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CENTRAL LIMIT THEOREMS FOR ADDITIVE
FUNCTIONALS OF MARKOV CHAINS1

By Michael Maxwell and Michael Woodroofe

San Jose State University and University of Michigan

Central limit theorems and invariance principles are obtained for addi-
tive functionals of a stationary ergodic Markov chain, say Sn = g�X1� +
· · · + g�Xn�, where E�g�X1��=0 and E�g�X1�2�<∞. The conditions im-
posed restrict the moments of g and the growth of the conditional means
E�Sn 	X1�. No other restrictions on the dependence structure of the chain
are required. When specialized to shift processes, the conditions are implied
by simple integral tests involving g.

1. Introduction. LetX0�X1�X2� � � �denote an ergodic stationaryMarkov
chain with values in a measurable space �� ���, transition function Q, and
stationary initial distribution π. Further, let L2�π� denote the space of (equiv-
alence classes of ) square integrable functions g
 � → � for which �g�2 
=∫
� g2 dπ <∞, and let L2

0�π� denote the setofg ∈ L2�π� forwhich∫� gdπ = 0.
Given g ∈ L2

0�π�, let

Sn = Sn�g� 
= g�X1� + · · · + g�Xn�(1)

and

S∗n =
1√
n
Sn�

for n ≥ 1. The problem is to find conditions under which S∗n is asymptoti-
cally normal. There are several approaches to this problem. If the chain has a
recurrence point, then the problem may be reduced to the independent case,
as in Meyn and Tweedie [(1993), pages 418–421]. If the chain exhibits suit-
able strong mixing, then blocking arguments may be useful, as in Dehling,
Denker and Phillip (1986) or Peligrad (1986), for example. If there is a solu-
tion to Poisson’s equation, h = g +Qh, then the problem may be reduced to
the martingale case, as in Gordin and Lifsic (1978) and Bhattacharrya and
Lee (1988). Here we explore some extensions of the latter approach, along the
lines of Kipnis and Varadhan (1986), Toth (1986) and Woodroofe (1992), to
cases where a solution to Poisson’s equation is not required.
The condition imposed here for normality is a growth condition on the con-

ditional mean E�Sn 	X1 = x�. To describe it, letQ denote both the conditional
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distribution of X1 given X0 and the operator defined by

Qh�x� =
∫
�
h�y�Q�x�dy�

for a.e. x ∈ � and all h ∈ L2�π�. Then Q is a contraction. Let

Vmh =
m−1∑
k=0

Qkh

for h ∈ L2�π� andm ≥ 1. Then each Vm is a bounded linear operator. Observe
that Vmg�x� = E�Sm�g� 	X1 = x� for a.e. x�π�. The condition required here
for asymptotic normality is that

∞∑
n=1

n−3/2�Vng� <∞�(2)

where � · � denotes the norm in L2�π�. A main result is that if (2) holds, then

σ2 
= σ2�g� = lim
n→∞E�S∗2n �(3)

exists and is finite, and

S∗n ⇒ Normal�0� σ2�(4)

as n → ∞, where ⇒ denotes convergence is distribution. In fact, (4) holds
conditionally given X0, as described in Corollary 1 below. For a comparison
with Gordin and Lifsic’s (1978) result, observe that if there is a solution to
Poisson’s equation h = g + Qh, where h ∈ L2�π�, then Vng = h − Qnh
and, therefore, �Vng� = O�1�. Clearly, �Vng� = O�√n�, if (3) holds, since
�Vng�2 = E�E�Sn 	X1�2� ≤ E�S2

n� for all n ≥ 1. In Corollary 1, it is also
shown that (3) and the conditional version of (4) imply �Vng� = o�√n�. In
this rough sense, (2) is within a logarithmic term of being necessary.
Relations (3) and (4) are established in Section 2, and a functional central

limit theorem is established in Section 3 under the stronger conditions that g ∈
Lp�π� for some p > 2 and �Vng� = O�nα� for some α < 1/2. In Section 4, the
results are specialized to shift processes, and it is shown that the condition (2)
is implied by simple integral tests.

2. Asymptotic normality. For ε > 0, let hε be the solution to the equa-
tion �1+ ε�h = Qh+ g,

hε =
∞∑
k=1

Qk−1g
�1+ ε�k = ε

∞∑
n=1

Vng

�1+ ε�n+1 �(5)

Letπ1 be the joint distribution ofX0 andX1, so thatπ1�dx0 dx1�=Q�x0�dx1�×
π�dx0�; denote the norm inL2�π1� by � · �1; and let

Hε�x0� x1� = hε�x1� −Qhε�x0�
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for x0� x1 ∈ � . Then each Hε is in L2�π1�; the norm of Hε is �Hε�21 = �hε�2−
�Qhε�2; and

∫
� Hε�x0� x1�Q�x0�dx1� = 0 for a.e. x0�π�. With this notation,

Sn�g� =Mn�ε� + εSn�hε� +Rn�ε��(6)

where

Mn�ε� =Hε�X0�X1� + · · · +Hε�Xn−1�Xn�
and

Rn�ε� = Qhε�X0� −Qhε�Xn��
For each fixed ε, Mn�ε� is a martingale; Mn�ε�/

√
n is asymptotically normal

with mean 0 and variance �Hε�21; and Rn�ε� = Op�1�.
Let δk = 2−k for k ≥ 0.

Lemma 1. If (2) holds, then
√
ε�hε� → 0 as ε → 0 and

∑∞
k=1

√
δk ×

supδk≤ε≤δk−1 �hε� < ∞. Further, if �Vng� = O�nα� for some α > 0, then
�hε� = O�ε−α� as ε→ 0.

Proof. Clearly, �hε� ≤ 2δk
∑∞

n=1�1+ δk�−n�Vng� for δk ≤ ε ≤ δk−1. So,

∞∑
k=1

√
δk sup

δk≤ε≤δk−1
�hε� ≤ 2

∞∑
n=1

[ ∞∑
k=1

δ
3/2
k

�1+ δk�n
]
�Vng��

The inner sum here is O�n−3/2� by comparison with
∫ 1
0

√
x�1 + x�−n dx, and

the first two assertions follow easily. The third assertion follows similarly
by writing �hε� ≤ ε

∑∞
n=1�1 + ε�−n�Vng� and comparing the latter sum to∫∞

o xα�1+ ε�−x dx. ✷

Lemma 2. For 0 < ε� δ <∞� �Hε −Hδ�21 ≤ �ε+ δ���hε�2 + �hδ�2�.

Proof. Using �Hε�Hδ�1 = �hε� hδ�−�Qhε�Qhδ� and Qhε = �1+ε�hε−g,

�Hε�Hδ�1 = �hε� hδ� − ��1+ ε��1+ δ��hε� hδ� − �1+ ε��hε�g�
− �1+ δ��hδ�g� + �g�2�

= − �ε+ δ+ εδ��hε� hδ� + ��1+ ε��hε�g� + �1+ δ��hδ�g� − �g�2�
and

�Hε −Hδ�21 = − �2ε+ ε2��hε�2 + 2�ε+ δ+ εδ��hε� hδ� − �2δ+ δ2��hδ�2

≤ 2�ε+ δ��hε��hδ� − �ε�hε� − δ�hδ��2

≤ �ε+ δ���hε�2 + �hδ�2��
as asserted. ✷

Proposition 1. If (2) holds, then H = limε↓0 Hε exists in L2�π1�.
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Proof. Let δk = 2−k, as above. Then �Hδk
− Hδk−1�21 ≤ 3δk�hδk

�2 +
2δk−1�hδk−1�2 for all k ≥ 1, by Lemma 2. So,

∞∑
k=1
�Hδk

−Hδk−1�1 ≤ 4
∞∑
k=0

√
δk�hδk

� <∞�

by Lemma 1 (using
√
a+ b ≤ √

a + √b for nonnegative a and b). It follows
that H 
= limk→∞ Hδk

exists in L2�π1�. If 0 < ε < 1, then there is a unique
k = k�ε� for which δk ≤ ε < δk−1. With this choice of k� �Hε − Hδk

�21 ≤
7δk supδk≤ε≤δk−1 �hε�2 → 0 as ε→ 0, so that limε↓0 Hε =H. ✷

Theorem 1. If (2) holds, then

Sn =Mn +Rn�(7)

where M1�M2� � � � and R1�R2� � � � have strictly stationary increments,
M1�M2� � � � , is a square integrable martingale, and E�R2

n� = o�n� as n→∞.

Proof. Let Mn = H�X0�X1� + · · · + H�Xn−1�Xn� for n ≥ 1. Then
limε↓0Mn�ε� =Mn in L2�P� for each fixed n in (6), since E��Mn�ε�−Mn�2� =
n�Hε − H�21 → 0 by Proposition 1, and limε↓0 εSn�hε� = 0 in L2�P� by
Lemma 1. So, Rn 
= limε↓0 Rn�ε� exists in L2�P� for each fixed n, and (7)
holds. It is clear that M1�M2� � � � and R1�R2� � � � have strictly stationary
increments and that M1�M2� � � � , is a square integrable martingale. So, it
remains to show that E�R2

n� = o�n� as n → ∞. For each n ≥ 1, let kn

be the unique integer k for which 2k−1 ≤ n < 2k and let εn = 2−kn . Then
Rn =Mn�εn� −Mn + εnSn�hεn

� +Rn�εn� and, therefore,
E�R2

n� ≤ 4E��Mn�εn� −Mn�2� + 4ε2nE�Sn�hεn
�2� + 4E�Rn�εn�2�

≤ 4n�Hεn
−H�21 + 4�hεn

�2 + 8�hεn
�2�

(8)

The first term on the right side of (8) is o�n� by Proposition 1, and the second
two are o�n� by Lemma 1. ✷

Asymptotic normality is a simple consequence of the theorem. Denote con-
ditional probability given X0 = x by Px and let

Fn�x� z� = Px�S∗n ≤ z�
for z ∈ �� x ∈ � and n ≥ 1. Let $σ denote the normal distribution with
mean 0 and variance σ2, and let % denote the Levy metric for distribution
functions; that is, %�F�G� = inf�ε > 0
 G�x − ε� − ε ≤ F�x� ≤ G�x + ε� +
ε for all x�.

Corollary 1. If (2) holds, then (3) and (4) hold with σ2 = �H�21 and
lim
n→∞

∫
�
%�$σ�Fn�x� ·�� π�dx� = 0�(9)

Conversely, if (3) and (9) hold, then �Vng� = o�√n�.
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Proof. Suppose first that (2) holds. Then (3) holds with σ2 = �H�21,
because E�M2

n� = n�H�21 for all n, and E�R2
n� = o�n� as n → ∞. For

the normality, it suffices to establish (9). Observe first that M1�M2� � � � is
a martingale with respect to Px for a.e. x �π�, by the Markov property. Let
Gn�x� z� = Px�M∗

n ≤ z� for z ∈ �� x ∈ � , and n ≥ 1. By the Ergodic theorem,

lim
n→∞

1
n

∞∑
k=1

H�Xk−1�Xk�2 = �H�21

w.p.1 �P� and, therefore, w.p.1 �Px� for a.e. x �π�. It then follows from the
Martingale central limit theorem that Gn�x� ·� ⇒ $σ as n → ∞ for a.e.
x �π�. See, for example, Durrett and Resnick (1978) or Hall and Heyde [(1981),
Theorem 3.2]. Relation (9) then follows by integrating the inequality

%�$σ�Fn�x� ·�� ≤ %�$σ�Gn�x� ·�� + ε+Px

{∣∣∣∣Rn√
n

∣∣∣∣ ≥ ε

}

with respect to π and then letting n→∞ and ε→ 0.
For the converse, let σ2

n = E�S∗2n � and let σ2
n�x� denote the conditional

variance of S∗n given X0 = x [which is well defined for a.e. x �π�]. Then

σ2
n =

∫
�
σ2
n�x�π�dx� +

1
n
�QVng�2

for all n ≥ 1. It suffices to show that �Vnk
g�/√nk → 0 as k → ∞ for every

sequence nk that increases sufficiently fast. If nk is a subsequence for which
%�$σ�Fnk

�x� ·�� → 0 for a.e. x �π� as k → ∞, then lim inf k→∞ σ2
nk
�x� ≥ σ2

for a.e. x �π� by Fatou’s lemma and, therefore,

lim sup
k→∞

1
nk

�QVnk
g�2 ≤ lim

n→∞σ2
n − lim inf

k→∞

∫
�
σ2
nk
�x�π�dx� ≤ σ2 − σ2 = 0�

by another application of Fatou’s lemma. The corollary follows since 0 ≤
�Vng� − �QVng� ≤ 2�g�. ✷

If the process is mixing, then it is possible to relate (2) to conditions on
�Qkg�� k ≥ 1.

Corollary 2. Relations (3) and (4) hold if either

∞∑
k=1

1√
k
�Qkg� <∞(10)

or

∞∑
k=1

log1+δ�k��Qkg�2 <∞(11)

for some δ > 0.
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Both (10) and (11) imply (2). The easy proof is omitted. The condition (11)
cannot be relaxed very much at this level of generality. An example in which
(11) holds with δ = 0, but σ2 = ∞ in (3) may be constructed along the lines of
Example 3 of Woodroofe (1992) by letting ar� r ≥ 1, be any square summable
sequence and bk = 1/�k log�1+ k� log log�2+ k�� for k ≥ 1, in the notation of
that example.

3. An invariance principle. Let

�n�t� =
1√
n
S�nt�� 0 ≤ t < 1�(12)

and �n�1� = �n�1−� for n ≥ 1, where �x� denotes the least integer that is
greater than x. In Theorem 2 below, it is shown that �n converges in dis-
tribution to a Brownian motion in the space D�0�1�, under slightly stronger
conditions. Here D�0�1� denotes the space of right continuous functions with
left limits, as described by Billingsley [(1968), Chapter 3].
The proof uses the following simple maximal inequality.

Proposition 2. If Sk� k ≥ 1, is any process with strictly stationary incre-
ments for which E�S2

n� ≤ Cn for all n = 1�2� � � � , then

P
{
max
j≤n

	Sj	 > λ
}
≤ 26kCn1+2

−k

λ2
(13)

for all n ≥ 1, all λ > 0 and all k ≥ 0.

Proof. It is clear that (13) holds for k = 0. So, suppose inductively that it
holds for a given k ≥ 1. Let m = �√n�. Then

P
{
max
k≤n

	Sk	>2λ
}
≤ P

{
max
k≤m

	Smk	>λ
}
+mP

{
max
k≤m

	Sk	>λ
}
≤22

6kCm2+2−k

λ2
�

where the second inequality follows by applying (13) twice, once to Sk� k ≤m,
and once to Smk� k ≤m (which satisfies the basic conditions with C replaced
by Cm). Since m/

√
n ≤ 2, it then follows that

P
{
max
k≤n

	Sk	 > 2λ
}
≤ 24

26kCn1+2
−k−1

λ2

and the proposition then follows by induction. ✷

The proposition is used in the following form.

Corollary 3. For any β > 1 there is a constant ., depending only on β,
for which

P
{
max
k≤n

	Sk	 > λ
}
≤ .Cnβ

λ2

for all λ > 0 and all n ≥ 1.
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Now let Sk = Sk�g�� k ≥ 1, as in (1); define �n by (12) and let Fn�x� ·�
denote the conditional distribution of �n given X0 = x, a probability measure
on the Borel sets of D�0�1�, for each x ∈ � . Further, let � be a standard
Brownian motion, let $σ denote the distribution of σ� and let % denote the
Prokhorov metric on the space of probability measures on D�0�1�. See, for
example, Billingsley [(1968), page 238].

Theorem 2. If there are p > 2 and α < 1 for which
∫
� 	g	p dπ < ∞ and

E�R2
n� = o�nα� as n→∞, then

lim
n→∞

∫
�
%
[
$σ�Fn�x� ·�

]
π�dx� = 0�(14)

Proof. Let M∗
n�t� = M�nt�/

√
n� 0 ≤ t < 1 and M∗

n�1� = M∗
n�1−�, and let

Gn�x� ·� denote the conditional distribution ofM∗
n givenX0 = x. Then Gn�x� ·�

converges to $σ for a.e. x �π�, by Theorem 2.5 of Durrett and Resnick (1978),
and ∫

�
%
[
$σ�Fn�x� ·�

]
π�dx� ≤

∫
�
%
[
$σ�Gn�x� ·�

]
π�dx�

+ε+P
{
max
k≤n

	Rk	 ≥ ε
√
n
}

for each ε > 0 and all n ≥ 1. So, it suffices to show that maxj≤n 	Rj	/
√
n→ 0

in probability as n→∞. Given α and p, as in the statement of the theorem,
there are 0 < γ < 1/2− 1/p and let β > 1 for which αγ + β�1− γ� < 1. Next,
let l = �nγ� and m = �n1−γ�. Given ε > 0, define events

An =
{

max
0≤k−j≤l� k≤n

	Mk −Mj	 ≤ ε
√
n
}
�

Bn =
{
max
j≤n

	g�Xj�	 ≤ ε

√
n

l

}
and

Cn =
{
max
k≤m

	Rlk	 ≤ ε
√
n
}
�

Then An ∩ Bn ∩ Cn ⊆ �maxj≤n 	Rj	 ≤ 3ε
√
n�. For if An�Bn and Cn occur

and 1 ≤ j ≤ n, then lk ≤ j < l�k + 1� for some k < m and, therefore,
	Rj	 ≤ 	Rlk	 + 	Mj −Mlk	 + 	Sj −Slk	 ≤ 3ε

√
n. Clearly, P�A′

n� → 0 as n→∞,
by the functional martingale central limit theorem and

P�B′n� ≤ nP

{
	g�X1�	 > ε

√
n

l

}
≤ n

∣∣∣∣ l

ε
√
n

∣∣∣∣
p ∫

�
	g	p dπ → 0

as n→∞, by the choice of γ. By assumption, there is a constant c for which
E�R2

j� ≤ cjα for all j = 1�2� � � � � So, the sequence Rlk� k ≥ 1, satisfies the
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conditions of Proposition 2 with C = clα. It follows that there is a constant .
for which

P�C′n� = P
{
max
k≤m

	Rlk	 > ε
√
n
}
= c.

ε2
lαmβ

n
→ 0

as n → ∞, by the choice of β. Thus, P�maxj≤n 	Rj	 > 3ε
√
n� ≤ P�A′

n� +
P�B′n� +P�C′n� → 0 as n→∞. ✷

Corollary 4. If g ∈ Lp�π� for some p > 2 and �Vng� = O�nα� for some
α < 1/2, then (14) holds.

Proof. It suffices to show that E�R2
n� = O�n2α�, and this follows easily

from (8). For �hεn
� = O�nα� by Lemma 1 and the definition of εn, and there is

a constant C for which

�Hεn
−H�1 ≤

∞∑
j=kn+1

�Hδj
−Hδj−1�1 ≤ C

∞∑
j=kn+1

δ
�1/2�−α
j = O�nα−�1/2���

using Lemma 2. ✷

The following corollary is obvious.

Corollary 5. If g ∈ Lp�π� for some p > 2 and either
∞∑
k=1

kδ−1/2�Qkg� <∞(15)

or
∞∑
k=1

kδ�Qkg�2 <∞�(16)

for some δ > 0, then (14) holds.

4. Shift processes. In this section, Theorems 1 and 2 are specialized
to one-sided shift processes. These processes do not have recurrence points
and are not strongly mixing. For such processes, it is possible to formulate
an integral condition on g which is sufficient for asymptotic normality. The
procedure is simplest for Bernoulli shifts.

Bernoulli shifts. Let εk, k = 0�±1�±2� � � � be i.i.d. random variables that
take the values 0 and 1 with probability 1/2 each and let

Xn =
∞∑
k=1
�1/2�k+1εn−k

for n = 0�1�2� � � � � Then Xn, n ≥ 0, is an ergodic stationary Markov chain
taking values in I = �0�1�. The transition function is defined byQ�x� �x/2�� =
1/2 = Q�x� ��1 + x�/2�� for x ∈ �0�1� and the stationary initial distribution
is the restriction, λ say, of Lebesgue measure to I. In this case, L2�λ� is a
familiar space, and it is easy to relate the conditions in Theorems 1 and 2 to
regularity properties of g.
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Proposition 3. For the Bernoulli shift process, if g ∈ L2
0�λ� and∫ 1

0

∫ 1

0
�g�y� − g�x��2 1

	x− y	 log
1+δ

[
log

(
1

	x− y	
)]

dxdy <∞(17)

for some δ > 0, then (11) holds, and if∫ 1

0

∫ 1

0
�g�x� − g�y��2 1

	x− y	 log
δ

[
1

	x− y	
]
dxdy <∞(18)

for some δ > 0, then (16) holds.

Proof. If g ∈ L2
0�λ�, then

Qkg�x� = 2−k
∑
z∈Dk

g

(
x

2k
+ z

)

= 2−k
∑
z∈Dk

∫ 1

0

[
g

(
x

2k
+ z

)
− g

(
y

2k
+ z

)]
dy�

where Dk = �j2−k
 j = 0� � � � �2k − 1� and the second equality follows from∫ 1
0 Q

kg�y�dy = 0. Thus,

�Qkg�2 ≤ 2−k
∑
z∈Dk

∫ 1

0

∫ 1

0

[
g

(
x

2k
+ z

)
− g

(
y

2k
+ z

)]2
dydx

≤ 2k
∫ ∫

	x−y	≤2−k
�g�x� − g�y��2 dxdy

and
∞∑
k=1

log1+δ�k��Qkg�2 ≤
∫ 1

0

∫ 1

0
J�	x− y	��g�x� − g�y��2 dxdy�

where

J�z� = ∑
k:2−k≥z

2k log1+δ�k� ≤ C

z
log1+δ

[
log

(
1
z

)]

for 0 < z < 1 for some constant C. The first assertion of the proposition follows
easily, and the second may be established similarly.
The condition (18) is not very restrictive. For example, if

g�x� = 1
xα

sin
(
1
x

)
� 0 < x ≤ 1�

where 0 < α < 1/2, then (18) holds. This may be verified by making the change
of variables x = 1/x′ and y = 1/y′ in (18) and dividing the resulting integral
into regions where 	x′−y′	 ≤ 1 and 	x′−y′	 > 1. The details are straightforward
and have been omitted. That �Sn−E�Sn	X0��/

√
n is asymptotically normal for

this example was shown by Woodroofe (1992) using Fourier based techniques.
✷
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Lebesgue shifts. Now let Uk� k = 0�±1�±2� � � � be i.i.d. random variables
that are uniformly distributed over I = �0�1� and let

Xn = �· · ·Un−2�Un−1�Un�� n ≥ 0�

Then Xn� n ≥ 0, is a stationary Markov process taking values in � = IM,
where M denotes the nonpositive integers. The stationary initial distribution
π here is the countable product of copies of Lebesgue measure. Processes of
the form g�Xn�� n = 0�1�2� � � � , include a wide class of stationary sequences.
Define measures .i

δ on � ×� � i = 0�1 by

.0δ�B� =
∞∑
k=1

log1+δ�k��π × π × λk�{�x�y� z�
 ��x� z�� �y� z�� ∈ B
}
�

.1δ�B� =
∞∑
k=1

kδ�π × π × λk�{�x�y� z�
 ��x� z�� �y� z�� ∈ B
}

for Borel sets B ⊆ � × � , where x and �x� z� denote the sequences x =
�� � � � u−2� u−1� u0� and �x� z�=�� � � � u−1�u0�z1� � � � � zk� and λk denotes Lebesgue
measure on Ik.

Proposition 4. If g ∈ L2
0�π� and∫

�

∫
�
�g�x� − g�y��2 .0δ�dxdy� <∞�(19)

for some δ > 0, then (11) holds; and if∫
�

∫
�
�g�x� − g�y��2 .1δ�dxdy� <∞�(20)

for some δ > 0, then (16) holds.

Proof. Clearly,

Qkg�x� =
∫
�

∫
Ik
�g�x� z� − g�y� z�� λk�dz�π�dy�

for a.e. x ∈ IM and, therefore,

�Qkg�2 ≤
∫
�

∫
�

∫
ik
�g�x� z� − g�y� z��2 λk�dz�π�dx�π�dy�

and all k ≥ 1. The first assertion then follows from multiplying �Qkg�2 by
log1+δ�k� and summing over k = 1�2� � � � , and the second may be established
similarly. ✷

To illustrate the use of (19) and (20), observe that any g ∈ L2
0�π� may be

written in the form

g�x� =
∞∑
k=0

gk�u−k� � � � � u0��
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wherex=�� � � � u−2� u−1� u0�� gk
�k+1→�aremeasurable,
∫
� gk�u−k� � � � � u0�×

du−k = 0 for a.e. �u−k+1� � � � � u0�,
∑∞

k=1
∫
g2
k dλ

k+1 < ∞, and λk denotes
k-dimensional Lebesguemeasure.

Corollary 6. Relation (11) holds if

∞∑
k=1

k log1+δ �k�
∫
g2
k dλ

k+1 <∞

for some δ > 0, and (16) holds if for some δ > 0,
∞∑
k=1

k1+δ
∫
g2
k dλ

k+1 <∞�

Proof. If y = �� � � �w−1�w0� and z ∈ �k, then

g�x� z� − g�y� z� =
∞∑
j=k
�gj�u−j+k� � � � � u0� z� − gj�w−j+k� � � � �w0� z��

and, therefore,∫
�g�x� − g�y��2.1δ�dxdy� ≤ 4

∞∑
k=1

∞∑
j=k

kδ
∫
g2
j dλ

j+1�

The second assertion of the corollary now follows from routine manipulations,
and the first may be established similarly. ✷

Acknowledgments. Thanks to Persi Diaconis, Bob Keener and Walter
Phillip for helpful conversations. Theorem 1 is adapted from Maxwell (1997).
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