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A ZERO-ONE LAW FOR PLANAR RANDOM WALKS
IN RANDOM ENVIRONMENT

By Martin P. W. Zerner1 and Franz Merkl

Technion and Eurandom

We solve the problem posed by S. A. Kalikow whether the event that
the x-coordinate of a random walk in a two-dimensional random environ-
ment approaches ∞ has necessarily probability either zero or one. The
answer is yes if we assume the environment to be i.i.d. and in general no
if we allow the environment to be just stationary and ergodic.

0. Introduction and results. The main purpose of this work is the de-
rivation of a zero-one law for random walks �Xn�n in i.i.d. random environ-
ments on �2. We show that for any fixed direction � ∈ �2\�0� the event that
the inner product Xn� tends to +∞ as n → ∞ has probability either 0 or 1,
thus solving Problem 2 out of [2].

Let us first present the precise model. We assign to the lattice sites z ∈ �d

�d ≥ 1� identically distributed 2d-dimensional vectors �ω�z� z + e���e�=1�e∈�d
with a common distribution µ and with strictly positive components which
add up to one. That is, we assume that µ is supported on the set �+ of 2d-
vectors �p�e���e�=1�e∈�d with p�e� > 0 and

∑
e p�e� = 1. The random variables

ω�z� z + e� can then be realized as the canonical projections on the product
space 
 
= � �d

+ endowed with the canonical product σ-algebra and a suitable
probability measure � with marginals µ. We want to stress that unlike [2]
and [4] we do not assume the existence of a so-called ellipticity constant κ > 0
such that �-a.s. ω�z� z + e� ≥ κ for all z ∈ �d� �e� = 1. We only do not allow
ω�z� z+ e� to be zero.

Given such an environment ω, the values ω�z� z + e� serve as transition
probabilities for the Markov chain �Xn�n≥0, called random walk in random
environment (RWRE). This walk moves on �d and is for fixed starting point
x ∈ �d defined on the sample space ��d�� endowed with the so-called quenched
measure Px�ω which satisfies

Px�ω�X0 = x� = 1

and

Px�ω�Xn+1 =Xn + e � X0�X1� � � � �Xn� = ω�Xn�Xn + e�� Px�ω-a.s.

for all e ∈ �d with �e� = 1 and all n ≥ 0. The so-called annealed measures
Px, x ∈ �d� are then defined as the semi-direct products Px 
= � × Px�ω
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on 
 × ��d��. The corresponding expectations are denoted by Ex�ω and Ex,
respectively.

We are interested in the event

A� 
=
{

lim
n→∞Xn� = ∞

}
�� ∈ �d\�0��

that the walker tends in a rough sense into direction �.
Suppose that � is the product measure � 
= ⊗�dµ, which means that the

vectors of transition probabilities �ω�z� z+e���e�=1�e∈�d are i.i.d. under �. Under
the further assumption of the existence of some ellipticity constant κ > 0 as
described above, Kalikow ([2] Theorem 3) has shown that the event that Xn�
remains of constant sign for large n has probability either 0 or 1. As shown
in [4], Lemma 1.1, this implies that the zero-one law

P0�A� ∪A−�� ∈ �0�1�(1)

holds. Kalikow’s question (see [2], Problem 2) was whether P0�Ae1� ∈ �0�1� if
d = 2 and � is a product measure. Here ei �i = 1� � � � � d� are the canonical unit
vectors in �d. This question is answered positively without the assumption of
ellipticity by the following result, which holds for general directions �.

Theorem 1. If d = 2 and if �ω�x� x + e���e�=1� x ∈ �2� are i.i.d. under �,

then for any � ∈ �2\�0�,
P0�A�� ∈ �0�1��(2)

The general problem, whether (2) holds in arbitrary dimensions d ≥ 2,
posed, for example, in [4], page 1855, remains unsolved in this paper. The
assumption of independence for the environment is in a sense essential as is
shown by the following result.

Proposition 2. For d = 2, there is a probability measure � on 
 which is
stationary and ergodic with respect to shifts in �2 such that

P0

[
lim
n→∞

Xn
n
= e1 + e2

2

]
= 1

2
= P0

[
lim
n→∞

Xn
n
= −e1 + e2

2

]
(3)

and in particular P0�Ae1� = 1/2�

A different example of a time-shift invariant event with non-trivial proba-
bility in random environment was found by Burton and Madras; see [1], pages
42 and 43.

Let us describe how the present article is organized. Section 1 deals with
the general d-dimensional case �d ≥ 1�. First we extend (1) to the non-elliptic
case, see Proposition 3. After some basic lemma we describe the main idea
of the proof of Theorem 1. The first part of this idea is essentially a coupling
argument, which we use in Section 2 in the case of two dimensions to prove
Theorem 1. In the final section we construct some � satisfying Proposition 2.



1718 M. P. W. ZERNER AND F. MERKL

Throughout the paper we denote by c1� c2� � � � strictly positive constants
which may depend only the dimension d, on � and on the (fixed) direction �.
If a constant is to depend on some other quantity, this will be made explicit.

1. Preliminaries for general dimension. In this section we allow d ≥
1. Let us start with some definitions. We denote by θn �n ≥ 0� the canonical
shift on ��d�� by n time steps and by �n �n ≥ 0� the canonical filtration
of X�, that is, �n 
= σ�X0� � � � �Xn�. For fixed � ∈ �d\�0� we consider the
��n�-stopping times

Tu 
= inf�n ≥ 0 
 Xn� ≥ u�� T̃u 
= inf�n ≥ 0 
 Xn� ≤ u��
D 
= inf�n ≥ 0 
 Xn� < X0��� D̃ 
= inf�n ≥ 0 
 Xn� > X0���

For x ∈ �d we denote by

H�x� 
= inf�n ≥ 0 
 Xn = x�
the hitting time of x. Similarly we define for sets M ⊆ �d the entrance time
H�M� 
= inf�n ≥ 0 
 Xn ∈M� of the walk into the set M.

We first generalize [4], Lemma 1.1, which assumed the existence of some
ellipticity constant, to the non-elliptic case.

Proposition 3. Assume that �ω�x� x+ e���e�=1� x ∈ �d� are i.i.d. under the

probability measure � on 
 and let � ∈ �d\�0�. Then P0�A� ∪A−�� ∈ �0�1�.

For the proof we need the following lemma which implies that it is P0-a.s.
impossible to visit a slab of finite width infinitely often without visiting both
of its neighboring half spaces.

Lemma 4. Under the assumptions of Proposition 3 for all u� v ∈ � with
u < v,

P0���n ≥ 0 
 Xn� ≥ u� = ∞�Tv = ∞� = 0�(4)

Proof. Without loss of generality we assume �e1 > 0. Therefore there is
someN ∈ � such that for all x ∈ S 
= �x 
 u ≤ x� < v� the vertex y = x+Ne1
is to the right of S in the sense that y� ≥ v. Now, if the walker visits the slab
S infinitely often then it either visits some point x ∈ S infinitely often or it
visits infinitely many points in S or it does both. Therefore the left side of (4)
is less than or equal to∑

x∈S
P0���n 
 Xn = x� = ∞� Tv = ∞�(5)

+P0���x ∈ S 
 H�x� <∞� = ∞� Tv = ∞��(6)

Fix x ∈ S. Observe that on the event ���n 
 Xn = x� = ∞� the �n-stopping
times σk� k ≥ 0� defined by

σ0 
=H�x�� σk 
= inf�n > σk−1 +N 
 Xn = x� �k ≥ 1�
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are finite. Therefore for x ∈ S,

P0���n 
 Xn = x� = ∞� Tv = ∞� ≤ Ɛ

[
inf
k≥1
P0�ω�σk < Tv�

]
�(7)

However, by the strong Markov property,

inf
k≥1
P0�ω�σk < Tv� ≤ inf

k≥1
P0�ω�σk−1 < Tv�Px�ω�N < Tv�

=
(

inf
k≥1
P0�ω�σk < Tv�

)
Px�ω�N < Tv��

(8)

using in the last step an index shift and the fact that k �→ P0�ω�σk < Tv�
decreases monotonically. Observe that due to the choice of N,

Px�ω�N < Tv� ≤ 1−Px�ω�Xi −Xi−1 = e1�i = 1� � � � �N��
= 1−ω�x� x+ e1� · · ·ω�x+ �N− 1�e1� x+Ne1��

(9)

which is strictly less than 1. Consequently, the right hand sides of (8) and (7)
vanish as well as the sum over x ∈ S in (5). Now we are going to show that
also the term in (6) is zero. To this end define for y ∈ �d−1,

My 
= �z = �x�y� ∈ �× �d−1 = �d 
 u ≤ z� < v��
The sets My� y ∈ �d−1� have cardinality at most N and partition S. Hence
the �n-stopping times defined by

τ0 
=H�S�� τk 
= inf�n > τk−1 +N 
 ∃y ∈ �d−1 
 n =H�My�� �k ≥ 1�
are finite on the event ���x ∈ S 
 H�x� < ∞� = ∞�. Note that at each finite
τk the walker visits a set My that it has never visited before. Consequently
the term in (6) is less than or equal to

inf
k≥1
P0�τk < Tv� ≤ inf

k≥1

∑
x

Ɛ�P0�ω�τk−1 < Tv�Xτk−1
= x�Px�ω�N < Tv���(10)

Notice that for x ∈My, the right hand side of (9) depends only on the values
of ω�z� ·�, where z ∈ My or z� ≥ v, whereas P0�ω�τk−1 < Tv�Xτk−1

= x�
depends only on the values of ω�z� ·� with z /∈ My and z� < v. Therefore by
independence and (9) we may estimate the right side of (10) from above by(

inf
k≥1
P0�τk−1 < Tv�

) (
1− Ɛ�ω�0� e1��N

)
�

Since Ɛ�ω�0� e1�� > 0 this shows that the terms in (10) and therefore also in
(6) vanish. ✷

Proof of Proposition 3. The proof goes along the same lines as the one
of [4], Lemma 1.1. The only difference is that we use Lemma 4 where one uses
ellipticity in the original proof. We therefore only give a sketch of the proof.
Assume that P0�A�� > 0. First observe that the proof of [4], Proposition 1.2,
(1.16), does not use ellipticity at all, and therefore

P0�D = ∞� > 0(11)
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(see also [2], page 765). Then one shows thatP0�O�� = 0, which is the analogue
to [2], Theorem 3, where O� is the event that Xn� changes its sign infinitely
often. To do this we consider M 
= supn Xn�. For fixed v > 0 the event O� ∩
�M< v� is a subset of the event considered in (4) with u = 0 and is therefore a
P0-nullset. Therefore for the proof ofP0�O�� = 0 it suffices to showP0�O∞� � = 0
with O∞� 
= O� ∩ �M = ∞�. This is done as follows: Define recursively the
��n�-stopping times Sk and Rk by setting S0 
= 0,

Rk 
= inf�n ≥ Sk 
 Xn� < 0�
and

Sk+1 
= inf�n ≥ Rk 
 Xn� > max�Xm� 
 m < n�� �k ≥ 0��
On O∞� all these stopping times are finite. Now observe that at each time Sk
the walk has entered a half space which it has never touched before. Since
the environment in this half space is independent of what the walker has
seen before, the walker has at each time Sk the chance P0�D = ∞� never to
backtrack again below its position at time Sk. Therefore by induction P0�Rk <
∞� ≤ P0�D <∞�k, which tends to 0 as k→∞, thus showing P0�O�� = 0.

Now assume that (1) fails. Then there is some v > 0 such that the event
that the walker visits the slab �x 
 −v ≤ x� ≤ v� infinitely often has positive
P0-probability. Split this slab into two slabs according to the sign of x� and
apply Lemma 4 twice with ���−v�0� and �−��−v�0� instead of ��� u� v� to
see that on this event the event O�, which is a P0-nullset, occurs P0-almost
surely. ✷

In the proof of Theorem 1, the probability

r�x�ω� 
= Px�ω�A�� �x ∈ �d�ω ∈ 
�
that a walker starting at x in the environment ω converges to infinity in direc-
tion � plays a crucial role. The limiting behavior of the process �r�Xn�ω��n≥0
is described by the following lemma.

Lemma 5. Assume the conditions of Proposition 3. Then

lim
n→∞ r�Xn�ω� = 1A�� P0-a.s.

Proof. Note that for given ω, by the Markov property, r�Xn�ω� =
P0�ω �A���n� holds P0�ω-almost surely. Hence r�·�ω� is a bounded harmonic
function in the sense that �r�Xn�ω��n≥0 is a bounded martingale under P0�ω.
Since A� ∈ �∞ 
= σ �

⋃
n∈� �n�, the classical martingale convergence theorem

implies

lim
n→∞ r�Xn�ω� = 1A� P0�ω-a.s. for all environments ω,

which immediately implies the claim. ✷
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We now try to describe intuitively the idea of the proof of Theorem 1. We
assume that (2) fails. Consider a walker �X1

n�n starting at the origin. When-
ever it enters a vertex, it observes the transition probabilities at its present
location. These probabilities are fixed by the environment it walks in. On the
other hand, the walker has no information about the environment at points
that it has not visited up to the present time. Another walker �X2

n�n starts at
some remote point y, which lies far to the right of the origin. The first walker
goes with positive probability P0�A�� to the right in the sense of X1

n� → ∞,
and the second walker goes with positive probability Py�A−�� = P0�A−�� to
the left. Suppose that the paths of the walkers (not necessarily the walkers
themselves) meet each other at some intermediate point x, which is both far
away from the origin and from y. Observe that as long as the paths of the
walkers have not crossed each other, the walkers move independently of each
other even under the annealed law due to the i.i.d. structure of the environ-
ment: no matter whether the two walks take place in the same environment
under the annealed law, or whether the two walkers evolve independently in
independent environments under the annealed law, the probabilities for their
two paths to meet at x for the first time are the same. Now consider r�x�ω�.
Since the first walker which started at the origin is going to the right and has
already covered a long distance, r�x�ω� should be close to one according to
Lemma 5. However, the same argument for the second walker suggests that
r�x�ω� should be close to zero, which is a contradiction.

Now why should such a crossing point x exist? As in the case of two sim-
ple random walks in two dimensions with opposite drifts in a homogeneous
medium we can choose y deterministically such that the paths have a high
probability to collide. Here of course we heavily use the fact that d = 2. We
remark that although large transversal fluctuations of the walker would favor
the crossing of their paths we do not need any fluctuation estimates at all.

Since the dimension enters the proof only in the last part of the argument
we summarize the first part in the following lemma, which holds in general
dimension. It gives a sufficient condition for P0�A�� ∈ �0�1��

Lemma 6. Suppose that �ω�x� x + e���e�=1� x ∈ �d� are i.i.d. under the

probability measure � on 
 and let � ∈ �d\�0�. Furthermore assume that
there are a sequence �yL�L ∈ ��d�� and a c1 > 0 such that for all L ∈ �,

yL� ≥ 3L(12)

and

c�yL�L� ≥ c1�(13)

where

c�y�L� 
= ∑
a�b∈�2

P0�XTL = a�TL ≤ D� Py
[
XT̃y�−L = b� T̃y�−L ≤ D̃

]
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Fig. 1. Sketch for Lemma 6 and the proof of Theorem 1. The paths of two walkers starting in 0
and yL, respectively, meet in the middle slab �y 
 a� ≤ y� ≤ b�� in some vertex x before leaving
this slab on the side which is opposite to the side of their respective entrance.

× ∑
π1�π2⊆�d�
π1∩π2 �=∅

Pa
[{
X0� � � � �Xmin�D�Tb��

} = π1
]

(14)

×Pb
[{
X0� � � � �Xmin�D̃�T̃a��

}
= π2

]
�

Then P0�A�� ∈ �0�1��

Here we introduce the convention that whenever a condition defining an
event usesXσ for some stopping time σ , we additionally assume in this event
that σ is finite.

Proof of Lemma 6. For x1� x2 ∈ �d and ω ∈ 
 we denote by Px1�x2�ω
the

probability measure governing the Markov chain ��X1
n�n� �X2

n�n� where �X1
n�n

and �X2
n�n move independently of each other in the same environment ω ac-

cording to Px1�ω
and Px2�ω

, respectively. Stopping times referring to the walk
�Xin�n will be marked by an upper index i �i = 1�2�. Now assume that the
statement of the Lemma is false, that is 0 < P0�A�� < 1, and consider the
annealed probability

qL 
= Ɛ
[
P0�yL�ω

[
∃x ∈ �d 
 L ≤ x� ≤ yL�−L�H1�x� <∞�H2�x� <∞

]]
�

We are going to show that c�yL�L� ≤ qL → 0 as L → ∞, which is a con-
tradiction to (13). For the proof of qL → 0 first observe that qL ≤ qL�1 + qL�2
where

qL�1 
= P0�∃x ∈ �d 
 L ≤ x��H�x� <∞� r�x�ω� ≤ 1/2�
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and

qL�2 
= PyL�∃x ∈ �d 
 x� ≤ yL�−L�H�x� <∞� r�x�ω� ≥ 1/2�
= P0�∃x ∈ �d 
 x� ≤ −L�H�x� <∞� r�x�ω� ≥ 1/2��

To reach some x with L ≤ x� when starting in the origin takes at least c2L
time steps where c2 > 0 is only depending on �. Therefore and by Proposi-
tion 3,

qL�1 ≤ P0�∃n ≥ c2L 
 r�Xn�ω� ≤ 1/2�A�� +P0�TL <∞�A−���
Obviously the second term in the above expression tends to 0 as L → ∞.
Due to Lemma 5 the first term also converges to 0, thus giving us qL�1 → 0.
Observe that due to Proposition 3 and P0�A�� > 0,

Px�ω�A−�� = 1− r�x�ω�(15)

holds for all x ∈ �d on a set of full of �-measure. Hence one gets analogously
qL�2 → 0, which implies qL→ 0.

For the proof of qL ≥ c�yL�L� first note that the event in the definition of
qL occurs, if there is a vertex x which is visited by both walks before they
leave the middle slab SL 
= �y 
 L ≤ y� ≤ yL� − L� for the first time. To
handle boundary effects for directions � which do not point into the direction
of an axis we make this slab even smaller and replace it by �y 
 a� ≤ y� ≤ b��
where a and b are the respective entrance points of the walks into SL. For
reasons which will become clear later [see the explanation after (30)], we also
impose the condition that the walkers do not backtrack below the starting
point before reaching SL. This means that qL is bigger than or equal to

Ɛ
[
P0�yL�ω

[∃a� b� x ∈ �d 
X1
T1
L
= a�T1

L ≤ D1�X2
T̃2
yL�−L

= b� T̃2
yL�−L ≤ D̃2�

H1�x� ◦ θT1
L
≤ min�D1�T1

b�� ◦ θT1
L
<∞�

H2�x� ◦ θT̃2
yL�−L

≤ min�D̃2� T̃2
a�� ◦ θT̃2

yL�−L
<∞]]

�

By the strong Markov property, this expression equals
∑
a�b∈�d

Ɛ
[
P0�ω�XTL = a�TL ≤ D�PyL�ω�XT̃yL�−L = b� T̃yL�−L ≤ D̃�

×Pa�b�ω�∃x 
 H1�x� ≤ min�D1�T1
b�� <∞�H2�x� ≤ min�D̃2� T̃2

a�� <∞�
]
�

Now observe that the three factors inside the above Ɛ-expectation depend
on disjoint regions of the environment. By the independence structure of the
environment, the above expression equals∑

a�b∈�d
P0�XTL = a�TL ≤ D� PyL�XT̃yL�−L = b� T̃yL�−L ≤ D̃�

×Ɛ�Pa�b�ω�∃x 
 H1�x� ≤ min�D1�T1
b�� <∞�

H2�x� ≤ min�D̃2� T̃2
a�� <∞���

(16)
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The last factor in (16) equals

Ɛ
[
Pa�b�ω

[{
X1

0� � � � �X
1
min�D1�T1

b��
}
∩
{
X2

0� � � � �X
2
min�D̃2�T̃2

a��

}
�= ∅

]]

= 1− ∑
π1∩π2=∅

Ɛ
[
Pa�ω

[{
X0� � � � �Xmin�D�Tb��

} = π1
]

×Pb�ω
[{
X0� � � � �Xmin�D̃�T̃a��

}
= π2

]]
�

The disjointness of the paths π1 and π2 and again the independence in the
environment imply that the above expression equals

1− ∑
π1∩π2=∅

Pa
[{
X0� � � � �Xmin�D�Tb��

} = π1
]
Pb

[{
X0� � � � �Xmin�D̃�T̃a��

}
= π2

]

= ∑
π1∩π2 �=∅

Pa
[{
X0� � � � �Xmin�D�Tb��

} = π1
]
Pb

[{
X0� � � � �Xmin�D̃�T̃a��

}
= π2

]
�

This together with (16) proves qL ≥ c�yL�L�. ✷

2. Proof of Theorem 1. We start with the following elementary lemma.

Lemma 7. Let Y1�Y2�Z1�Z2 be independent integer valued random vari-
ables on some probability space with probability measure P such that Y1 and
Y2 have the same distribution and Z1 and Z2 have the same distribution.
Then there exists some deterministic ξ ∈ � such that

P�Y1 +Z1 +Z2 ≤ ξ ≤ Z1 +Y1 +Y2� ≥ 1/256(17)

or

P�Z1 +Y1 +Y2 ≤ ξ ≤ Y1 +Z1 +Z2� ≥ 1/256�(18)

Let us informally describe how this lemma is going to be used. Consider two
walkers. The first one starts at the origin, the second one starts at some remote
point yL with e2-coordinate yLe2 = ξ. Then Y1 stands for the e2-coordinate
of the entrance point a of the first walker into the halfspace with normal
vector � and distance L from the origin. Y1 + Y2 denotes the e2-coordinate
of the entrance point a′ into the halfspace with distance L from a for the
first walker which resumes its walk at a. The corresponding quantities for the
second walker travelling into the opposite direction are denoted by ξ−Z1 and
ξ − Z1 − Z2. Although we have no information about the distribution of Yi
and Zi the above lemma guarantees that the probability that the paths of the
walkers cross each other after having entered the first halfspace is uniformly
positive.

Proof of Lemma 7. Let −∞ = a0 < a1 ≤ a2 ≤ a3 < a4 = ∞ denote
integer k/4-quantiles of Y1, k = 0�1�2�3�4; that is, P�Y1 ≤ ak� ≥ k/4, and
P�Y1 ≥ ak� ≥ 1− k/4, and ak ∈ �∪ �±∞�. Similarly, let −∞ = b0 < b1 ≤ b2 ≤
b3 < b4 = ∞ denote integer k/4-quantiles ofZ1. We set for k = 1�2�3�4:Ak 
=
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�ak−1� ak� and Bk 
= �bk−1� bk�. (We remark that some of these intervals Ak
may degenerate to one point, and that some of these intervals have one point in
common.) Let �A� denote the length of an intervalA. We choose i ∈ �2�3� such
that �Ai� = min��A2�� �A3��, and j ∈ �2�3� such that �Bj� = min��B2�� �B3��.
Then a3 − a1 = �A2� + �A3� ≥ 2�Ai� and similarly b3 − b1 = �B2� + �B3� ≥ 2�Bj�.
Summing up these two inequalities implies

�a3 − b1� + �b3 − a1� ≥ 2��Ai� + �Bj���
consequently at least one of the two inequalities

a3 − b1 ≥ �Ai� + �Bj��(19)

b3 − a1 ≥ �Ai� + �Bj��(20)

holds. We examine the first case (19): we define ξ 
= ai + bj + b1 ∈ � in this
case. Then the following estimate holds on the event E 
= �Y1 ∈ Ai�Y2 ∈
A4�Z1 ∈ Bj�Z2 ∈ B1�:

Z1 +Y1 +Y2 ≥ bj−1 + ai−1 + a3

�19�≥ ai + bj + b1 = ξ
≥ Y1 +Z1 +Z2�

(21)

The independence of Y1�Y2�Z1�Z2, the facts Y1 ∼ Y2, Z1 ∼ Z2, P�Y1 ∈
Ak� ≥ 1/4, andP�Z1 ∈ Bk� ≥ 1/4 (k = 1�2�3�4) together imply P�E� ≥ 1/256.
Hence (17) holds in the case (19). The second case [i.e., (20) holds, but not (19)]
can be treated similarly: this time we may choose ξ 
= ai + bj + a1 ∈ �; here
we obtain (18). ✷

Proof of Theorem 1. The proof is by contradiction. Suppose that the
statement (2) of Theorem 1 is false and therefore

0 < P0�A�� < 1 and 0 < P0�A−�� < 1(22)

according to Proposition 3. Without loss of generality we assume that � =
��1� �2� fulfills

��1� ≥ ��2� and �1 > 0(23)

because otherwise we rename the axes. Furthermore we may assume that �
has euclidean norm !�!2 = 1, which together with (23) implies �1 ≥ 1/

√
2.

Let L ∈ � and let Y1�Y2�Z1�Z2 be independent random variables on
some probability space with probability measure P such that Y1 and Y2 are
distributed asXTLe2 is under P0�·�TL ≤ D� and −Z1 and −Z2 are distributed
as XT̃−Le2 under P0�·�T̃−L ≤ D̃�. For this choice of Yi and Zi let ξ ∈ � be
according to Lemma 7. This means that (17) or (18) holds. We assume (17).
The other case (18) is treated analogously. Now define yL ∈ �2 by

yLe1 
=
⌈

3L+ 2− ξ�2
�1

⌉
and yLe2 
= ξ�(24)
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where #x$ is the smallest integer ≥ x. We are now going to verify (12) and
(13). Due to (24) we get

yL� = yLe1�1 + yLe2�2 ≥ 3L+ 2− ξ�2 + ξ�2 = 3L+ 2(25)

and thus (12). For the proof of (13) we exploit the assumption d = 2. Consider
a� b ∈ �2 for which

0 < P0�XTL = a�TL ≤ D� PyL
[
XT̃yL�−L

= b� T̃yL�−L ≤ D̃
]
�(26)

which shows up in the definition (14) of c�yL�L�. We introduce the following
events for π1� π2 ⊆ �2:

E�b�π1� 
=
{�X0� � � � �XTb�� = π1�Tb� ≤ D�XTb�e2 ≥ be2

}
�

Ẽ�a�π2� 
=
{
�X0� � � � �XT̃a�� = π2� T̃a� ≤ D̃�XT̃a�e2 ≥ ae2�

}

The inner sum in the definition of c�yL�L� depends on a and b; we claim that
for our choice of a and b, this inner sum is greater or equal to∑

π1�π2⊆�2

Pa�E�b�π1��Pb�Ẽ�a�π2��

= Pa�Tb� ≤ D�XTb�e2 ≥ be2�Pb
[
T̃a� ≤ D̃�XT̃a�e2 ≥ ae2

]
�

(27)

To prove this claim, we observe that for π1� π2 ⊆ �2:

Pa�E�b�π1�� ≤ Pa
[{
X0� � � � �Xmin�D�Tb��

} = π1
]
�

Pb�Ẽ�a�π2�� ≤ Pb
[{
X0� � � � �Xmin�D̃�T̃a��

}
= π2

]
�

so it remains to show that π1∩π2 �= ∅ wheneverPa�E�b�π1��Pb�Ẽ�a�π2�� > 0.
Under this assumption, π1 contains an unique point a′ with a′� ≥ b� and a′e2 ≥
be2, namely the value of XTb� on the event E�b�π1�. Similarly π2 contains an
unique point b′ with b′� ≤ a� and b′e2 ≥ ae2. With the possible exception of
a′ and b′, π1 ∪ π2 contains only points in the strip �y ∈ �2 
 a� ≤ y� ≤ b��.
Through the points of π1, there is a nearest neighbor lattice path (called a�a′)
from a to a′, namely any path �X0� � � � �XTb�� on the eventE�b�π1�. Let �a′′� a′�
denote the last step in that path. Then the line �a′′� a′� contains an (unique)
point a′′′ with a′′′� = b�. We have a′′′e2 ≥ be2. To see this, we examine three
cases:
Case 1. If a′e2 > be2, then a′e2 − be2 ≥ 1, hence a′′′e2 − be2 ≥ a′′′e2 − a′e2+

1 ≥ 0.
Case 2. If a′ = b, then a′′′ = b, hence a′′′e2 = be2.
Case 3. If a′e2 = be2, but a′ �= b, then �a′ − b�e1 ≥ 1, and the last step in

the path a�a′ must have been in the ±e2-direction: a′ −a′′ ∈ �±e2�. This case
leads to a contradiction: 0 > a′′�− b� = �a′ − b��+ �a′′ − a′�� = �a′ − b�e1�1 +
�a′′ − a′�e2�2 ≥ �1 − �2 ≥ 0.

Let a�a′′′ denote the part of the path a�a′ (viewed as a piecewise linear
path in �2) that runs inside the strip Sa�b 
= �y ∈ �2 
 a� ≤ y� ≤ b��.



A ZERO-ONE LAW FOR PLANAR RWRE 1727

Similarly, there exists a lattice path b�b′ from b to b′ with vertices π1 and a
part b�b′′′ of this path that runs in Sa�b; furthermore the end point b′′′ ∈ �2

of the path b�b′′′ should fulfill b′′′� = a� and b′′′e2 ≥ ae2. The facts �a�a′′′� ⊆
Sa�b, �b�b′′′� ⊆ Sa�b, b� = a′′′�, a′′′e2 ≥ be2, a� = b′′′�, and b′′′e2 ≥ ae2 imply
that the two paths a�a′′′ and b�b′′′ have to intersect each other in at least
one point for topological reasons (recall d = 2); consequently the paths a�a′

and b�b′ intersect each other in a lattice point; this means π1∩π2 �= ∅, which
proves the above claim (27).

Observe that due to (26) and !�!2 = 1 we have

L ≤ a� ≤ L+ 1

and

yL�−L− 1 ≤ b� ≤ yL�−L�
Therefore we can estimate b�− �a�+L� from below using (25) by

b�− �a�+L� ≥ yL�−L− 1− �2L+ 1� ≥ 0(28)

and from above by

b�− �a�+L� ≤ yL�−L− 2L

≤
(

3L+ 2− ξ�2
�1

+ 1
)
�1 + ξ�2 − 3L ≤ 3�

(29)

Now consider the event �Tb� ≤ D�XTb�e2 ≥ be2�, which appears in (27). One
possible strategy for the walker starting at a to let this event occur is to fulfill
Ta�+L ≤ D with XTa�+Le2 ≥ be2 and then to go in the next six steps after
Ta�+L into direction e1. Indeed, due to (28) we have Ta�+L ≤ Tb� and by (29)
and �1 ≥ 1/

√
2 we see that

�XTa�+L + 6e1�� ≥ a�+L+ 6�1 ≥ b�− 3+ 6/
√

2 ≥ b��
Consequently, the first factor on the right-hand side of (27) is greater or equal
to

Pa�Ta�+L ≤ D�XTa�+Le2 ≥ be2�Xi+1 −Xi = e1 �i ∈ �Ta�+L� � � � �Ta�+L + 5����
Using the strong Markov property, this can be rewritten as∑

x∈�2

Ɛ�Pa�ω�Ta�+L ≤ D�XTa�+L = x� xe2 ≥ be2�

×Px�ω�Xi+1 −Xi = e1 for i ∈ �0� � � � �5����
Observe that the two factors inside the above expectation are independent
as they depend on disjoint regions of the environment. Therefore the above
expression equals

Pa�Ta�+L ≤ D�XTa�+Le2 ≥ be2�P0�X1 = e1�6

= c3P0�TL ≤ D�XTLe2 ≥ �b− a�e2��
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Analogously we handle the second factor in (27) and thus estimate (27) from
below by

c4P0�TL ≤ D�XTLe2 ≥ �b− a�e2�P0�T̃−L ≤ D̃�XT̃−Le2 ≥ �a− b�e2��

Inserting this into the definition of c�yL�L� yields

c�yL�L� ≥
∑
a�b∈�2

P0�XTL = a � TL ≤ D�P0�XTLe2 ≥ �b− a�e2 � TL ≤ D�

×P0

[
XT̃−L = b− yL � T̃−L ≤ D̃

]

×P0

[
XT̃−Le2 ≥ �a− b�e2 � T̃−L ≤ D̃

]

×c4P0�TL ≤ D�2P0�T̃−L ≤ D̃�2�

(30)

Here it becomes clear why we required the walkers not to backtrack at their
starting point and at their entrance point into the slab: We did not allow
backtracking at the entrance point because this way we could use the strong
Markov property and the independence in the environment to decouple the
part of the path which is outside the slab from the part inside the slab under
the annealed measure. Therefore, since we want that both parts of the path
have the same distribution we did not permit backtracking at the beginning
either.

To make the spatial random variables involved in (30) one-dimensional like
Y1�Y2 and Z1�Z2, we estimate (30) from below by

∑
a2�b2∈�

P0�XTLe2 = a2 � TL ≤ D�P0�XTLe2 ≥ b2 − a2 � TL ≤ D�

×P0

[
XT̃−Le2 = b2 − yLe2 � T̃−L ≤ D̃

]
P0

[
XT̃−Le2 ≥ a2 − b2 � T̃−L ≤ D̃

]

×c4P0�D = ∞�2P0�D̃ = ∞�2�

Like in (11) it follows from (22) that both quantities P0�D = ∞� and P0�D̃ =
∞� are strictly positive. Therefore and from the definition of Y1�Y2�Z1�Z2
the last expression equals

c5
∑

a2�b2∈�
P�Y1=a2�P�Y2≥b2−a2�P�−Z1=b2−ξ�P�−Z2≥a2−b2�

=c5
∑

a2�b2∈�
P�Y1=a2�Y2≥�ξ−Z1�−Y1�−Z1=b2−ξ�−Z2≥Y1−�ξ−Z1��

=c5P�Y1+Y2+Z1≥ξ≥Y1+Z1+Z2� ≥ c5/256=
c1>0

by (17). Since c1 does not depend on L, this proves (13). Therefore by Lemma
6, P0�A�� ∈ �0�1�, which gives us the desired contradiction to Assumption
(22). ✷
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3. A stationary and ergodic counterexample. In the proof of Theorem
1 we used the observation that two different walkers in the same environment
move independently of each other under the annealed law as long as their
paths have not crossed each other. Therefore, the idea for the following proof
of Proposition 2 is to arrange for local reflections which prevent the paths from
crossing each other.

Proof of Proposition 2. In the first step we will define a stationary and
ergodic measure �′ fulfilling (3) with the semi-direct product P′0 
= �′ ×P0�ω
instead of P0 but with degenerate transition probabilities ω�x�y� which are 1
for exactly one neighbor y of x and 0 otherwise. Therefore �′ is not a probabil-
ity measure on 
 but on 
′ 
= � �2

where � is the set of 4-dimensional vectors
�p�e���e�=1 with p�e� ≥ 0 and

∑
e p�e� = 1. In a second step we will construct �

from �′ by a transformation which preserves stationarity, ergodicity and (3).
1. Let �′0 be the measure on 
′ under which the matrices
�ω�2x� ·�� ω�2x+ e1� ·�� ω�2x+ e2� ·�� ω�2x+ e1 + e2� ·�� � x ∈ �2�

are i.i.d. such that the probability of such a matrix to be of Type 1 or Type 2
(see Figure 2), respectively, is 1/2.

To the best of our knowledge, a similar construction appeared first in the
work of Arratia (see [3] and the references therein) in the context of coalescing
random walks on � and the corresponding dual process. Observe that for �′0-
almost all ω′ ∈ 
′ and all x ∈ �2, the process �X2n�e1−e2�/2�n is under P2x�ω′ a
simple symmetric random walk on � with start in x�e1−e2� whereasX2n�e1+
e2�/2 equals deterministically x�e1 + e2� + n. From this it follows that Xn/n
tends P2x�ω′ -a.s. to v 
= �e1 + e2�/2. Similarly, one sees that P2x+e1+e2�ω′ − a�s�
for all x ∈ �2, Xn/n→−v. Since �′0 is not stationary we are going to average
four shifted versions of �′0 as follows. Denote by τx �x ∈ �2� the shift on 
′

defined by τx�ω�y� ·�� 
= ω�y+ x� ·� and set

�′ 
= 1
4

3∑
i=0

�′i where �′i 
= �′0 ◦ τ−1
vi

and

v0 
= 0� v1 
= e1� v2 
= e2� v3 
= e1 + e2�

Fig. 2. The two types of transition probabilities used in the counterexample. Here an edge from
y to z marked with an arrow means that a particle which is currently located at y jumps in the
next step to z with probability one.



1730 M. P. W. ZERNER AND F. MERKL

By construction, �′ is stationary with respect to all shifts τx� x ∈ �2. We claim
that �′ is also ergodic.

To prove this, denote by � ′ and � ′
i the σ-algebras of all measurable subsets

of 
′ which are shift-invariant up to null sets under all shifts τx with respect
to �′ and �′i, respectively. For � ′ this means that for allA ∈ � ′ the symmetric
difference τx�A�4A of τx�A� and A is a �′-nullset for all x ∈ �2. Consequently,
by definition of �′, τx�A�4A is also a �′i-nullset for all A ∈ � ′ and x ∈ �2,
saying that � ′ ⊆ � ′

i for all i ∈ �0�1�2�3�.
Now fix A ∈ � ′ with �′�A� > 0. To show ergodicity of �′ we have to show

�′�A� = 1. Since �′�A� > 0 there is some i ∈ �0�1�2�3� such that �′i�A� > 0.
From A ∈ � ′

i we get

0 < �′i�A� = �′i�τvi�A�� = �′0�τ−1
vi
�τvi�A��� = �′0�A��(31)

Now observe that as a product measure �′0 is ergodic with respect to shifts of
the form τ2x� x ∈ �2, which implies that � ′

0 is trivial. Hence from (31) and
A ∈ � ′

0,

1 = �′0�A� = �′0�τ−vj�A�� = �′j�A�

for all j ∈ �0�1�2�3�, which implies �′�A� = 1. We remark, that although
ergodic, �′ is not mixing.

2. Now we are going to turn �′ into a probability measure � on 
. Observe
that for �′ almost every realization ω′ the environment forms two trees, see
Figure 3. One tree consists of the edges directed upwards or to the right and
the other tree is built up by the edges which are directed downwards or to the
left. The branches of the trees are directed random walk paths as described
above which are independent of each other until they eventually meet and
coalesce. Any point x ∈ �2 has �′-a.s. a unique successor s�x�ω′� ∈ �2 with
ω′�x� s�x�ω′�� = 1. Furthermore, for any x the subtree for which x is the root
is �′-a.s. finite. Indeed, because otherwise by stationarity the �′-probability
for a point x ∈ �2 to be the root of an infinite subtree would be positive and the
same for all points x. This would imply by ergodicity the �′-a.s. existence of two
disjoint infinite subbranches of the same tree. However, for topological reasons
these two infinite subbranches would cut the other tree into two disjoint pieces
which does �′-a.s. not occur. Therefore the height h�x�ω′� ≥ 0 of the subtree
in x, that is, the length of the longest branch in this subtree, is �′-a.s. finite
for all x ∈ �2. Now define ω ∈ 
 as a function of ω′ by

ω�x� x+ e� 
=
{

1− 3/�h2�x�ω′� + 4�� if ω′�x� x+ e� = 1�
1/�h2�x�ω′� + 4�� if ω′�x� x+ e� = 0�

where x ∈ �2� �e� = 1. Call the pushforward of �′ under this map �. Clearly,
stationarity and ergodicity are preserved under this map. Relation (3) follows
from the observation that the probability under ω that a walker currently
located at x strictly follows the path consisting of the successive successors
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Fig. 3. A realization of the counterexample shown on a 80 × 80 fragment. The thick lines are
coalescing and converging northeast, the dashed lines are coalescing and converging southwest.
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s�x�ω′�� s2�x�ω′�� � � � is
∏
n≥0

ω�sn�x�ω′�� sn+1�x�ω′�� = ∏
n≥0

(
1− 3
h2�sn�x�ω′�� + 4

)

≥ ∏
n≥0

(
1− 3
n2 + 4

)

which is strictly positive. ✷
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While preparing this manuscript we heard of an announcement by
O. Adelman of a zero-one law which might have some overlap with our
result.
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