and ci = ci�p�d� > 0, i = 1�2, such that

���n���� ′� < αnd� ≤ c1 exp�−c2nd��
Note that already the number of the point clusters C ∈ � ′, �C� = 1, is propor-
tional to nd, up to volume order large deviations: to prove this, one can use,
for instance, the fact that the FK measure is stochastically dominated by the
Bernoulli percolation. We next condition on the edge configuration ω observed
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on the FK level and assume that ω ∈ ��� ′� ≥ αnd�. The coloring variables
of the clusters of � ′ are i.i.d. ±1 valued variables with zero mean (since the
clusters of � ′ cannot touch the boundary of ��n�). Let X denote a ±1 valued
variable with zero mean. By Lemma 5.3 in [59],

���n�

[∣∣∣∣ ∑
C∈� ′

σ�C��C�
∣∣∣∣ ≥ δnd �ω

]

≤ ���n�

[∣∣∣∣ 1
�� ′�

∑
C∈� ′

σ�C��C�
∣∣∣∣ ≥ δ/α �ω

]

≤ 2 exp
(−�� ′��∗

f�n�X�δ/α�) ≤ 2 exp
(

− c3δ
2nd

αf�n�2
)
�

where we have used the fact that the Legendre-transform �∗
X�x� of the log-

moment generating function of X satisfies �∗
X�x� ≥ c3x

2 for an appropriate
c3 > 0. Since the previous estimate is uniform on the set ��� ′� ≥ αnd�, the
claim follows. Let us finally remark that the estimate is not optimal; the cor-
rect order of decay is ∼ exp�−cnd� and it could be proved with slightly more
effort. ✷

We next treat the large clusters. For ∗ = − or +, let � ∗ be the collection of
the large clusters colored with ∗ and � ∗ = cup� ∗. We divide the continuous
box n! into three disjoint random sets,

M− = �x ∈ n! �d∞�x��−� ≤ f�n�� d∞�x��+� > f�n���
M+ = �x ∈ n! �d∞�x��−� > f�n�� d∞�x��+� ≤ f�n��

and M0 = n!\�M− ∪ M+�. Note that the region M− consists of the points of
n! whose f�n� neighborhood intersects only large clusters with negative color,
and at least one such cluster.

Lemma 7.2. For any δ > 0,

lim supn→∞
1

nd−1 log�
+
��n�

[ ∣∣��−� − θ volM−∣∣ + volM0

+ ∣∣��+� − θ volM+∣∣ > δnd
]

= −∞�

Proof. We work with the box ��n� rescaled by a factor f�n� with event-
block size 2. For x ∈ ��n�, the block variable X�x� is the indicator function
of the event T�B′�x�� f�n� − 1� δ/2�c. Suppose that X�x� = 0 for some x ∈
��n�; that is, the block is regular. Then there exists a unique large cluster
C intersecting the block B�x� and the block B�x� is included in Mσ�C�, while
� σ�C� ∩B�x� = C∩B�x� and�−σ�C� ∩B�x� = �. Moreover, for n large enough,∣∣�� σ�C� ∩B�x�� − θ�B�x��∣∣ = ∣∣�C ∩B�x�� − θ�B�x��∣∣ ≤ �δ/2�f�n�d�
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Therefore,∣∣��−� − θ volM−∣∣ + volM0 + ∣∣��+� − θ volM+∣∣ ≤ δnd/2+ f�n�d ∑
x∈��n�

X�x��

By the estimate (14), the block process X�x� satisfies (15) with ε = b
exp�−cf�n��. Applying (18), we obtain

lim sup
n→∞

1
nd−1 log�

+
��n��f�n�d ∑

x∈��n�
X�x� > δnd/2� = −∞

and the proof is complete. ✷

Lemmas 7.1, 7.2 yield the following result.

Corollary 7.3. For δ > 0,

lim sup
n→∞

1
nd−1 log�

+
��n�

[∣∣∣∣ 1nd ∑
x∈��n�

σ�x� − θ
(
1− 2 vol�M−/n�)∣∣∣∣ > δ

]
= −∞�

Thus the magnetization n−d∑
x∈��n� σ�x� and θ�1−2 vol�M−/n�� are exponen-

tially contiguous which implies (1). To derive the large deviation statement for
the magnetization we need only to consider the random variable vol�M−/n�.
We prove successively the lower bound (2) and the upper bound (5).

Proof of the Lower Bound. We first prove (2).

Proposition 7.4. Let λ > 0 be such that λdiam�τ < 1 and let x be such
that x+ λ�τ is included in int!. For any δ > 0,

lim inf
n→∞

1
nd−1 log�

+
��n�

[
distL1�M−/n� x+ λ�τ� < δ

] ≥ −λ�d−1�� ��τ��

Proof. By Lemma 5.1, for any δ� δ′ > 0, there exists a polyhedral set E
such that

distL1�E�x+ λ�τ� < δ/3� x+ λ�τ ⊂ E ⊂ 
2�x+ λ�τ� δ��
� �E� < λ�d−1�� ��τ� + δ′�

In particular, since x+ λ�τ is included in int !, then for δ sufficiently small,
E is also included in the interior of !. Let Fi, i ∈ I, be the relative interiors
(w.r.t. the �d−1�-dimensional topology) of the faces of E. These are polyhedral
open hypersets of �d. Let U be an open connected subset of E such that
distL1�U�E� < δ/3 and ∂U ∩ ∂E = �. Let V be an open connected subset of
!\E such that distL1�V�!\E� < δ/3 and ∂V ∩ ∂�!\E� = �. Pick ε > 0 such
that 4ε < d∞�U�∂E� ∧ d∞�V�∂�!\E��. We cover the compact set clo�U ∪ V�
by a finite collection of boxes ��xj� ε�� j ∈ J, included in int! and centered
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in U ∪ V. Let n be large enough so that f�n� < εn. Let ζ > 2d be fixed and
consider the following events:

W�n� = ⋂
i∈I
S�nFi� f�n�� ∩ {

all the edges in 
2�cyln∂Fi� ζ�

∩ 
2�hypnFi� f�n�� are closed}�
R�n� ε� = ⋂

j∈J
O�n��xj�2ε�� f�n���

In words, we have surfaces of closed edges near the faces of E, and typical
configurations inside the regions U and V. WheneverW�n� and R�n� ε� occur,
there exist two distinct large clusters C1 and C2 such that

nU ⊆ 
∞�C1� f�n�� ⊆ 
∞�nE�f�n���
nV ⊆ 
∞�C2� f�n�� ⊆ 
∞�n�!\E�� f�n��

and no other large cluster intersects the region n
∞�U�ε� ∪ n
∞�V�ε�. If C1
is colored with − and C2 with + then the regionM− will satisfy nU ⊆ M− ⊆
n�!\V�. Therefore,

�1/4��+
��n�

[
W�n� ∩R�n� ε�]

= �+
��n�

[
W�n� ∩R�n� ε� ∩ �σ�C1� = −� σ�C2� = +�]

≤ �+
��n�

[
distL1�M−/n� x+ λ�τ� < δ

]
�

The event R�n� ε� depends only on the edges inside n
∞�U∪V�2ε�, while the
eventW�n� depends on the edges in n
∞�∂E� ε�. By the estimate (14), for j in
J, the probability of each event O�n��xj�2ε�� f�n�� goes to 1, uniformly over
the b.c.s on n��xj�2ε�. Therefore, limn→∞ �+

��n��R�n� ε� �W�n�� = 1. Moreover,
by the FKG inequality and Lemma 4.7,

lim inf
n→∞

1
nd−1 log�

+
��n��W�n�� ≥ −∑

i∈I

 d−1�Fi�τ�norFi�

= −� �E� ≥ −λ�d−1�� ��τ� − δ′�

Thus, for any δ� δ′ > 0 sufficiently small,

lim inf
n→∞

1
nd−1 log�

+
��n��distL1�M−/n� x+ λ�τ� < δ� ≥ −λ�d−1�� ��τ� − δ′�

The result of the proposition follows by letting δ′ go to 0. ✷

We now complete the proof of the lower bound for Theorem 1.1. Let m as in
Theorem 1.1 and let δ > 0 such that 1 − 2�diam�τ�−dvol �τ < �m − 2δ�/m∗.
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By applying successively Corollary 7.3 and Proposition 7.4, we get

lim inf
n→∞

1
nd−1 log�

+
��n�

[
1
nd

∑
x∈��n�

σ�x� ≤ m

]

≥ lim inf
n→∞

1
nd−1 log�

+
��n�

[
vol�M−/n� ≥ m∗ + δ−m

2m∗

]

≥ lim inf
n→∞

1
nd−1 log�

+
��n�

[
distL1

(
M−/n�

(
m∗ + 2δ−m

2m∗vol�τ

)1/d
�τ

)
<

δ

m∗

]

≥ −
(
m∗ + 2δ−m

2m∗vol�τ

)�d−1�/d
� ��τ��

Letting δ go to 0, we obtain the correct lower bound for Theorem 1.1. This lower
bound is certainly not correct for m such that 1−2�diam�τ�−dvol�τ > m/m∗

(see [63] for the corresponding question in d = 2).

Proof of the Upper Bound. We build two auxiliary sets fifaM− and
agluM−. Both fifaM− and agluM− are exponentially contiguous toM−. The
set fifaM− helps to prove the exponential tightness (4), while agluM− is used
to prove the local estimate (5).
The set fifaM−. This set is a coarser version of M− obtained through the

succession of a filling and a fattening operation, hence the name “fifa.” We work
with the box ��n� rescaled by a factor k with event-block size 1 (k is a fixed
integer strictly larger than 2d and large enough for some of the subsequent
estimates to hold). The block variable X�x� is the indicator function of the
event O�B′�x�� k− 1�c. We introduce a coarse-grained image of the set �− as
follows:

�− = {
x ∈ ��n� �B�x� ∩ �− �= �

}
�

This set, in general, contains lots of large and small holes. To get rid of
the small ones we first fill out these holes by the operation “fill” which we
now describe. We look at the residual components of �−, more precisely the
�d�∞-connected components of �d\�−. We define

fill�− = �− ∪ �R �R is a finite residual component of �−�

�∂edgeR� ≤ f�n�/k ��
Notice that any �d�∞-connected component of ∂infill�− has cardinality
strictly larger than f�n�/�2dk�. This is clearly true, by construction, for the
parts of ∂infill�− associated with finite residual components (holes). Let A be
an �d-connected component of�−. Since we deal with large clusters, diamA ≥
f�n�/k − 1 and �∂ext� edgeA� ≥ diamA + 2 > f�n�/k. This in turn implies that
�∂ext� inA� > f�n�/�2dk�. Note finally that every �d�∞-connected piece of
∂in fill �− consists of such boundary pieces, which implies the claim.
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We next claim that if x belongs to ∂infill �− ⊆ ∂in�−then X�x� = 1. To
see this we first observe that x ∈ ∂in��n� ∩ ∂in�− implies that the event
O�B′�x�, k−1� does not happen, otherwise the crossing cluster of B′�x� would
be colored “+” and the block of x would not intersect �−. If, on the other
hand, x ∈ ∂in�−\∂in��n� then it has a nearest neighbor y in ��n� such that
B�y� ∩ �− = �, hence the event O�B′�x�� k− 1� does not happen either.
Finally, we define the fattened region

fifaM− = ⋃
x∈fill�−

B�x��

Lemma 7.5. For k large enough, depending on p and d, there exist b� c > 0
such that

∀s > 0 �+
��n��� �fifaM−� > s� ≤ b exp�−cs��

Proof. We have the following bound on the perimeter of fifaM−:

� �fifaM−� ≤ 2dkd−1�∂infill�−� ≤ 2dkd−1∣∣{x ∈ ��n�∣∣�C�x�� ≥ f�n�/2dk}∣∣�
By the estimate (14), the block processX�x� satisfies (15) with ε = b exp�−ck�.
The claim of the lemma follows from Lemma 2.3 applied with t = f�n�/�2dk�.

✷

Lemma 7.6. For n large enough,

distL1�M−�fifaM−� ≤ volM0 + 5df�n�d−1� �fifaM−��

Proof. We estimate the distance between M− and fifaM−. In the filling
operation performed to build fifaM−, all the holes which are filled on the
rescaled lattice have a diameter not exceeding f�n�/��2d − 2�k�. Therefore,
for n large enough, so that 10k < f�n�,

fifaM− ⊆ �x ∈ n!�d∞�x��−� ≤ f�n���(56)

whence fifaM−\M− ⊆ M0. Moreover (notice that �− ⊂ fifaM−�,
M− \fifaM− ⊆ �x ∈ n! �d∞�x� ∂fifaM−� ≤ f�n���(57)

Notice that either �− = � or diamfifaM− ≥ f�n�. If �− = �, then M− =
fifaM− = �. Suppose that diamfifaM− ≥ f�n�. Let A1� � � � �Al be the �d�∞

components of ∂in fifaM−. Each of these components has cardinality larger
than f�n�kd−2/�2d� > f�n� (recall that k > 2d). By Lemma 2.1,

vol�x ∈ n!
∣∣d∞�x� ∂fifaM−� ≤ f�n�� ≤ ∑

1≤i≤l
vol 
∞�Ai�f�n� + 1�

≤ ∑
1≤i≤l

4d+1�f�n� + 1�d−1�Ai�

≤ 5df�n�d−1� �fifaM−��
where the last inequality holds for n large enough. ✷
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We now prove the exponential tightness (4).

Lemma 7.7. There exists a positive constant c = c�p�d� such that for any
λ� δ > 0,

lim sup
n→∞

1
nd−1 log�

+
��n��distL1

(
M−/n�� −1��0� λ��) ≥ δ� ≤ −cλ�

Proof. Let λ� δ > 0 be given. Using Lemma 7.6 and inequality (46),

�+
��n��distL1

(
M−/n�� −1��0� λ��) ≥ δ�

≤ �+
��n��distL1�n−1 fifaM−� n−1M−� ≥ δ/2�

+ �+
��n��distL1�n−1 fifaM−�� −1��0� λ��� ≥ δ/2�

≤ �+
��n��volM0 + 5df�n�d−1� �fifaM−� ≥ ndδ/2�

+ �+
��n��� �fifaM−� ≥ λnd−1�

≤ �+
��n�

[
volM0 ≥ δnd

4

]
+ �+

��n�

[
� �fifaM−� ≥ δnd

4 · 5df�n�d−1

]

+ �+
��n�

[
� �fifaM−� ≥ λnd−1

τmax

]
�

By setting c = 1/τmax, Lemmas 7.2 and 7.5 imply the desired conclusion. ✷

The set agluM−. We begin with the definition of a certain enlargement A
of �−. The setA consists of the sites belonging either to�− or to small clusters
not touching the boundary of ��n� and whose distance to �− is bounded by
3f�n�; that is,
A = �− ⋃

cup�C is a small cluster
∣∣d∞�C��−� ≤ 3f�n��C ∩ ∂in��n� = ���

The set aglu M− (the word “aglu” stands for agglutination) is defined as the
union of all the unit continuous boxes ��x�1� ⊆ �d centered at a vertex x
in A; that is, aglu M− = cubeA. We first show that M− and aglu M− are
exponentially contiguous.

Lemma 7.8. For any δ > 0,

lim sup
n→∞

1
nd−1 log�

+
��n�

[
distL1�M−�agluM−� > δnd

]
= −∞�

Proof. We work with the box ��n� rescaled by a factor f�n� and with
event-block size 4. The block variable X�x� is the indicator function of the
event R�B′�x�� f�n�−1�c. We introduce an intermediate block B′′�x� “around”
x corresponding to the event-block size 2: hence, if d∞�x� ∂in��n�� ≥ 3, then
B′′�x� = ��f�n�x�5f�n��. Let x ∈ ��n� be such that d∞�x� ∂in��n�� ≥ 3 and
suppose that B�x� ∩ �− �= � and X�x� = 0. Then there is a unique crossing
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cluster in B′�x�, and all the other clusters intersecting the intermediate block
B′′�x� have a diameter less than f�n� − 1. Therefore B′′�x� ⊆ agluM−. Since

M− ⊆ �x ∈ n! �d∞�x��−� ≤ f�n�� ⊆ ⋃
x
 B�x�∩�−�=�

B′′�x��

we have

M−\agluM− ⊆ �x ∈ ��n� �d∞�x� ∂n!� ≤ 6f�n��

∪

 ⋃
x
 B�x�∩�−�=�

B′′�x�\ ⋃
x
 B�x�∩�−�=�

X�x�=0

B′′�x�


⊆ �x ∈ ��n� �d∞�x� ∂n!� ≤ 6f�n�� ∪ ⋃

x∈��n��X�x�=1
B′′�x�

so that

vol�M−\agluM−� ≤ 12df�n�nd−1 + 5df�n�d ∑
x∈��n�

X�x��

On the other hand, using (56) and (57),

agluM−\M− ⊆ �agluM−\fifaM−� ∪ �fifaM−\M−�
⊆ �x ∈ ��n� �d∞�x� ∂fifaM−� ≤ 4f�n�� ∪M0�

Using Lemma 2.1 and proceeding as in Lemma 7.6, we obtain

distL1�M−�agluM−� ≤ 12df�n�nd−1 + 5df�n�d ∑
x∈��n�

X�x�

+ volM0 + 5d�4f�n��d−1� �fifaM−��
By the estimate (14), the block process X�x� satisfies (15) with ε = b
exp�−cf�n��. Applying (18) and Lemma 7.5, we get the exponential contiguity
betweenM− and agluM−. ✷

We now prove the upper bound (5) for a set having finite surface energy.

Lemma 7.9. Let E be a Borel set of ! such that � �E� < ∞. For every ε > 0,
there exists δ = δ�E�ε� > 0 such that

lim sup
n→∞

1
nd−1 log �+

��n��distL1�M−/n�E� < δ� ≤ −�1− ε�� �E��

Proof. By the triangle inequality for distL1 and Lemma 7.8, we need only
to prove the above statement for the set aglu M−. Let E be a Borel set of
! such that 0 < � �E� < ∞. For ε > 0, set ε′ = ε�1 + 1/� �E��−1. Pick
δ0 ∈ �0� θ/2� such that c

√
δ0 < ε′ where c = c�p�q = 2� d� ζ� is the con-

stant appearing in the interface Lemma 6.1. Let B�xi� ri�, i ∈ I, be a finite
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collection of disjoint balls associated with E�ε′ and δ0/3, as given in the cov-
ering Lemma 5.2. Let δ > 0 be smaller than min�δ0rdi /3�i ∈ I�. Suppose that
distL1�agluM−/n�E� < δ.
For i in I let � �i� be the collection of the open clusters of the configuration

restricted to agluM− ∩B�nxi� nri�. Note that these clusters are open clusters
of the configuration restricted to B�nxi� nri�. We have

distL1�cube cup � �i��B�nxi� nri��
≤ distL1�cube cup � �i��agluM− ∩B�nxi� nri��

+ distL1�agluM− ∩B�nxi� nri�� nE ∩B�nxi� nri��(58)

+ distL1�nE ∩B�nxi� nri��B−�nxi� nri� νE�xi���
≤ c′�d�nd−1 + δnd + δ0�nri�d/3 ≤ δ0�nri�d�

where c′�d� is an appropriate constant depending only on the dimension. If
xi belongs to int ! then the collection � �i� realizes the event Sep�n�xi� ri,
νE�xi�� δ0�. If xi belongs to ∂∗! then the collection � �i� realizes the event
Sepbd�n�xi� ri� δ0�. Indeed, none of the clusters inside agluM− intersects
∂in��n�: the large clusters in agluM− are colored with minus, and the small
clusters attached to �− to build agluM− do not intersect ∂in��n�. We conclude
that {

distL1�M−/n�E� < δ
} ⊆ ⋂

i∈I
xi∈ int !

Sep�n�xi� ri� νE�xi�� δ0�

∩ ⋂
i∈I

xi∈∂∗!

Sepbd�n�xi� ri� δ0��

Note that the sets ! ∩ B�xi� ri� are compact and disjoint. The decoupling
Lemma 3.2 and the interface Lemma 6.1 together imply

lim sup
n→∞

1
nd−1 log�

+
��n�

[
distL1�agluM−/n�E� < δ

]
≤ −∑

i∈I
αd−1r

d−1
i τ�νE�xi���1− c

√
δ0�

≤ −� �E��1− ε′� + ε′ = −� �E��1− ε�� ✷

We complete now the proof of the upper bound for Theorem 1.1.
Let v ∈ �0�1� be fixed and λ > 0. We define the sets S�v� = �E ∈ 	�!� �

volE ≥ v� and S�v� λ� = �E ∈ S�v� �� �E� ≤ λ�. The sets S�v� λ�� λ < ∞, are
compact. Let ε > 0. For each E in S�v− ε� λ� we choose δ�E�ε� > 0 according
to Lemma 7.9. The family{�A ∈ 	�!� �distL1�A�E� < δ�E�ε��� E ∈ S�v− ε� λ�}
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is an open covering of S�v− ε� λ� from which we can extract a finite subcover
associated with a finite collection of sets Ei� i ∈ I. Since S�v−ε� λ� is compact,
we can choose δ ∈ �0� ε� such that the δ-neighborhood of S�v − ε� λ� is still
contained in the subcover, that is,{

A ∈ 	�!� �distL1

(
A�S�v− ε� λ�) < δ

}
⊂ ⋃

i∈I

{
A ∈ 	�!� �distL1�A�Ei� < δ�Ei� ε�}�

Since distL1�S�v�� S�v− ε�c� ≥ ε > δ,

�+
��n�

[
volM−/n ≥ v

] ≤ �+
��n�

[
distL1

(
M−/n�S�v− ε� λ�) < δ

]
+ �+

��n�
[
M−/n ∈ S�v�� distL1

(
M−/n�S�v− ε� λ�) ≥ δ

]
≤ ∑

i∈I
�+
��n�

[
distL1�M−/n�Ei� < δ�Ei� ε�]

+ �+
��n�

[
distL1

(
M−/n�� −1��0� λ��) ≥ δ

]
�

Passing to the lim sup, the choice of the δ�Ei� ε�-s and Lemma 7.7 yield

lim sup
n→∞

1
nd−1 log�

+
��n�

[
vol�M−/n� ≥ v

]
≤ −

(
cλ ∧ �1− ε�min

i∈I
� �Ei�

)
≤ −

(
cλ ∧ �1− ε� inf

S�v−ε� λ�
�

)
�

Since the sets S�v− ε� λ� are compact and � is l.s.c.,

lim
ε→0

inf
S�v−ε�λ�

� = inf
S�v�λ�

� ≥ inf
S�v�

� �

By letting ε → 0, λ → ∞ and applying the Wulff isoperimetric theorem [36],
we obtain (7),

lim sup
n→∞

1
nd−1 log�

+
��n�

[
vol�M−/n� ≥ v

]
≤ − inf

S�v�
� = −�v/vol�τ��d−1�/d� ��τ��

Letm belong to �−m∗�+m∗�. Let δ > 0 such thatm+δ < m∗. By Corollary 7.3,

lim sup
n→∞

1
nd−1 log�

+
��n�

[
1
nd

∑
x∈��n�

σ�x� ≤ m

]

≤ lim sup
n→∞

1
nd−1 log�

+
��n�

[
vol�M−/n� ≥ m∗ − δ−m

2m∗

]

≤ −
(
m∗ − δ−m

2m∗vol�τ

)�d−1�/d
� ��τ��
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Letting δ go to 0, we obtain the correct upper bound for Theorem 1.1. Notice
that this upper bound is valid for any m in �−m∗�+m∗�. However, we have
the corresponding lower bound only for 1 − 2�diam�τ�−d vol�τ < m/m∗ < 1.
For the remaining values of m in �−m∗�m∗�, the correct value should be

inf
{
� �E� �E ∈ 	�!�� volE ≥ �m∗ −m�/�2m∗�}�

See [63] for the corresponding question in dimension two.

7.2. The locally averaged magnetization. We express σn with the help of
the FK representation,

∀x ∈ ! σn�x� = 1
f�n�d

∑
C∈�

σ�C��C ∩ ��nx�f�n����

We separate the contribution of the small and the large clusters by setting,
for x ∈ !,

σsmalln �x� = 1
f�n�d

∑
C∈�

C small

σ�C��C ∩ ��nx�f�n���

and σ largen �x� as in the previous case except that the sum is running over the
large clusters.

Lemma 7.10. For any δ > 0,

lim sup
n→∞

1
nd−1 log�

+
��n�

[∫
!

�σsmalln �x��dx > δ

]
= −∞�

Proof. Let δ ∈ �0�1/2� and n so big that 2dnd−12f�n� < δnd. Set ��n�′ =
��n− 2f�n�� ∩ �d. We denote by B�z� the open unit cube centered at z ∈ �d.
Note that σsmalln �x� is constant in B�z� with common value σsmalln �z�. Thus

�+
��n�

[∫
�

�σsmalln �x��dx > 3δ
]

≤ �+
��n�

[ ∑
z∈��n�′

∫
B�z�

�σsmalln �x/n��dx > 2δnd
]

= �+
��n�

[ ∑
z∈��n�′

�σsmalln �z/n�� > 2δnd
]
�

Let z ∈ ��n�′. If C is a small cluster intersecting ��z� f�n�� then C ∩
∂in��n� = �; hence σ�C� is ±1 with probability 1/2 each and is indepen-
dent of everything. Arguing as in the proof of Lemma 7.1 (no need for � ′ here)
we have

�+
��n�

[
�σsmalln �z�� > δ

]
≤ 2 exp

(
−c3δ

2f�n�d−2

α

)
�
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We call z regular if �σsmalln �z�� ≤ δ. We set Xz = 0 if z is regular and Xz = 1
otherwise. There exists c4 = c4�p�d� > 0 such that

�+
��n�

[
Xz = 1 �σ(Xy d∞�z� y� ≥ 2f�n�)] ≤ 2 exp �−c4δ2f�n�d−2��(59)

Then, for n large enough,

�+
��n�

[ ∑
z∈��n�′

�σsmalln �z�� > 2δnd
]

= �+
��n�

 ∑
z∈��n�′

Xz=0

�σsmalln �z�� + ∑
z∈��n�′

Xz=1

�σsmalln �z�� > 2δnd


≤ �+

��n�

[ ∑
z∈��n�′

Xz > δnd

]
�

In order to apply Lemma 2.2, by using (59) we first estimate �∗
ε�δ�,

�∗
ε�n��δ� ≥ δ log�δ/ε�n�� − log 2 ≥ δ log

(�δ/2� exp�c4δ2f�n�d−2�) − log 2

≥ c4δ
3f�n�d−2/2− 2 log 2�

Thus, for n large,

�+
��n�

[ ∑
z∈��n�′

Xz > δnd

]
≤ �2f�n��d exp

(
− cnd

2f�n�2
)

for a certain constant c > 0 and the claim follows. ✷

Lemma 7.11. For δ > 0,

lim sup
n→∞

1
nd−1 log�

+
��n�

[∫
M−/n

�σ largen �x� +m∗�dx

+
∫
M+/n

�σ largen �x� −m∗�dx > δ

]
= −∞�

Proof. We work with the box ��n� rescaled by a factor f�n� and block
size 2. The block variable X�x� is the indicator function of the event T�B′�x�,
f�n� − 1� δ/2�c. Suppose that X�x� = 0 and let x be such that y = xn ∈ B�x�.
Then there exists exactly one large open cluster C such that d∞�y�C� ≤ f�n�.
This cluster C satisfies in addition,∣∣.C ∩ ��y�f�n��. − θf�n�d∣∣ < �δ/2�f�n�d�
Therefore, y belongs to M− ∪ M+ and �σ largen �x� − θσ�C�� < δ/2. We split the
region of integration into the blocks B�x�/n� x ∈ ��n� and we use the previous
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inequality: ∫
M−/n

�σ largen �x� +m∗�dx+
∫
M+/n

�σ largen �x� −m∗�dx

≤ 2d�f�n�/n�d ∑
x∈��n�

X�x� + δ/2�

By the estimate (14), the block process X�x� satisfies (15) with ε = b
exp�−cf�n��. The result follows from (18). ✷

We next compare the two random partitions �M−/n�M0/n�M+/n� and
�!−

n � !
0
n� !

+
n �.

Corollary 7.12. For any δ > 0,

lim sup
n→∞

1
nd−1 log�

+
��n�

[
distL1�M−/n� !−

n � + vol!0n

+ distL1�M+/n� !+
n � > δ

]
= −∞�

Proof. With the help of some set algebra, we have

distL1�M−/n� !−
n � + distL1�M0/n� !0n� + distL1�M+/n� !+

n �
≤ 2 vol�M−/n ∩ �!0n ∪ !+

n �� + 2 vol�M0/n� + 2 vol�M+/n ∩ �!0n ∪ !−
n ��

≤ 2
m∗

( ∫
M−/n

�σn�x� +m∗�dx+ vol�M0/n� +
∫
M+/n

�σn�x� −m∗�dx
)

The claim of the corollary is a consequence of Lemmas 7.2, 7.10, 7.11. ✷

We now complete the proof of Theorem 1.2. Lemmas 7.10, 7.11 and Corollary
7.12 imply the first claim of Theorem 1.2. Letm be such that 1−2�diam�τ�−d

vol�τ < m/m∗ < 1. Let δ > 0. By Theorem 1.1,

lim sup
n→∞

1
nd−1 logµ

+
��n�

[
distL1�!−

n �mc�!−
n � + � �m�� ≥ δ

∣∣∣ 1
nd

∑
x∈��n�

σ�x� ≤ m

]

≤ lim sup
n→∞

1
nd−1 log�

+
��n�

[
distL1�!−

n �mc�!−
n � + � �m�� ≥ δ�

1
nd

∑
x∈��n�

σ�x� ≤ m

]
+ � �� �m���



WULFF CRYSTAL IN THE ISING MODEL 1007

Next, by Corollaries 7.3, 7.12 and Lemma 7.7, for any λ > 0, ε > 0,

limsup
n→∞

1
nd−1 log�

+
��n�

[
distL1�!−

n �mc�!−
n �+� �m��≥δ� 1

nd
∑

x∈��n�
σ�x�≤m

]

≤−cλ∧limsup
n→∞

1
nd−1

×log�+
��n�

[
distL1�!−

n �mc�!−
n �+� �m��≥δ� distL1�!−

n �M
−/n�<ε�

distL1�M−/n�� −1��0�λ���<ε� vol�M−/n�≥vol� �m�−ε

]
�

Let η such that 0 < 2η < vol�� �m�� and let us denote by � �δ� λ�η� the
subset of 	�!� defined by

� �δ� λ�η� = {
E ∈ 	�!� ∣∣distL1�E�mc�E� + � �m�� ≥ δ− η�

volE ≥ vol�� �m�� − η� � �E� ≤ λ
}
�

The map E ∈ 	�!� %→ mc�E� ∈ ! is continuous at each set having positive
volume. Therefore for ε small enough, the inequalities involved in the above
event imply the further inequality distL1�M−/n�� �δ� λ�η�� < ε. Moreover the
set � �δ� λ�η� is compact. Proceeding as in the proof of the upper bound of
Theorem 1.1, with the help of Lemmas 7.7, 7.9, we get the bound

lim
ε→0

lim sup
n→∞

1
nd−1 log�

+
��n�

[
distL1

(
M−/n�� �δ� λ�η�) < ε

]
≤ −

(
cλ ∧ inf

E∈� �δ� λ�η�
� �E�

)
�

Combining the previous inequalities, sending λ to ∞ and η to 0, we arrive at

lim sup
n→∞

1
nd−1 logµ

+
��n�

[
distL1�!−

n �mc�!−
n � + � �m�� ≥ δ

∣∣∣ 1
nd

∑
x∈��n�

σ�x� ≤ m

]
≤ − inf

E∈� �δ�∞�0�
� �E� + � �� �m���

Since � restricted to ! has compact level sets it attains its minimum over
the set � �δ� ∞� 0�. However this set contains only sets of volume larger than
or equal to vol� �m� but no translate of � �m�. The uniqueness statement in
the Wulff isoperimetric Theorem [37] implies that

inf
E∈� �δ�∞�0�

� �E� > � �� �m���

concluding thereby the proof of the second claim of Theorem 1.2. ✷
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APPENDIX

A.1. Results from geometric measure theory. We recall first that for
any subset A of �d, denoting by αk the volume of the unit ball of �k, the
k-dimensional Hausdorff measure 
 k is defined by


 k�A� = sup
δ>0

inf
{
αk2

−k∑
i∈I

�diam2Ei�k
∣∣∣A ⊂ ⋃

i∈I
Ei� sup

i∈I
diam2Ei ≤ δ

}
�

Let E be a Borel subset of �d. A collection of sets � is called a Vitali class for
E if for each x ∈ E and δ > 0, there exists a set U ∈ � containing x such that
0 < diam2U < δ.
The Vitali covering Theorem for 
 d−1 ([32], Theorem 1.10). Let E be an


 d−1-measurable subset of �d and let � be a Vitali class of closed sets for
E. Then we may select a (countable) disjoint sequence �Ui�i∈I from � such
that either

∑
i∈I�diamUi�d−1 = ∞ or 
 d−1�E\⋃i∈I Ui� = 0. If 
 d−1�E� < ∞

then, given ε > 0, we may also require that 
 d−1�E� ≤ αd−12−d+1∑
i∈I�diam2Ui�d−1 + ε.
For a general version concerning Radon measures, see [51], Theorem 2.8.
We recall next some facts concerning the class of the sets of finite perimeter,

introduced initially by Caccioppoli [12, 13] and subsequently developed by
De Giorgi [19, 20, 21, 22] (see also [31, 33, 39, 52, 70]). The perimeter of a
Borel set E of �d is defined as

� �E� = sup
{ ∫

E
divf�x�dx
 f ∈ C∞

0 ��d�B�1��
}
�

where C∞
0 ��d�B�1�� is the set of the compactly supported C∞ vector functions

from �d to the unit ball B�1� and div is the usual divergence operator. The
set E is of finite perimeter if � �E� is finite. A set E is a Caccioppoli set if it
is locally of finite perimeter. In this paper, we deal with bounded sets, hence
we need only to consider sets of finite perimeter. A set E has finite perimeter
if and only if its characteristic function χE is a function of bounded variation.
The distributional derivative ∇χE of χE is then a vector Radon measure and
� �E� = .∇χE.��d�, where .∇χE. is the total variation measure of ∇χE. The
perimeter � is l.s.c. on the space �	��d��distL1�.

Compactness property of sets of finite perimeter in !. For every bounded
domain U and every λ > 0, the set �E ∈ 	�U�
 � �E� ≤ λ� is compact for the
metric distL1 .
This result is stated in this precise form in [22], Teorema 2.4, or [20], Teo-

rema I. It is also an immediate consequence of the compactness theorem stated
in [52], Chapter 2, page 70. Modern presentations are formulated through
functions of bounded variations: if O is an open bounded domain with suffi-
ciently regular boundary (say C1), then a set of functions in L1�O� uniformly
bounded in BV-norm is relatively compact in L1�O� (see any of the following
references: [31], Section 5.2.3, [39], Theorem 1.19, [70], Corollary 5.3.4). To
deduce the compactness result on sets of finite perimeter, we choose an open
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bounded domain O with regular boundary containing U in its interior. We
embed 	�U� in L1�O� by associating to a Borel set E its characteristic func-
tion χE and we simply remark that the set �χE �E ∈ 	�U�� is a closed subset
of L1�O�.
Let E be a set of finite perimeter. Its reduced boundary ∂∗E consists of the

points x such that:

1. .∇χE.�B�x� r�� > 0 for any r > 0.
2. If νr�x� = −∇χE�B�x� r��/.∇χE.�B�x� r�� then, as r goes to 0, νr�x� con-
verges toward a limit νE�x� such that �νE�x��2 = 1.

The reduced boundary ∂∗E is countably �d− 1�-rectifiable, that is ∂∗E ⊂ N ∪⋃
i∈�Mi where 
 d−1�N� = 0 and each Mi is a d − 1-dimensional embedded

C1 submanifold of �d. For a point x belonging to ∂∗E, the vector νE�x� is
called the generalized exterior normal to E at x. A unit vector ν is called the
measure theoretic exterior normal to E at x if

lim
r→0

r−d vol �B−�x� r� ν�\E� = 0� lim
r→0

r−d vol �B+�x� r� ν� ∩E� = 0�

At each point x of the reduced boundary ∂∗E of E, the generalized exterior
normal νE�x� is also the measure theoretic exterior normal to E at x. The map
x ∈ ∂∗E %→ νE�x� ∈ Sd−1 is .∇χE. measurable. For any Borel set A of �d,

.∇χE.�A� = 
 d−1�A ∩ ∂∗E�� ∇χE�A� =
∫
A∩∂∗E

−νE�x�
 d−1�dx��

Let f
 ∂∗E %→ � be a .∇χE. measurable bounded function. By the Besicovitch
derivation Theorem [6, 10] applied to the measure .∇χE., for 
 d−1 almost
all x in ∂∗E,

lim
r→0

�αd−1r
d−1�−1

∫
B�x� r�∩∂∗E

f�y�
 d−1�dy� = f�x��

For any vector function f in C1
0��d��d�, any Caccioppoli set E, by the gener-

alized Gauss–Green Theorem,∫
E
divf�x�dx =

∫
∂∗E

f�x� · νE�x�
 d−1�dx��

A.2. Proofs of the results on surface tension. For the sake of com-
pleteness, we include here the proofs on basic results on surface tension. They
follow from minor adaptations of arguments in [14] and [53].

Proof of Proposition 4.1. This result is proved with the help of the same
subadditivity argument used in [2], Proposition 2.4. The only additional prob-
lem is that we work with curves whose position with respect to the discrete
lattice �d is arbitrary. Let w be a unit vector of �d and let A�A′ be two
hyperrectangles such that norA = norA′ = w. Let φ�n�� φ′�n� be two func-
tions from � to �+ ∪ �∞� such that limn→∞ φ�n� = ∞� limn→∞ φ′�n� = ∞.
Let ζ� ζ ′ be two real numbers larger than 2d. Let n�m in � be such that
ndiam2A > mdiam2A

′ > max�ζ� ζ ′�. Because we deal with hyperrectangles,
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certainly there exists a collection of sets �T�i�� i ∈ I� such that each set T�i�
is a translate of mA′ intersecting the set

D�m�n� = �x ∈ nA
 d2�x�n∂A� > 2mdiam2A
′� 

the sets �T�i�� i ∈ I� have pairwise disjoint interiors; their union ⋃
i∈I T�i�

contains the set D�m�n�. Since A is a hyperrectangle, then


 d−1�nA� − 2m�diam2A
′�
 d−2�n∂A�

≤ 
 d−1�D�m�n�� ≤ �I�
 d−1�mA′� ≤ 
 d−1�nA��
(60)

For each i in I, let t�i� be a vector in �d such that �t�i��∞ ≤ 1 and t�i� +
T�i� is the image of mA′ by an integer translation (a translation that leaves
�d globally invariant). Let T′�i� = t�i� + T�i�. Suppose that all the events
W�∂T′�i�� φ�n�� ζ ′�, i ∈ I, occur, and let E�i�, i ∈ I, be finite sets of closed
edges realizing these events. Let c�d� ζ ′� be a positive constant and let E0 be
the set of edges included in(

cyl�nA\D�m�n�� ∩ 
2�hypnA� ζ�)
∪ ⋃
i∈I

(

2�cyl ∂T′�i�� c�d� ζ ′�� ∩ 
2�hypnA� c�d� ζ ′��)�

Let E = E0 ∪ ⋃
i∈I E�i�. Clearly E is finite. The constant c�d� ζ ′� can be

chosen large enough (depending only on d� ζ ′) to guarantee that the edges
of E separate ∞ inside cylnA. Then the set of edges E realizes the event
W�∂nA�φ�n�� ζ�. An attempt of proof is done in [14], Proposition 5.2.
Therefore{

ω
∣∣∀ e ∈ E0 ω�e� = 0

} ∩
( ⋂
i∈I
W�∂T′�i�� φ�n�� ζ ′�

)
⊆ W�∂nA�φ�n�� ζ��

Since all these events are decreasing, by the FKG inequality,

�∞
[
W�∂nA�φ�n�� ζ�] ≥ �1− p��E0� ∏

i∈I
�∞

[
W�∂T′�i�� φ�n�� ζ ′�]�(61)

Since the model is invariant under the integer translations, for any i in I,

�∞
[
W�∂T′�i�� φ�n�� ζ ′�] = �∞

[
W�∂mA′� φ�n�� ζ ′�]�(62)

Because φ�n� goes to ∞ as n goes to ∞,

lim
n→∞�∞

[
W�∂mA′� φ�n�� ζ ′�] = �∞

[
W�∂mA′�∞� ζ ′�]�

whence, for n sufficiently large,

�∞
[
W�∂mA′� φ�n�� ζ ′�] ≥ �1/2��∞

[
W�∂mA′�∞� ζ ′�]�(63)

For such integers n, combining (61), (62), (63) and passing to the logarithm,

log�∞
[
W�∂nA�φ�n�� ζ�] ≥ �I� log�∞

[
W�∂mA′� φ′�m�� ζ ′�]

+ �E0� log�1− p� − �I� log 2�
(64)
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There exists a further constant c�d� ζ� ζ ′�A�A′� such that
�E0� ≤ c�d� ζ� ζ ′�A�A′��nd−2m+ nd−1/m+ 1��(65)

Using the inequalities (60), (64) and (65), we obtain


 d−1�nA�−1 log�∞
[
W�∂nA�φ�n�� ζ�]

≥ 
 d−1�mA′�−1 log�∞
[
W�∂mA′� φ′�m�� ζ ′�]

+ c�d� ζ� ζ ′�A�A′�
 d−1�A�−1�m/n+ 1/m+ 1/nd−1� log�1− p�
− 
 d−1�mA′�−1 log 2�

Sending successively n to ∞ and then m to ∞ yields

lim inf
n→∞ 
 d−1�nA�−1 log�∞

[
W�∂nA�φ�n�� ζ�]

≥ lim sup
m→∞


 d−1�mA′�−1 log�∞
[
W�∂mA′� φ′�m�� ζ ′�]�

which implies the result of the proposition. ✷

Proof of Proposition 4.5. Let w ∈ Sd−1 and let A be a hyperrectangle
orthogonal to w such that 
 d−1�A� = 1. Let E�n� be the set of the edges
included in cylnA ∩ 
2�hypnA�2d�. Then �E�n�� ≤ c�d�nd−1 and

�∞
[
W�∂nA�∞�2d�] ≥ �∞

[
the edges of E�n� are closed] ≥ �1− p��E�n���

Passing to the limit, we get τ�w� ≤ −c�d� log�1 − p�. Since τ0 is homoge-
neous, convex (by Corollary 4.3) and bounded on Sd−1, it is finite everywhere.
By a standard result of convex analysis [60], Corollary 10.1.1, it follows that
τ0 is continuous, as well as τ.
Recall that we work here in the region d ≥ 3, q ≥ 1, p > p̂c, θf�p� =

θw�p�. We first show that τ�1�0� � � � �0� is positive. Let δ be positive and
let F1� � � � �F2d be the 2d faces of the cubic box ��1 − 2δ�. Let E0 be the
set of edges included in 
2�n∂F1 ∪ · · · ∪ n∂F2d�2ζ�. There exists a constant
c�d� ζ� such that �E0� ≤ c�d� ζ�nd−2. If the events W�n∂Fi� δn� ζ�, 1 ≤ i ≤ 2d,
�all the edges of E0 are closed�, occur simultaneously, then there exists a set
of closed edges inside the box ��n� which separates the box n��1 − 4δ� from
∂in��n�. By the FKG inequality,

�1− p��E0� ∏
1≤i≤2d

�∞
[
W�n∂Fi� δn� ζ�] ≤ �∞

[�n��1− 4δ� ↔ ∂in��n��c]�
The bound on �E0�, Proposition 4.1 and the symmetry of τ imply that

lim
n→∞

1
nd−1 log

(
�1− p��E0� ∏

1≤i≤2d
�∞

[
W�n∂Fi� δn� ζ�])

= −2d�1− 2δ�d−1τ�1�0� � � � �0��
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Next, the event �n��1 − 4δ� ↔ ∂in��n�� depends only on the status of the
edges inside ��n�. By conditioning on the configuration outside ��n�, we get

�∞
[�n��1− 4δ� ↔ ∂in��n��c]

= �∞
[
�∞

[�n��1− 4δ� ↔ ∂in��n��c�� ��n�]]
≤ sup

�∈c�� ���n��
�
[�n��1− 4δ� ↔ ∂in��n��c]�

Yet the event �n��1− 4δ� ↔ ∂in��n��c implies that any cluster in ��n� inter-
secting ∂in��n� is included in ��n�\n��1 − 4δ� and has therefore cardinality
less than nd�1−�1−4δ�d�. We choose δ small enough so that 1−�1−4δ�d ≤ θ/2.
By the result of Pisztora ([59], Theorem 1.2) we have then

lim sup
n→∞

1
nd−1 log sup

�∈c�� ���n��
�
[���n�1− 4δ�� ↔ ∂in��n��c] < 0

so that τ�1�0� � � � �0� is positive.
Suppose that τ�ν� = 0 for some ν in Sd−1. Let f1� � � � � fd−1 be linear

isometries of �d such that f1�0� = · · · = fd−1�0� = 0, f1��d� = · · · =
fd−1��d� = �d and �f1�ν�� � � � � fd−1�ν�� ν� is an orthonormal basis of �d. Then
τ�f1�ν�� = · · · = τ�fd−1�ν�� = 0. Applying the weak simplex inequality to
a pyramid having for basis a hypersimplex orthogonal to �1�0� � � � �0� and
whose d other faces are orthogonal to f1�ν�� � � � � fd−1�ν�� ν, we obtain that
τ�1�0� � � � �0� = 0, a contradiction. Thus the surface tension τ does not vanish
on Sd−1. Since τ is continuous on Sd−1, it is bounded away from 0 on Sd−1. ✷

Proof of Lemma 4.7. Let �Ai� i ∈ I� be a finite family of hyperrectangles
in hypO having disjoint relative interiors and covering O. Let c = c�d� ζ� be
a large constant. Let E0 be the set of edges included in the union⋃

i∈I

2�cyl ∂nAi� c� ∩ 
2�hypnO� c��

There exists a further constant c′ = c′�d� ζ� c� such that �E0� ≤ c′�I�nd−2. If
all the events W�∂nAi�φ�n��, i ∈ I, occur and all the edges of E0 are closed,
then S�nO�φ�n�� occurs as well, provided the constant c is large enough. By
the FKG inequality,

�∞
[
S�nO�φ�n��] ≥ �1− p��E0� ∏

i∈I
�∞

[
W�∂nAi�φ�n��]�

whence, by Proposition 4.1 and the bound on �E0�,

lim inf
n→∞

1
nd−1 log�∞

[
S�nO�φ�n��] ≥ −τ�norO�∑

i∈I

 d−1�Ai��
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By taking the supremum of the right-hand side over all possible coverings
of O, we obtain the claim of the lemma. ✷

Proof of Lemma 4.8. Let ε > 0. Let Aε be a hyperrectangle such that


∞�A�2ε� ∩ hypA ⊂ Aε ⊂ 
∞�A�3ε� ∩ hypA�

Let E0 be the set of the edges included in(

2�cyln∂A� ζ� ∩ 
2�hypnA�nr�) ∪ (

cyl�nAε\nA� ∩ 
2�hypnA� ζ�)�
Suppose that the event S�nA�nr� occurs, and let ES be a set of closed edges
realizing it. Suppose also that all the edges of E0 are closed. Then the set of
closed edges E0 ∪ES realizes the event W�∂nAε�nr�. Therefore{

ω
∣∣∀ e ∈ E0 ω�e� = 0

} ∩S�nA�nr� ⊂ W�∂nAε�nr��

Since all these events are decreasing, by the FKG inequality,

�∞
[
S�nA�nr�]�1− p��E0� ≤ �∞

[
W�∂nAε�nr�]�

There exists a constant c = c�d� ζ� such that

�E0� ≤ cnd−1�r
 d−2�∂A� + 
 d−1�Aε\A���

whence, passing to the logarithm,

log�∞
[
S�nA�nr�] ≤ log�∞

[
W�∂nAε�nr�] − cnd−1�r
 d−2�∂A�

+ 
 d−1�Aε\A�� log�1− p��

Letting n go to ∞, applying Proposition 4.1 and sending ε to 0, we get the
desired inequality. ✷

Proof of Lemma 4.9. The very definition of the event S�nO�nr� implies
that

S�nO�nr� ⊂ ⋂
i∈I
S�nAi� nr��

For i in I, the event S�nAi� nr� depends only on the status of the edges inside
n cyl�Ai� r�. Since the hyperrectangles �Ai� i ∈ I� are pairwise disjoint and
compact, so are the sets �cyl�Ai� r�� i ∈ I�. Thus the decoupling Lemma 3.2
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is in force and

lim sup
n→∞

1
nd−1 log�∞

[
S�nO�nr�

]
≤ ∑

i∈I
lim sup
n→∞

1
nd−1 log�∞

[
S�nAi� nr�

]
�

The conclusion follows from Lemma 4.8. ✷

Proof of Corollary 4.10. We apply Lemma 4.9 with O = disc�x� ρ�w�,
r = η. There exists a constant c′ = c′�d� such that, for any ε positive, there
exists a finite family �Ai� i ∈ I� of disjoint hyperrectangles included in O
such that ∑

i∈I

 d−1�Ai� ≥ αd−1ρ

d−1 − ε�
∑
i∈I


 d−2�∂Ai� ≤ c′ρd−2�

The result follows by taking the infimum over all possible families in the
inequality stated in Lemma 4.9. ✷
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[34] Föllmer, H. and Orey, S. (1988). Large deviations for the empirical field of a Gibbs measure.

Ann. Probab. 16 961–977.
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[54] Miracle-Solé, S. (1995). Surface tension, step free energy, and facets in the equilibrium

crystal. J. Statist. Phys. 79 183–214.
[55] Newman, C. M. (1993). Disordered Ising systems and random cluster representations. In

Probability and Phase Transition (G. Grimmett, ed.) 247–260. Kluwer, Dordrecht.
[56] Olla, S. (1988). Large deviations for Gibbs random fields. Probab. Theory Related Fields 77

395–409.
[57] Pfister, C. E. (1991). Large deviations and phase separation in the two-dimensional Ising

model. Helv. Phys. Acta 64 953–1054.
[58] Pfister, C. E. and Velenik, Y. (1997). Large deviations and continuum limit in the 2D Ising

model. Probab. Theory Related Fields 109 435–506.
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