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CENTRAL LIMIT THEOREMS FOR ADDITIVE
FUNCTIONALS OF MARKOV CHAINS!

BY MICHAEL MAXWELL AND MICHAEL WOODROOFE

San Jose State University and University of Michigan

Central limit theorems and invariance principles are obtained for addi-
tive functionals of a stationary ergodic Markov chain, say S, = g(X1) +
..+ g(X,), where E[g(X;)]=0 and E[g(X)?] < cc. The conditions im-
posed restrict the moments of g and the growth of the conditional means
E(S,, | X1). No other restrictions on the dependence structure of the chain
are required. When specialized to shift processes, the conditions are implied
by simple integral tests involving g.

1. Introduction. Let X, X;, X5, ...denote an ergodic stationary Markov
chain with values in a measurable space (2", #), transition function @, and
stationary initial distribution 7. Further, let L2(7) denote the space of (equiv-
alence classes of) square integrable functions g: 2° — R for which || g|? :=
[, &2 dm < oo, and let L§() denote the setof g € L?(w)forwhich [,. gdm = 0.
Given g € Li(w), let

(1) S, =8,(8)=8(X)+---+8(X,)
and
s 1
S* = ﬁsn

for n > 1. The problem is to find conditions under which S} is asymptoti-
cally normal. There are several approaches to this problem. If the chain has a
recurrence point, then the problem may be reduced to the independent case,
as in Meyn and Tweedie [(1993), pages 418-421]. If the chain exhibits suit-
able strong mixing, then blocking arguments may be useful, as in Dehling,
Denker and Phillip (1986) or Peligrad (1986), for example. If there is a solu-
tion to Poisson’s equation, ~ = g + Qh, then the problem may be reduced to
the martingale case, as in Gordin and Lifsic (1978) and Bhattacharrya and
Lee (1988). Here we explore some extensions of the latter approach, along the
lines of Kipnis and Varadhan (1986), Toth (1986) and Woodroofe (1992), to
cases where a solution to Poisson’s equation is not required.

The condition imposed here for normality is a growth condition on the con-
ditional mean E(S,, | X; = x). To describe it, let @ denote both the conditional
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714 M. MAXWELL AND M. WOODROOFE
distribution of X, given X, and the operator defined by
Qh(x) = [ h(y)Q(x;dy)
Ps
for a.e. x € 2" and all 2 € L?(7). Then @ is a contraction. Let
m—1
=Y Qn
k=0
for h € L%(w) and m > 1. Then each V,, is a bounded linear operator. Observe

that V,,g(x) = E[S,,(g)| X; = x] for a.e. x(7). The condition required here
for asymptotic normality is that

(2) > nT|V, gl < oo,

n=1
where | - | denotes the norm in L?(7). A main result is that if (2) holds, then
(3) o? = d*(g) = lim E(S??)

exists and is finite, and
(4) S* = Normal[0, %]

as n — oo, where = denotes convergence is distribution. In fact, (4) holds
conditionally given X, as described in Corollary 1 below. For a comparison
with Gordin and Lifsic’s (1978) result, observe that if there is a solution to
Poisson’s equation 2 = g + Qh, where h € L?(w), then V,g = h — Q"h
and, therefore, |V, g|| = O(1). Clearly, |V,g| = O(V/n), if (3) holds, since
|V,gl? = E[E(S, | X1)?] < E(S?) for all n > 1. In Corollary 1, it is also
shown that (3) and the conditional version of (4) imply |V,g|| = o(s/r). In
this rough sense, (2) is within a logarithmic term of being necessary.

Relations (3) and (4) are established in Section 2, and a functional central
limit theorem is established in Section 3 under the stronger conditions that g €
LP(7) for some p > 2 and ||V, g|| = O(n*) for some a < 1/2. In Section 4, the
results are specialized to shift processes, and it is shown that the condition (2)
is implied by simple integral tests.

2. Asymptotic normality. For ¢ > 0, let &, be the solution to the equa-
tion (14+¢)h = Qh+ g,

[} - B [} Vng
®) § —i—s)k —82(1+8>n+r

Let 7; be the joint distribution of X ; and X, sothat 7 {dx, dx;} = Q(xo; dx1) X
m{dx,}; denote the norm in L2(7r;) by || - ||;; and let

H ,(xg, x1) = h,(x1) — Qh,(x0)
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for xo, x; € 2". Then each H, is in L?(m,); the norm of H, is | H,|? = ||h,|? -
|Qh,|?; and [, H (x0, x1)Q(xo;dx;) = 0 for a.e. xo(). With this notation,
(6) S.(8) = M,(¢) + &S, (h,) + R,(e),
where

M,(e)=H. (X, X1)+ -+ H(X, 1, X,)
and
R,(g) = Qh(Xo) — Qh(X,).

For each fixed &, M, (&) is a martingale; M, (g)/+/n is asymptotically normal
with mean 0 and variance | H,|?; and R,(¢) = 0,(1).

Let 8, = 27* for £ > 0.

LEMMA 1. If (2) holds, then /e|h, — 0 as ¢ — 0 and Y32 ,/8; x
sups, o5, , ||l < oo. Further, if |V,gl = O(n) for some a > 0, then
Al = O(e™®) as e — 0.

PrOOF. Clearly, |h,| <26, 7 1(1+6;) " V,g| for 6, <& < 8;_;. So,

00 0o 0o 3/2

— 0
Z\/Ska sup k[l <23 [Z#}Ilmgll-
k=1

RSE=0p_1 n=1[ k=1 (148"

The inner sum here is O(n=?/2) by comparison with fol JVx(1+ x) " dx, and
the first two assertions follow easily. The third assertion follows similarly
by writing |A,|| < Y o2 1(1+ &) |V, g| and comparing the latter sum to
[Zx*(1+ &) dx. O

LEMMA 2. For 0 < ¢,8 < oo, |H, — Hy|? < (e + 8[| h 1% + || 2s]12]-
PROOF. USing (Hg? HB)I = (haa hB) - <th’ Qh5> and th = (1+8)ha_g’
(Hg, Hs)1 = (he, hg) —[(1+ &)(1+ 8)(h,, hs) — (1 + £)(h,, &)

—(1+8)(hs, &) +lg]*]
— (e + 8+ 8)(h,, hs) +[(1+ &)(he, ) + (1 +8)(hs, 8) — | 8I°]

and
IH, — H;l} = — (2e + )| h.|1* + 2(e + 8 + £8)(h,, hs) — (28 + 8%)| s
< 2(e + )| Al hsll — (el ]| — BllRs])
< (e + O ]* + 1125171,

as asserted. O

PROPOSITION 1. If (2) holds, then H = lim,, H, exists in L?().
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PROOF. Let 8, = 27*%, as above. Then |H;, — H;, |7 < 38,/hs,|* +
28;,_1|lhs, ||? for all £ > 1, by Lemma 2. So,

o0 o0 .
Y IHs, —H;, [1<4)> \/5k||h8k|| < 00,
h=1 k=0

by Lemma 1 (using va +b < /a + +/b for nonnegative a and b). It follows
that H :=lim, ., H;, exists in L*(m). If 0 < ¢ < 1, then there is a unique

k = k(&) for which §, < ¢ < §,_;. With this choice of &, |H, — Hak”% <
78, sups,<.<5, || — 0 as & > 0, so that lim,, H, = H. O

THEOREM 1. If (2) holds, then

(7 S,=M,+R,,
where M., M,,... and Ry, Ry,... have strictly stationary increments,
My, M,,...,is a square integrable martingale, and E(R%) = o(n) as n — oc.

ProoF. Let M, = H(X,, X;)+ ---+ H(X, ;,X,) for n > 1. Then
lim, o M,(¢) =M, in L?(P) for each fixed n in (6), since E{[M,(s)—M,]*} =
n|H, — H|? — 0 by Proposition 1, and lim,, £S,(k,) = 0 in L%(P) by
Lemma 1. So, R, := lim, |, R,(s) exists in L(P) for each fixed n, and (7)
holds. It is clear that M, M,,... and R, Ry,... have strictly stationary
increments and that M, M,,..., is a square integrable martingale. So, it
remains to show that E(R2) = o(n) as n — oo. For each n > 1, let &,

be the unique integer % for which 2*~! < n < 2% and let &, = 27%1. Then
R,=M,(e,) — M, +¢&,S,(h, )+ R,(e,) and, therefore,
®) E(R}) < AE{[M,(e,) — M, 1’} + 4&, E[S,(h,,)*] + 4E[R,(¢,)?]
8 n
<4n|H, — H|?+ 4|k, |*+ 8|, [I*.

The first term on the right side of (8) is o(n) by Proposition 1, and the second
two are o(n) by Lemma 1. O

Asymptotic normality is a simple consequence of the theorem. Denote con-
ditional probability given X, = x by P* and let
F,(x;2) = P{S, <z}
for z e N, x € 2 and n > 1. Let &, denote the normal distribution with
mean 0 and variance o2, and let A denote the Levy metric for distribution
functions; that is, A(F,G) = inf{e > 0: G(x —¢) — e < F(x) < G(x + &) +
¢ for all x}.

COROLLARY 1. If (2) holds, then (3) and (4) hold with o = |H|? and
9) lim | A[D,, F,(x;-)] m{dx} =0.
n—-ooJg*

Conversely, if (3) and (9) hold, then |V ,g| = o(\/n).
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PROOF. Suppose first that (2) holds. Then (3) holds with o2 = |H|?,
because E(M?2) = n|H|? for all n, and E(R?) = o(n) as n — oo. For
the normality, it suffices to establish (9). Observe first that M, M,,... is
a martingale with respect to P* for a.e. x (), by the Markov property. Let
G, (x;2) = P*{M} <z}forze M, x € 2, and n > 1. By the Ergodic theorem,

.1
lim = 3" H(X), 4, X;)" = | H|?
k=1

n—oo N
w.p.1 (P) and, therefore, w.p.1 (P*) for a.e. x (). It then follows from the
Martingale central limit theorem that G,(x;:) = ®, as n — oo for a.e.

x (7). See, for example, Durrett and Resnick (1978) or Hall and Heyde [(1981),
Theorem 3.2]. Relation (9) then follows by integrating the inequality

n

e

A[®,, F(x;)] < A, G, ()] + & + Px{

with respect to = and then letting n — oo and & — 0.
For the converse, let 02 = E[S*?] and let o2(x) denote the conditional
variance of S} given X, = x [which is well defined for a.e. x (7)]. Then

1
o? = [ oXx)m{dx}+|QV,el?
€ n

for all n > 1. It suffices to show that |V, g||//7}, — 0 as k — oo for every
sequence n; that increases sufficiently fast. If n; is a subsequence for which
A[®,, F,, (x;-)] = 0 for a.e. x (7) as k — oo, then liminf,_,, o7 (x) > o?
for a.e. x (7) by Fatou’s lemma and, therefore,

1
limsup -~ | QV,, g|* < lim o ~liminf [ o}, (x)m{dx} < o® —0* =0,

by another application of Fatou’s lemma. The corollary follows since 0 <
IV.gl - 1eV,&l < 2| gl. ©

If the process is mixing, then it is possible to relate (2) to conditions on
1Q* g, &> 1.

COROLLARY 2. Relations (3) and (4) hold if either

> 1

(10) > —=1Q"g| <o
=1 VEk

or

(1D > log" (k) Q"] < oo

k=1

for some 6 > 0.
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Both (10) and (11) imply (2). The easy proof is omitted. The condition (11)
cannot be relaxed very much at this level of generality. An example in which
(11) holds with 8 = 0, but ¢2 = oo in (3) may be constructed along the lines of
Example 3 of Woodroofe (1992) by letting a,, r > 1, be any square summable
sequence and b, = 1/{klog(1 + k)loglog(2 + &)} for £ > 1, in the notation of
that example.

3. An invariance principle. Let
1

ﬁs [t

and B,(1) = B,(1-) for n > 1, where [x] denotes the least integer that is

greater than x. In Theorem 2 below, it is shown that B, converges in dis-

tribution to a Brownian motion in the space D[0, 1], under slightly stronger

conditions. Here D[0, 1] denotes the space of right continuous functions with

left limits, as described by Billingsley [(1968), Chapter 3].
The proof uses the following simple maximal inequality.

(12) B,(t) = 0<t<l,

ProPOSITION 2. If S,, k > 1, is any process with strictly stationary incre-
ments for which E(S%) <Cnforalln=1,2,..., then
26kcn1+2*k
(13) P{r?g|sj| > )\] R
foralln>1,all A >0 and all k> 0.

PrROOF. It is clear that (13) holds for 2 = 0. So, suppose inductively that it

holds for a given k > 1. Let m = [/n]. Then
26k Cm2+2’k

A2 ’
where the second inequality follows by applying (13) twice, once to S;, & < m,
and once to S,,;,, £ < m (which satisfies the basic conditions with C replaced
by Cm). Since m//n < 2, it then follows that
96k (142741

22

P{%ﬁskpz)\} < P{I}?<a”)l(|smk|>/\}+mP{II£l<ar’)l(|Sk|>)\}§2

P{ max |S,| > 2)\} < o

k<n

and the proposition then follows by induction. O
The proposition is used in the following form.

COROLLARY 3. For any B > 1 there is a constant I, depending only on S,
for which

I'Cnf
22

Plaisi =)

forall A > 0and all n > 1.
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Now let S;, = S;(g), £ > 1, as in (1); define B, by (12) and let F,(x;-)
denote the conditional distribution of B, given X, = x, a probability measure
on the Borel sets of D[0, 1], for each x € 2". Further, let B be a standard
Brownian motion, let ®, denote the distribution of ¢B and let A denote the
Prokhorov metric on the space of probability measures on D[0, 1]. See, for
example, Billingsley [(1968), page 238].

THEOREM 2. If there are p > 2 and a < 1 for which [, |g|? dm < oo and
E(R2) = o(n%) as n — oo, then

(14) lim | A[®,, F,(x; )] 7{dx} = 0.

n—-oo Jg"

PRrOOF. Let M;(t) = M,;/v/n, 0 <t <1and M;(1) = M;(1-), and let
G, (x;-) denote the conditional distribution of M7 given X, = x. Then G, (x;-)
converges to ®, for a.e. x (), by Theorem 2.5 of Durrett and Resnick (1978),
and

[ Al®,. Fu(x )] wida) < [ A[®,. Gy(x:)] w{dx)

+e+ P{Iﬁ][elfi( |R,| > sx/ﬁ]

for each £ > 0 and all n > 1. So, it suffices to show that max;_, |R;|/v/n — 0
in probability as n — co. Given a and p, as in the statement of the theorem,
there are 0 <y <1/2—1/p and let B > 1 for which ay + B(1 — y) < 1. Next,
let I = [n”] and m = [n'77]. Given & > 0, define events

A, = H max  |Mj,— M| < aﬁ},

0<k—j<l, k<n
_ Jn
B, = {1?2§|g(Xj)| = 87}

and

C, = {max |Ry| < ev.

Then A, N B, NC, < {max,_, |R;| < 3sy/n}. For if A,, B, and C, occur
and 1 < j < n, then lk < j < I(k + 1) for some £ < m and, therefore,
|R;| < |Ry|+|M; — My|+1S; — S| < 3ey/n. Clearly, P(A},) — 0 as n — oo,
by the functional martingale central limit theorem and

P(B,) < nP|le(x)) > o] [ gm0

l
<n|l—
- ‘sﬁ
as n — oo, by the choice of y. By assumption, there is a constant ¢ for which
E(R%) <¢j* for all j =1,2,.... So, the sequence Ry,, k > 1, satisfies the
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conditions of Proposition 2 with C = c¢l®. It follows that there is a constant I
for which

T [*mP
P(C}) = P[Ifgffmm > Ex/ﬁ} = c_l -

-0
& n

as n — oo, by the choice of 8. Thus, P{max;_, |R;| > 3ey/n} < P(A}) +
P(B,))+ P(C,) > 0asn— oco. O

COROLLARY 4. If g € L?(w) for some p > 2 and |V, g| = O(n®) for some
a < 1/2, then (14) holds.

PROOF. It suffices to show that E(R2) = O(n?*), and this follows easily
from (8). For ||A, | = O(n®) by Lemma 1 and the definition of ¢,, and there is
a constant C for which

00 00
(1/2)~a a—
|H,, ~Hly< Y |Hy ~Hy |i<C Y 827 = 0(ne12),
J=k,+1 Jj=k,+1

using Lemma 2. O
The following corollary is obvious.

COROLLARY 5. If g € L?(7) for some p > 2 and either

(15) Y ETV2QFg| < 00
k=1

or

(16) Y EQ%g|? < oo,
k=1

for some & > 0, then (14) holds.

4. Shift processes. In this section, Theorems 1 and 2 are specialized
to one-sided shift processes. These processes do not have recurrence points
and are not strongly mixing. For such processes, it is possible to formulate
an integral condition on g which is sufficient for asymptotic normality. The
procedure is simplest for Bernoulli shifts.

Bernoulli shifts. Let ¢, k = 0,41, 42, ... be i.i.d. random variables that
take the values 0 and 1 with probability 1/2 each and let

oo

Xn = 2(1/2)k+18n7k
k=1
forn =0,1,2,.... Then X,, n > 0, is an ergodic stationary Markov chain

taking values in I = [0, 1]. The transition function is defined by Q(x;{x/2}) =
1/2 = Q(x;{(1 + x)/2}) for x € [0, 1] and the stationary initial distribution
is the restriction, A say, of Lebesgue measure to I. In this case, L%()\) is a
familiar space, and it is easy to relate the conditions in Theorems 1 and 2 to
regularity properties of g.
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PROPOSITION 3. For the Bernoulli shift process, if g € Lg()\) and
1. 1 1

17 -~ | 1+5[1 ( )]d d

an [ [ 1eG) - g = log"*? | log (= ) | dxdy < o0
for some 6 > 0, then (11) holds, and if

1.1 1 1
18 -~ 2 log® [ } dxd
as) Jy 8@ = 8P =108 | o= [dwdy < o0

for some 8 > 0, then (16) holds.

E

PROOF. If g € L2()), then

Qrg(x)=2"" ) g<2k )

zeDy,

w5 (o) oo

where D), = {j27%: j =0,...,2% — 1} and the second equality follows from
Jy @*g(y)dy = 0. Thus,

et =2 5 [ [ o5 +e)~a(Z+2)] avas

zeD,,
< 9k _ 9
<2 [ [ le@)—gPdvdy
and
§10g1+5(k)”ngl|2 < /1 /1 J(lx— y|)[g(x)_ g(y)]z dx dy
k=1 —Jo Jo ,

where

J(z)= Y 2*log't?(k) < = log'*™® [h)g(lﬂ

k:27k>2

for 0 < z < 1 for some constant C. The first assertion of the proposition follows
easily, and the second may be established similarly.
The condition (18) is not very restrictive. For example, if

1 1
g(x):—sin(—), 0<x<1,
x® x

where 0 < a < 1/2, then (18) holds. This may be verified by making the change
of variables x = 1/x’ and y = 1/y’ in (18) and dividing the resulting integral
into regions where |x'—y'| < 1 and |x'—y’| > 1. The details are straightforward
and have been omitted. That [S, — E(S,,| X()]/+/7 is asymptotically normal for
this example was shown by Woodroofe (1992) using Fourier based techniques.

O
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Lebesgue shifts. Now let U, £ =0,+1,42, ... be i.i.d. random variables
that are uniformly distributed over I = [0, 1] and let

an("'Unf%Unfl:Un)’ n>0.

Then X,, n > 0, is a stationary Markov process taking values in 2" = I¥,

where M denotes the nonpositive integers. The stationary initial distribution

7 here is the countable product of copies of Lebesgue measure. Processes of

the form g(X,), n=0,1,2,..., include a wide class of stationary sequences.
Define measures I‘g on 2'x2, i=0,1Dby

TO(BY = 3" logh*(k)(m x  x A){(x. 3. 2): [(x. 2). (. 2)] € B},
k=1

I''{B} = io: k(7 x m x A {(x, y, 2): [(x, 2), (¥, 2)] € B}
k=1

for Borel sets B € 2" x 2", where x and (x, z) denote the sequences x =
(..o u_g,u_q,up)and (x,2)=(...,u_1,ug, 21, ..., 2;) and A* denotes Lebesgue
measure on I*.

PROPOSITION 4. If g € L¥(7) and

(19) || le(x) - g(»PTi{dxdy} < oo,
I

for some & > 0, then (11) holds; and if

(20) || le(x) - g(»)PTi{dxdy} < oo,

for some & > 0, then (16) holds.
PrOOF. Clearly,
Q*g(x) = [ [ [8(x.2)— gy, 2)] N{dz} m{dy}
2 It
for a.e. x € I™ and, therefore,
1Q%gl2 < [ [ [ le(x.2) - gy, 2)F A**{dzym{dx}m{dy}
2 Ja ik

and all £ > 1. The first assertion then follows from multiplying ||Q*g|?> by
10g1+5(k) and summing over £ =1, 2, ..., and the second may be established
similarly. O

To illustrate the use of (19) and (20), observe that any g < Lg(ﬂ') may be
written in the form

2@ =Y gu(u_pn .. o).
k=0
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wherex = (..., u_y, u_y, up), gy: N — NRaremeasurable, [, g4(u_p, ..., ug)x
du_, = 0 for ae. (u_jpi1,-..,Ug), Zf;lfg% dMt1 < o0, and A* denotes
k-dimensional Lebesgue measure.

COROLLARY 6. Relation (11) holds if

S klog'*? (k) / g2dA ! < 0o
k=1

for some & > 0, and (16) holds if for some 6 > 0,

3 kHS/g% AN < o,
k=1

PROOF. If y=(...,w_1,w,) and z € RN, then

]

g(x: Z) - g(ya Z) = Z[gj(u—j+ka -5 Ups Z) - gj(w—j+k7 <o Wo, Z)]
Jj=k

and, therefore,

[le(x) — gPrHdxdy} <43 Y [ g2dait,
k=1 j=k

The second assertion of the corollary now follows from routine manipulations,
and the first may be established similarly. O

Acknowledgments. Thanks to Persi Diaconis, Bob Keener and Walter
Phillip for helpful conversations. Theorem 1 is adapted from Maxwell (1997).
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