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CONTINUUM LIMIT FOR SOME GROWTH MODELS II1

By Fraydoun Rezakhanlou

University of California, Berkeley

We continue our investigations on a class of growth models introduced
in a previous paper. Given a nonnegative function v� �d → � with v�0� = 0,
we define the space of configurations � to consist of functions h� �d → �
such that h�i�−h�j� ≤ v�i−j� for all i� j ∈ �d. We then take two sequences
of independent Poisson clocks �p±�i� t�� i ∈ �d� of rates λ±. We start with
a possibly random configuration h ∈ �. The function h increases (respec-
tively, decreases) by one unit at site i, when the clock p+�i� ·� [respectively,
p−�i� ·�] rings and the resulting configuration is still in �. Otherwise the
change in h is suppressed. In this way we have a process h�i� t� that after a
rescaling uε�x� t� = εh�� xε 
� tε � is expected to converge to a function u�x� t�
that solves a Hamilton–Jacobi equation of the form ut + H�ux� = 0. We
established this when λ− or λ+ = 0 in the previous paper, employing a
strong monotonicity property of the process h�i� t�. Such property is no
longer available when both λ+� λ− are nonzero. In this paper we initiate
a new approach to treat the problem when the dimension is 1 and the set
� can be described by local constraints on the configuration h. In higher
dimensions, we can only show that any limit point of the processes uε is a
process u that satisfies a Hamilton–Jacobi equation for a suitable (possibly
random) Hamiltonian H.

1. Introduction. Perhaps the simplest example of a stochastic growth
model is the Eden–Richardson model that was studied in a biological context.
In this model each lattice site i ∈ �d represents the center of a cubical cell
and the set A�t� denotes the union of the infected cells, where a healthy
cube outside A�t� becomes infected with a rate proportional to the number of
adjacent infected cells. Richardson shows that the set A�t� grows linearly in
t, and as ε goes to zero,

εA

(
t

ε

)
≈ �x ∈ �n � N�x� ≤ t�

for a suitable norm N�·� associated with the model. The proof of Richardson’s
theorem and related shape theorems can be found in [4].
In the previous paper [14] we investigated a class of growth models that

allows more complicated growth rules but growths can only occur in one direc-
tion, say, parallel to the last coordinate axis. More precisely, the set of infected
cells is always of the form

A = ��i� k� � h�i� ≥ k� ⊆ �n = �d+1�(1.1)
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where h� �d → � is regarded as a random height function. Our method of
proof requires a simultaneous construction for our growth model for all initial
configurations. Such a construction is possible for a family of models that
was called v-exclusion processes in [14]. To define a v-exclusion process for a
nonnegative function v� �d → � with v�0� = 0, we set

� = �v = �h� �d → � � h�i� − h�j� ≤ v�i− j� for all i� j ∈ �d��(1.2)

Let ω = �p+�i� t�� p−�i� t�� i ∈ �d� denote a sequence of independent Poisson
processes with rates λ+ and λ−. Initially we start with a possibly random
height function h ∈ �. The function h attempts to increase (respectively,
decrease) at a site i by one unit when the Poisson clock p+�i� t� [respec-
tively, p−�i� t�] rings. The increase (respectively, decrease) takes place if hi ∈ �
(respectively, hi ∈ �) where

hi�j� =
{
h�i� + 1� if i = j,
h�j�� otherwise, hi�j� =

{
h�i� − 1� if i = j,
h�j�� otherwise.(1.3)

The increase (respectively, decrease) is suppressed if hi /∈ � (respectively,
hi /∈ �). In this way, we construct a stochastic process �h�i� t�� i ∈ �d� t ≥ 0�,
and as in (1.1), we would like to derive a macroscopic equation for the limit
u = limε→0 u

ε where uε�x� t� = εh��x
ε

� t

ε
�. This is done in this article provided

that � can be expressed by some local constraints on the height function h.
Given d pairs of integers �αr�βr� with αr ≤ 0 ≤ βr, define

v�i1� � � � � id� =
d∑
r=1

pr�ir��(1.4)

where pr�k� = βrk
+ − αrk

−. [We also regard v as a function from �d to � by
simply allowing i ∈ �d in the formula (1.4).] For such a function v, one can
readily show

�v = �h �αr≤h�i+er�−h�i�≤βr for every i∈�d and r∈�1�����d���(1.6)

where er is the rth unit vector. The main result of this paper asserts that
when d = 1, the limit u�x� t� = limε→0 u

ε�x� t� exists and satisfies a Hamilton–
Jacobi equation

ut +H�ux� = 0(1.7)

with a deterministic Hamiltonian H�p� = H�p�v� λ+� λ−�.
When λ− = 0, the derivation of (1.7) was carried out in [16] for d = 1

and in [14] for general d. In this case H is always convex and its convex
conjugate L coincides with limε→0 u

ε�0�1� provided that the initial configu-
ration h�i�0� = v�i�. In [14] we may also allow a rate that is slowly varying
with space. This requires multiplying H�ux� with a continuous function λ�x�
in (1.7). Both [16] and [14] use the following important strong monotonicity
property of the process h�i� t�: if h�k� l are three v-exclusion processes with
h�i�0� = min�k�i�0�� l�i�0�� for all i, then the same is true at later times.
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The strong monotonicity is no longer true when λ−� λ+ are both nonzero. How-
ever, we still have the following weaker monotonicity: if h�i� t� and k�i� t� are
two v-exclusion processes with h�i�0� ≤ k�i�0� for all i, then the same is true
at later times.
We have already mentioned that when λ− = 0, then the convex conjugate of

H can be defined using the process h�i� t� with the initial condition h�i�0� =
v�i�. The key observation is that there is another way of determining the
Hamiltonian H that does not require any convexity. Evidently w�x� t�p� =
x ·p−tH�p� is always a solution of (1.7) with the initial condition w�x�0� p� =
x · p. This suggests looking at the process hp�i� t� with the initial condition
hp�i�0� = �i · p
. Here and below, �x
 denotes the integer part of x. We will
show in Section 4 that when d = 1,

lim
ε→0

uε�x� t�p� = lim
ε→0

εhp

([x
ε

]
�
t

ε

)
(1.8)

exists and is of the form x ·p−tH�p� for a suitable nonrandom functionH�p�.
For the existence of the limit in (1.8), we mostly follow [5]. Since this paper is
unpublished, we provide a detailed proof of some results from [5].
In Section 3, we show that the process uε can be regarded as a semigroup as

we vary the time and the initial configuration. This will be used to show that
all the limit points of uε possess some of the basic properties of a semigroup
associated with a Hamilton–Jacobi equation of the form (1.7). We then appeal
to a result of [10] to deduce that the limit points of the law of the processes
�uε� ε > 0� are concentrated on the space of Hamilton–Jacobi semigroups. The
results of Section 4 allow us to show that when d = 1, the limit points are
all concentrated on a single semigroup, namely the one associated with the
solutions of (1.7). In higher dimensions, we also show that the convex hull of
the limiting Hamiltonian is always deterministic and uniquely defined.
There is only one example for which H is known explicitly. When d = 1

and v�i� = i+, then the v-exclusion process is the celebrated simple exclusion
process and

H�p� = �λ− − λ+�p�1− p��
The case of simple exclusion was treated in [13] using a different method and
H�p� was calculated by taking the average of

��h�hi ∈ �� = �
(
h�i− 1� = h�i� < h�i+ 1�)

with respect to the probability measure νp on � that is uniquely defined by
requiring �h�i�� i ∈ �� to be independent and that the event h�i+1�−h�i� = 1
occur with probability p. Such probability measures are invariant for the
height difference process η�i� t� = h�i + 1� t� − h�i� t�. Apparently the sim-
ple exclusion process is the only nontrivial v-exclusion process for which the
invariant (equilibrium) measures are known and have a simple form.
It seems plausible that our method in this article can be applied to general

attractive growth models. For example, we may consider a growth model with
the same configuration space � that has the following growth rates: the height



1332 F. REZAKHANLOU

function h becomes hi (respectively, hi) with rate A
+
i �h� [respectively, A−

i �h�].
We assume that the rate functions A±

i �h� satisfy the following conditions:
1. A±

i �h� are local functions of the height differences �h�i� − h�j�� j ∈ �d�.
2. We have A±

i = τiA
±
0 for every i, where τi denotes the shift operator.

3. A+
i �h� = 0 [respectively, A−

i �h� = 0] if hi /∈ �� (respectively, hi /∈ ��).
4. A+

i �h� [respectively,A−
i �h�] is a nonincreasing (respectively, nondecreasing)

function of the height differences �h�i� − h�j�� j ∈ �d�.
To apply our method to this model, the main challenge is the construction

of the microscopic semigroup Sε�s� t�g� as in Section 3. As we mentioned
earlier, the v-exclusion process h can be constructed simultaneously for all
initial configurations. One should be able to use the idea behind the proof of
Lemma 3.7 below to make sense of such simultaneous construction for general
attractive growth models. We do not pursue the issue further in this paper and
leave it for a future investigation.
Another possible generalization is a Ginzburg–Landau type process φ� �d×

�0�∞� → � that satisfies a system of stochastic differential equations of the
form

dφ�i� t� = Ai�φ�dt+ dBi�

where the functions Ai enjoy the same properties as the growth rates A
+
i

of the previous paragraph, and �Bi� i ∈ �d� is a sequence of independent
identically distributed Brownian motions. For this model, the construction of
the microscopic semigroup is straightforward and can be carried out as in
Section 3. In the case of v-exclusion processes, we have the equicontinuity
of the macroscopic height function in space variable for free because of our
choice of configuration space �. This is no longer the case for the φ process.
However, we expect to have some type of equicontinuity of the macroscopic
height function associated with φ process if we assume that the function A0 is
Lipschitz continuous. One should be able to prove this by standard arguments.
The organization of the paper is as follows. In the next section the main

results are stated. In Section 3, the microscopic semigroups associated with
the process uε are studied. In Section 4, the convergence of uε is shown when
the initial configuration is �i · p
 and d = 1. The continuum limit for the
v-exclusion is carried out in Section 5.

2. Main results. Given a function v of the form (1.4) and two nonnegative
numbers λ+� λ−, we define a Markov process h�i� t� with the infinitesimal
generator � = � + + � − where

� +F�k� = ∑
i∈�d

λ+��ki ∈ ���F�ki� −F�k���

� −F�k� = ∑
i∈�d

λ−��ki ∈ ���F�ki� −F�k���
(2.1)

where ki� ki are defined as in (1.3), � was defined by (1.2), and F� � → �
is any cylindrical function [F�k� depends on finitely many coordinates k�j�].
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We also define
�� = �g� �d → � � g�x� − g�y� ≤ v�x− y� for all x�y ∈ �d�

= {
g� �d → � � αrθ ≤ g�x+ θer� − g�x� ≤ βrθ for all x ∈ �d�

θ ≥ 0 and r ∈ �1� � � � � d�}�
(2.2)

Set uε�x� t� = εh��x
ε

� t

ε
� and assume that for some g ∈ ��,

lim
ε→0

E sup
x∈B0

�uε�x�0� − g�x�� = 0(2.3)

for every bounded B0 ⊂ �d, where E denotes the expectation.

Theorem 2.1. Suppose d = 1. There exists a continuous function H� �α1�
β1
 → � such that for every bounded set B ⊂ � × �0�∞�,

lim
ε→0

E sup
�x� t�∈B

�uε�x� t� − u�x� t�� = 0�(2.4)

where u is the unique viscosity solution of

ut +H�ux� = 0� u�x�0� = g�x�(2.5)

with u�·� t� ∈ �� for every t.

As we mentioned in the Introduction, we can only prove a weaker version
of the above theorem in higher dimensions. To this end, let us display the
dependence of the height profile on its initial data and write Sε�0� t�g��x� for
uε�x� t� when the initial height h�i�0� is given by �ε−1g�εi�
. The law of the
random process Sε is a probability measure on the space of functions of the
form S�0� t�g��x�, and such a law is denoted by � ε. (See Sections 3 and 5 for
more details.) Let us write Y for the set

∏d
r=1�αr�βr
. In Theorem 2.2 below,

the dimension d is arbitrary.

Theorem 2.2. Every limit point of � ε is concentrated on the space of paths
S�0� t�g� such that each path is a solution of �2�5� for some continuous function
H� Y → �.

Note that Theorem 2.2 does not rule out the possibility of a random
Hamiltonian H. However, we will show that the convex hull of H is non-
random and uniquely determined. For this see Theorem 5.1 of Section 5.
The question of the regularity ofH is a challenging problem. We only estab-

lish some rather straightforward algebraic properties of H.

Theorem 2.3. Assume λ+ ≥ λ−. With probability 1, the following state-
ments are true for the function H of Theorem 2.2:

(i) For every p ∈ Y, we have H�p� = H�p̄ − p�, where p̄ = �α1 + β1� α2 +
β2� � � � � αd + βd�.
(ii) H = 0 on the boundary of Y.
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(iii) The function H is Lipschitz.
(iv) H�p� ≤ 0 for every p ∈ Y.
(v) If αr = βr for some r, then H is identically zero.

We end this section with a construction of our v-exclusion process in terms
of the independent Poisson processes �p+�i� t�� p−�i� t�� i ∈ �d�. Let D denote
the set of step functions l±� �0�∞� → �+ such that for an increasing sequence
of numbers σ0�l±� = 0� σ1�l±�� � � �, we have l±�t� = k for t ∈ �σk�l±�� σk+1�l±��.
We set . = D�d × D�d and let Q denote the law of independent Poisson
processes with rates λ+ and λ−. Given ω = ��l+i �·�� i ∈ �d�, �l−i �·�� i ∈ �d��, we
set p±�i� t� = l±i �t� and

τjω = �l+i−j�·�� l−i−j�·�� i ∈ �d�� γsω = �γsl+i �·�� γsl−i �·�� i ∈ �d��(2.6)

where �γsl��t� = l�t + s� − l�s�. Since Poisson processes with constant rates
have stationary and independent increments, the law Q is stationary and
ergodic with respect to both τj and γ. More precisely, for a measurable set A,
Q�τjA� = Q�γsA� = Q�A�. Moreover, if τjA = A for all j or γsA = A for all
s > 0, then Q�A� = 0 or 1.
To construct our process, we first take a sequence of finite sets Zm ⊆ �d

such that

Zm ⊂ Zm+1�
∞⋃
m=1

Zm = �d�(2.7)

We then define �m1�m2
= � +

m1
+ � −

m2
where

� +
m1
F�k� = λ+ ∑

i∈Zm1

��ki ∈ ���F�ki� −F�k���

� −
m2
F�k� = λ− ∑

i∈Zm2

��ki ∈ ���F�ki� −F�k���
(2.8)

Let .0 be the set of ω for which all σr�l±i � are distinct. It is not hard to show
Q�.0� = 1. Given k ∈ � and ω ∈ .0, we define hm1�m2�i� t�k�ω� to be a Markov
process with the generator�m1�m2

and the initial data hm1�m2�i�0�k�ω� = k�i�.
It is not hard to show that hm1�m2 is nondecreasing in m1 and nonincreasing
in m2. This is a straightforward consequence of the fact that

k1� k2 ∈ �� k1�i� = k2�i�� k1 ≤ k2� �k1�i ∈ � ⇒ �k2�i ∈ ��
k1� k2 ∈ �� k1�i� = k2�i�� k1 ≤ k2� �k2�i ∈ � ⇒ �k1�i ∈ ��

(2.9)

We then set

h�i� t�k�ω� = inf
m2

sup
m1

hm1�m2�i� t�k�ω�(2.10)

for ω ∈ .0. One can readily verify that such h�i� t� is a Markov process with
the generator � .



CONTINUUM LIMIT FOR GROWTH MODELS II 1335

Observe that if k̂�i� = k�i� + 3, for some integer 3, then

h�i� t� k̂� ω� = h�i� t�k�ω� + 3(2.11)

for every ω ∈ .0. Finally, we define τjh by τj�i� = h�i−j� for all i ∈ �d. From
our construction, it is not hard to see

h�i− j� t�k�ω� = h�i� t� τjk� τjω��(2.12)

h�i� t�k�ω� = h�i� t− s�h�·� s�k�ω�� γsω��(2.13)

for every ω ∈ .0 and every s and t with 0 ≤ s ≤ t.

Remark 2.4. Observe that if k̃�i� = k�i� −∑d
r=1 αrir and ṽ�i� = ∑d

r=1�βr −
αr�i+

r , then k ∈ �v if and only if k̃ ∈ �ṽ. From this, it is not hard to deduce
that if h̃ is a ṽ-exclusion and h is a v-exclusion process with h̃�i�0� = h�i�0�−∑d
r=1 αrir initially, then h̃�i� t� = h�i� t� −∑d

r=1 αrir at later times. As a result,
we may assume αr’s are zero for r = 1� � � � � d in our theorems, with no loss of
generality.

3. The microscopic semigroup. In this section we show that any limit
point of the sequence uε constitutes a semigroup as we vary the time and the
initial data. Let g ∈ �� and define

kεg�i� = �ε−1g�εi�
�(3.1)

By (2.2),

ε−1g�εi� + αr ≤ ε−1g�εi+ εer� ≤ ε−1g�εi� + βr�(3.2)

Recall that αr�βr are two integers. From this we deduce kεg ∈ �.
Set

ε�d �= �x � x = εa for some a ∈ �d��
Given ω ∈ .0, g ∈ �, x ∈ ε�d and s� t ∈ �0�∞� with s ≤ t, we define

Sε0�s� t�g�ω��x� �= εh
(x
ε
�
t− s

ε
�kεg� γs/εω

)
�

We then define Sε as an appropriate extension of Sε0. For x ∈ �d and s ≤ t,

Sε�s� t�g�ω��x� = inf
y∈ε�d

(
Sε0�s� t�g�ω��y� + v�x− y�)�(3.3)

When t ≤ s, we set

Sε�s� t�g�ω� = g�

From h�·� t�k�ω� ∈ �, one can readily show that if x ∈ ε�d, then
Sε�s� t�g�ω��x� = Sε0�s� t�g�ω��x��
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Moreover, since v ∈ �� and�� is closed with respect to translation and infimum,
we have Sε�s� t�g�ω� ∈ ��. Note that the property (2.13) implies

Sε0�s1� t�g�ω��x� = Sε0
(
s2� t�Sε�s1� s2�g�ω��ω)�x�

whenever x ∈ ε�d, s1 ≤ s2 ≤ t. This in turn implies

Sε�s1� t�g�ω� = Sε
(
s2� t�Sε�s1� s2�g�ω��ω�)�(3.4)

The main result of this section asserts that all the limit points of the pro-
cesses �Sε� ε > 0� are concentrated on the space of semigroups which possess
some of the basic properties of a semigroup associated with a Hamilton–Jacobi
equation of the form (1.7). For our purposes, it is more convenient to regard Sε

as a random function of �s� t� with values in the space of functions F� �� → ��.
To this end, let us equip �� with the uniform topology on compact subsets,

�g1 − g2�3 �= sup
�x�≤3

�g1�x� − g2�x��� d�g1� g2� �=
∞∑
3=1
2−3�g1 − g2�3�(3.5)

Here �x� = ��x1� � � � � xd�� = �∑r x
2
r�1/2. One can readily show that there exists

a constant c0 such that for every g1� g2 ∈ ��, we have
�g1 − g2�3 ≤ �g1�0� − g2�0�� + c03�(3.6)

Moreover, d�gn�g� → 0 if and only if �gn −g�3 → 0 for every 3. It is not hard
to show that the space�� with the metric d is a Polish (separable and complete
metric) space.
Define

��3 = �g ∈ ��� �g�0�� ≤ 3��
Let �̂ denote the space of functions F� �� → �� with the following properties:
1. F�g +m� = F�g� +m for every constant m.
2. F�g1� ≤ F�g2� whenever g1 ≤ g2.
3. �F�0 �= supg∈�� �F�g��0� − g�0�� < ∞.
We also define �q to be set of F ∈ �̂ such that

4. If g1�x� = g2�x� for all �x� ≤ R and R > q, then F�g1��x� = F�g2��x� for
all x with �x� ≤ R− q.

Set �∞ = ∪∞
q=1�q. Evidently, if F ∈ �̂ and g ∈ ��0, then by (3.6),

�F�g��3 ≤ �F�g��0�� + c03 ≤ �F�0 + �g�0�� + c03 ≤ �F�0 + c03�(3.7)

Given F1�F2 ∈ �̂ , set

D�F1�F2� =
∞∑
3=1
2−3 �F1 −F2�3

1+ �F1 −F2�3
�

where

�F1 −F2�3 �= sup
g∈��

�F1�g� −F2�g��3 = sup
g∈��0

�F1�g� −F2�g��3�



CONTINUUM LIMIT FOR GROWTH MODELS II 1337

The second equality follows from F�g� = F�g − g�0�� + g�0�. From (3.7) we
deduce that �F1 − F2�3 < ∞ for every 3. Moreover, it is not hard to see that
D defines a metric on �̂ . The topological closure of �∞ in �̂ will be denoted
by � .

Lemma 3.1. Suppose F ∈ �q and g1� g2 ∈ ��. Then
�F�g1� −F�g2��3 ≤ �g1 − g2�3+q�

Proof. Put m = �g1 − g2�3+q and let g3 denote the maximum of the
functions g1 and g2 + m. We certainly have g3�x� = g2�x� + m for every x
with �x� ≤ 3+q. Hence, by the condition (4),F�g3��x� = F�g2+m��x� for every
x with �x� ≤ 3. On the other hand, the condition (2) implies F�g1� ≤ F�g3�.
Thus,

F�g1��x� ≤ F�g3��x� = F�g2 +m��x� = F�g2��x� +m

for every x with �x� ≤ 3. In the same way, one can show

F�g1��x� ≥ F�g2��x� −m�

for every xwith �x� ≤ 3. This and the previous inequality complete the proof. ✷

Define

� r
q = �F ∈ �q� �F�0 ≤ r��

Lemma 3.2. The space � is a Polish space. The space �q is closed in � . The
space � r

q is compact in � .

Proof. We first show that the space �̂ is complete. Let Fn be a Cauchy
sequence in �̂ . Then the sequence Fn�g��x� is Cauchy for every g ∈ �� and
every x. Define F�g��x� to be the limit of Fn�g��x� as n goes to infinity. It is
straightforward to check that F ∈ �̂ and that D�Fn�F� converges to zero, as
n → ∞. It is also straightforward to check that if �Fn�n ∈ �� is a subset of
�q (respectively, � r

q ), then its limit points belong to �q (respectively, � r
q ). To

complete the proof, it suffices to show that each � r
q is compact. Note that the

compactness of � r
q implies that the space �q is separable because �q = ∪∞

r=1�
r
q .

We establish the compactness by showing that each � r
q is totally bounded.

Observe that if the functions in the set ��0 are restricted to a compact subset
of �d, then we obtain an equicontinuous family of functions. Hence, for every
positive 3, there exists a finite subset A3 of ��0 such that for every g ∈ ��0,
there exists a ∈ A3 with �g− a�3 ≤ 1/3. Let 8r3 denote the set of all functions
σ = �σ1� σ2� with

σ1� A3+q → A3� σ2� A3+q → �s ∈ � � �s� ≤ r3��
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Given σ�∈ 8r3 , we define �σ to be the set of F ∈ � r
q such that

�F�a� −F�a��0� − σ1�a��3 ≤ 1/3� F�a��0� ∈
[
σ2�a�
3

�
σ2�a� + 1

3

)
�

for every a ∈ A3+q. When the set �σ is nonempty, pick some Fσ from �σ .
Let � = ��31� denote the set of all such Fσ , as we vary σ ∈ 8r3 and
3 ∈ �1�2� � � � � 31�. Evidently the set � is finite. We now claim that � is a
δ-net in � r

q for

δ = 2
31 + q

+ 3
31

+ 2−31 �

More precisely, for every F ∈ � r
q , there exists �F ∈ � such that D�F� �F� ≤ δ.

Observe that for every positive integer 31 and every function F ∈ � r
q , there

exists some σ̄ = σ31�F� ∈ 8r31 such that F ∈ �σ̄ . Moreover, for every g ∈ ��0,
there exists a ∈ A31+q with �g−a�31+q ≤ �31+q�−1. This and Lemma 3.1 imply
that �F�g� −F�a��31 ≤ �31 + q�−1. For the same reason, �Fσ̄�g� −Fσ̄�a��31 ≤
�31 + q�−1. Also,

�F�a� −Fσ̄�a��31 ≤ �F�a� −F�a��0� − σ̄1�a��31
+�Fσ̄�a� −Fσ̄�a��0� − σ̄1�a��31 + �F�a��0� −Fσ̄�a��0��

≤ 3
31
�

for every a ∈ A31+q. As a result,

sup
g∈��0

�F�g� −Fσ̄�g��3 ≤ sup
g∈��0

�F�g� −Fσ̄�g��31 ≤ 2
31 + q

+ 3
31
�

for every 3 ≤ 31. This in turn implies

D�F�Fσ̄� ≤
31∑
3=1
2−3

(
2

31 + q
+ 3
31

)
+

∞∑
3=31+1

2−3 ≤ δ�

Since δ → 0 as 31 → ∞, we have the total boundedness of � r
q . This implies

that each � r
q is compact. ✷

Set

	T = 	 ��0�T
 × �0�T
�� � �= 	
(�0�T
�	 ��0�T
�� �)

for the Skorohod space of functions S � �0�T
 × �0�T
 → � . The space 	T is a
Polish space, because � is a Polish space (see, e.g., Theorem 5.6 in Chapter 3
of [6] for a proof).
Because of the discretization, the function Sε does not belong to 	T. How-

ever, a simple modification of Sε would belong to 	T. To this end, let us define

Ŝε�s� t�g� = Sε�s� t�g − g�0�� + g�0��
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In this way, we always have

Ŝε�s� t�g +m� = Ŝε�s� t�g� +m�(3.8)

for every constant m. On the other hand, by (2.11),

Sε�s� t�g� +m− ε ≤ Sε�s� t�g +m� ≤ Sε�s� t�g� +m+ ε�

for every constant m. From this we deduce,

−ε ≤ Ŝε�s� t�g� −Sε�s� t�g� ≤ ε�(3.9)

Lemma 3.3. We have Ŝε�ω� = Ŝε�·� ·� ·�ω� ∈ 	T, for almost all ω.

To prepare for the proof of Lemma 3.3, let us define a Markov process
G�t� ⊆ �d with the infinitesimal generator

�F�G� = �λ+ + λ−� ∑
i∈�d

di�G��F�Gi� −F�G���

where Gi is the set G ∪ �i� and
di�G� = ��i+ er ∈ G or i− er ∈ G for some r = 1� � � � � d��

The process G�t� = G�t�ω� can be constructed with the aid of the Poisson
clocks ω = �p+�i� t�� p−�i� t�� i ∈ �d�; when the clock p+ or p− rings at site
i, the site i is added to the growing set G provided that at least one of the
adjacent sites is already in G. The process G�t�ω� can be compared to the
Eden–Richardson model that was introduced in Section 1. It is not hard to see
that if k1 = k2 on the set �d −G�0�, then

h�i� t�k1�ω� = h�i� t�k2�ω�(3.10)

for every i /∈ G�t�ω�.

Proof. To show Ŝε ∈ 	T, it suffices to check Ŝε�s� t� ·� ∈ � . The condi-
tion (1) is simply (3.8). The condition (2) follows from Lemma 3.4 below. The
condition (3) follows from

−εp−
(
0�
t

ε

)
≤ Sε�s� t�g − g�0���0� ≤ εp+

(
0�
t

ε

)
�

It remains to verify the condition (4). Without loss of generality, we may
assume that s = 0. Fix t and ε. Recall the process G�t�ω� that was defined
right after the statement of Lemma 3.3. Let us define the initial condition to
be the set G�0� = Bn �= �i � �εi� > n�. This set grows to the set Gε

n�θ�ω� at a
later time θ. Define A�n� 3� to be the set of ω for which

Gε
n�ε−1t�ω� ∩B′

3 != "�
where B′

3 = �i � �εi� ≤ 3�. We first claim that

lim
n→∞Q

(
A�n� 3�) = 0�(3.11)
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for every 3. The proof of this is standard and we only sketch it. For each
i� j ∈ �d, define τ�i� j� = τ�i� j�ω� to be the smallest θ for which if G�0� = �i�;
then j ∈ G�θ�ω�. It is well known that for some positive constants c1� c2 and c3,

Q�τ�i� j� < c1�i− j�� ≤ c2 exp�−c3�i− j���(3.12)

for all i and j. (See for example Chapter 1 of [4].) If ω ∈ A�n� 3�, then τ�i� j� ≤
ε−1t for some �i� j� with i on the boundary of Bn and j on the boundary of B

′
3.

From this and (3.12), one can readily derive (3.11) by standard arguments.
Let us write F�g�ω� for Ŝε�0� t�g�ω�. Define γn� �� → �� by

γn�g��x� = inf
�y�≤n

�g�y� + v�x− y���

Evidently γn�g��x� = g�x� for every x with �x� ≤ n. Set

Fn�g�ω� = F�γn�g��ω��
We have Fn ∈ �n. This is because if R ≥ n and g1�x� = g2�x� for every x with
�x� ≤ R, then γn�g1� = γn�g2�, which in turn implies that Fn�g1� = Fn�g2�.
From (3.10) we learn that if ω /∈ A�n� 3� and g1�x� = g2�x� for all x with
�x� ≤ n, then F�g1�ω��x� = F�g2�ω��x� for all x with �x� ≤ 3. As a result, if
ω /∈ A�n� 3�, then �Fn�·�ω� −F�·�ω��3 = 0 because g�x� = γn�g��x� for every
g ∈ �� and every x with �x� ≤ n. This in turn implies

D�Fn�·�ω��F�·�ω�� ≤
∞∑

31=3+1
2−31 = 2−3�

Given ω, if there exists a sequence �nj� 3j� such that nj� 3j → ∞ as j → ∞,
and ω /∈ A�nj� 3j� for every j, then we have F�·�ω� ∈ � . This is because
D�Fnj

�·�ω��F�·�ω�� → 0 as j → ∞. Using (3.10), it is not hard to show that
such a sequence exists for almost all ω. This completes the verification of the
condition (4). ✷

The proof of Lemma 3.4 when λ− = 0 can be found in [14]. The case λ− != 0
can be treated likewise.

Lemma 3.4. If k1� k2 ∈ � and k1 ≤ k2, then

h�i� t�ω�k1� ≤ h�i� t�ω�k2�
for every i ∈ �d, t ≥ 0 and ω ∈ .0.

Define the probability measures � ε on 	T by∫
Fd� ε =

∫
F�Ŝε�ω��Q�dω��

Let us also define 	T�q� ⊆ 	T to be the set of functions S�s� t�g��x� with the
following properties:

1. S�s� t�g� = g whenever t ≤ s.
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2. g�x� − λ−�t− s� ≤ S�s� t�g��x� ≤ g�x� + λ+�t− s�.
3. The function S�s� t�g��x� is Lipschitz continuous in �s� t� with a Lipschitz
constant that is uniformly bounded in x.

4. If g1�x� = g2�x� for all x with �x − x0� ≤ R and R > q�t − s�, then
S�s� t�g1��x� = S�s� t�g2��x� for all �x� s� t� with �x − x0� ≤ R − q�t − s�
and t ∈ �s�T
.

5. S�s1� s3�g� = S�s2� s3�S�s1� s2�g�� if 0 ≤ s1 ≤ s2 ≤ s3 ≤ T.

We are now ready to state the main result of this section.

Theorem 3.5. The sequence �� ε� is precompact. Moreover, there exists a
constant q0 such that any limit point of � ε is concentrated on the set 	T�q0�.

We state and prove several lemmas that will prepare us for the proof of
Theorem 3.5. Recall that the expectation with respect to the probability mea-
sure Q is denoted by E.

Lemma 3.6. There exists a constantC1�T� such that if ε� δ>0 and ε+ δ≤1,
then

sup
k∈�

E sup
�x�≤T

sup
s≤T

sup
�t1−t2 �≤δ
t1� t2∈�s�T


�uε�x� t1�k� γs/εω� − uε�x� t2�k� γs/εω��

≤ C1�T��δ1/2 + εd+ 1
2 δ−d��

When λ− = 0 and the s-supremum is outside the expectation, Lemma 3.6 is
established in [14] as Lemma 3.1. The proof of Lemma 3.6 is omitted because it
is just a matter of modifying the proof of Lemma 3.1 in [14] in an obvious way.
For our purposes, we would like to move the k-supremum inside the

expectation.

Lemma 3.7. There exist constants C2�T� and C3�T� such that for every
δ�η > 0,

lim sup
ε→0

E sup
g∈��T

sup
�x�≤T

sup
s≤T

sup
�t1−t2 �≤δ
t1� t2∈�s�T


∣∣Sε�s� t1�g�ω��x� −Sε�s� t2�g�ω��x�∣∣
≤ η+C2�T�δ1/2 exp�C3�T�η−d��

Before proving Lemma 3.7, let us state three more lemmas. The first two
lemmas concern the speed of propagation of the process h. A variant of
Lemma 3.9 below appeared in [14] as Lemma 6.4.
Fix x0 ∈ �d and let us write �ε�R� for the set of pairs �k1� k2� ∈ � such that

k1�i� = k2�i�
for all i with �εi− x0� ≤ R. We also write �ε�T�R�C� δ� for the set of ω ∈ .0
such that

uε�x� t− s�k1� γs/εω� != uε�x� t− s�k2� γs/εω�
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for some �x� s� t� k1� k2� with �x − x0� ≤ R − δ − CT, s ∈ �0�T
, t ∈ �s�T
 and
�k1� k2� ∈ �ε�R�.

Lemma 3.8. Suppose ω /∈ �ε�T�R�C� δ�, k1� k2 ∈ �, and ε�k1�i�−k2�i�� ≤ l
for all i with �εi− x0� ≤ R. Then

�uε�x� t− s�k1� γs/εω� − uε�x� t− s�k2� γs/εω�� ≤ l�

for all x with �x− x0� ≤ R− δ−CT and every �s� t� with 0 ≤ s ≤ t ≤ T.

Proof. The following claim is a straightforward consequence of
Lemma 3.3 and the definition of �ε. If ω /∈ �ε�T�R�C� δ�, k1� k3 ∈ �, and
k1�i� ≤ k3�i� for all i with �εi− x0� ≤ R, then

uε�x� t− s�k1� γs/εω� ≤ uε�x� t− s�k3� γs/εω�(3.13)

for all x with �x−x0� ≤ R− δ−CT and every �s� t� with 0 ≤ s ≤ t ≤ T. To see
this, observe that �k3�max�k1� k3�� ∈ �ε�R�, and if ω /∈ �ε�T�R�C� δ�, then

uε�x� t− s�k3� γs/εω� = uε�x� t− s�max�k1� k3�� γs/εω�(3.14)

for every x with �x− x0� ≤ R− δ−CT. On the other hand, by Lemma 3.3,

uε�x� t− s�k1� γs/εω� ≤ uε�x� t− s�max�k1� k3�� γs/εω��
From this and (3.14) we deduce (3.13).
We next apply (3.13) with k1 and k3 = k2 + �lε−1
 and use (2.11) to deduce

uε�x� t− s�k1� γs/εω� ≤ uε�x� t− s�k2� γs/εω� + l�

The proof of

uε�x� t− s�k1� γs/εω� ≥ uε�x� t− s�k2� γs/εω� − l

is similar. ✷

Lemma 3.9. There exists a constant C4 such that for every T�R� δ > 0,

lim
ε→0

Q
(
�ε�T�R�C4� δ�) = 0�

Proof. Recall the Markov process G�t� ⊆ �d that was defined right after
the statement of Lemma 3.3. Using the shape theorem (1.1), it is not hard to
show that if

G�0� = Gε�0� = �i � εi ∈ �G�0��
for some open set �G�0�, then

lim
ε→0

Q

(
εG

(
t

ε
�ω

)
⊆ �G�T� +B�0� δ� for all t ∈ �0�T


)
= 1�

for every positive δ, where

B�z� δ� = �x � �x− z� ≤ δ��
�G�T� = �x � N�x− y� ≤ T for some y ∈ �G�0���
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where N is a suitable nondegenerate norm. Hence, for some constant C4,

lim
ε→0

Q

(
εG

(
t

ε
�ω

)
⊆ �G�0� +B�0�C4T+ δ� for all t ∈ �0�T


)
= 1�(3.15)

We now choose �G�0� = �d − B�x0�R�. It is not hard to see that if k1 = k2
on the set �d −Gε�0�, then

uε�x� t�k1�ω� = uε�x� t�k2�ω�
for x /∈ εG(

t
ε
�ω). We now argue that in fact

uε�x� t− s�k1� γs/εω� = uε�x� t− s�k2� γs/εω�(3.16)

if x /∈ εG(
T
ε

�ω), s ∈ �0�T
, t ∈ �s�T
. This is because the set
�i � k1�i� != k2�i��

is contained in the set G
(
s
ε
�ω), and this set grows to at most Gε

(
T
ε

�ω) after
T−s
ε
seconds. Evidently (3.15) and (3.16) complete the proof. ✷

The next lemma gives us an upper bound on �uε�. Let h±�i� t� denote the
processes with the infinitesimal generators

� +F�k� = λ+ ∑
i∈�d

�F�ki� −F�k���

� −F�k� = λ− ∑
i∈�d

�F�ki� −F�k��

and the initial conditions h±�·�0� ≡ 0, respectively.

Lemma 3.10. For every k ∈ �, i ∈ �d and t ≥ 0,
h−�i� t� + k�i� ≤ h�i� t�k� ≤ h+�i� t� + k�i��

Moreover,

lim
ε→0

E

∣∣∣∣εh±
([x
ε

]
�
t

ε

)
∓ λ±t

∣∣∣∣
2

= 0�

The proof of Lemma 3.10 is straightforward and omitted. We are now ready
to prove Lemma 3.7.

Proof of Lemma 3.7.

Step 1. Let �3 denote the set of k ∈ � such that �k�0�� ≤ 3. We first
construct a set Gε

η�T� ⊆ �Tε−1 such that for every k ∈ �Tε−1 , there exists a
k′ ∈ Gε

η�T� with

sup
�x�≤T

∣∣∣∣εk
([x
ε

])
− εk′

([x
ε

])∣∣∣∣ ≤ 1
2
η�(3.17)
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To construct Gε
η�T�, we divide �d+1 into disjoint cubes of the form

A =
d∏
j=1

[
aj� aj + η

8ᾱ

)
×

[
ad+1� ad+1 + η

4

)

where ᾱ = ∑
r�βr−αr�. If two cubes A�A′ share the same base set

∏d
j=1

[
aj� aj

+ η
8ᾱ

)
, we say that they belong to the same column. From such a partition, we

can build a partition for the lattice �d+1 by taking sets of the form

Â = �a ∈ �d+1 � εa ∈ A��

Let Z�ε� denote the set of such Â. We also write � �ε� for the set of finite
subsets of Z�ε�. The columns of Â are defined as before. Note that the graph
of k ∈ � intersects at most two elements of each column in Z�ε�. Set

Fε
T�k� = �Â ∈ Z�ε� � �i� k�i�� ∈ Â for some i with �εi� ≤ T��

Clearly Fε
T is a transformation from � into � �ε�. Observe

Fε
T�k� = Fε

T�k′� ⇒ sup
�εi�≤T

�εk�i� − εk′�i�� ≤ 1
2η�(3.18)

Because of this, we choose Gε
η�T� to be a subset of �Tε−1 that has exactly one

element in every level set of Fε
T. More precisely, let �� �ε� = Fε

T��Tε−1� ⊆ � �ε�
and choose Gε

η�T� so that

Gε
η�T� ∩ (

Fε
T

)−1�F�

consists of one element for every F ∈ �� �ε�. Because of (3.18), the set Gε
η�T�

does satisfy the property associated with (3.17) that was described in the
beginning of the proof.

Step 2. We next show that there exists a constant k0 = k0�T� that is
independent of �ε�η�, and the cardinality of Gε

η�T� is at most exp�k0η−d�.
Since the set Gε

η�T� has the same cardinality as �� �ε�, it suffices to show that
�� �ε� has at most exp�k0η−d� elements for some constant k0. This follows from
two properties of the elements in �� �ε�. First, each column inZ�ε� can have at
most two elements intersecting the graph of k. Second, there exists a universal
constant 30 such that if the intersection of F

ε
T�k� with a column is known and

if we take an adjacent column, then there are at most 30 many choices for the
intersection of Fε

T�k� with the adjacent column. We now start with the column
above the origin. Since k ∈ �Tε−1 , the number of choices for the intersection of
the graph of k and the column above the origin is O�Tη−1�. Then by going to
an adjacent column we encounter 30 choices. In this way we can readily find
an exponential bound of the form exp�k0η−d� on the cardinality of �� �ε�.
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Final step. Let C4 be as in Lemma 3.9 and set G = Gε
η

(�1 + C4�T + 1
)
.

From Lemma 3.6 and the previous steps we deduce

E sup
k∈G

sup
�x�≤T

sup
s≤T

sup
�t1−t2 �≤δ
t1�t2∈�s�T


�uε�x� t1�k� γs/εω� − uε�x� t2�k� γs/εω��

≤ C1�T�
(
δ1/2 + εd+ 1

2 δ−d
)
exp

[
k0

(�1+C4�T
)
η−d

]
�

(3.19)

Choose x0 = 0 in the definition of �ε and set .ε = .ε�T� = .0 − �ε�T�
�1+C4�T+ 1�C4�1�. From Lemma 3.9 we know that

lim
ε→0

Q�.ε� = 1�(3.20)

Moreover, (3.19) and Lemma 3.8 imply

Esup
g∈��T

sup
�x�≤T

sup
s≤T

sup
�t1−t2 �≤δ
t1�t2∈�s�T


∣∣uε�x�t1�kεg�γs/εω�−uε�x�t2�kεg�γs/εω�∣∣��ω∈.ε�

≤η+C1�T�
(
δ1/2+εd− 1

2 δ−d
)
exp

[
k0

(�1+C4�T
)
η−d

]
�

(3.21)

This is because replacing uε�·�k� with uε�·�k′� for some k′ ∈ G results in an
error that, by Lemma 3.8, is bounded in absolute value by η

2 . On the other
hand, if we replace .ε in (3.21) with its complement �.ε�c, then we can apply
Lemma 3.10 and (3.20) to deduce that the left-hand side of (3.21) goes to zero
as ε → 0: For some constant c1,

Esup
g∈��T

sup
�x�≤T

sup
s≤T

sup
�t1−t2 �≤δ
t1�t2∈�s�T


∣∣uε�x�t1�kεg�γs/εω�−uε�x�t2�kεg�γs/εω����ω /∈.ε�

≤2Esup{�uε�x�t�kεg�γs/εω����ω /∈.ε�� g∈��T� s��x�≤T� t∈�s�T
}
≤2Esup{[�uε�0�t�kεg�γs/εω��+c1T

]
��ω /∈.ε� � g∈��T� s≤T� t∈�s�T
}

≤2E[
εh+�0�ε−1T�−εh−�0�ε−1T�+εkεg+c1T

]
��ω /∈.ε�→0�

In this and (3.21), it is not hard to replace uε with Sε, completing the proof of
lemma. ✷

We are now ready to establish Theorem 3.5.

Proof of Theorem 3.5.

Step 1. We choose

η = �4C3�T�� 1
d

(
log

1
δ

)− 1
d

(3.22)

in Lemma 3.7. As a result

lim sup
ε→0

E sup
g∈��T

sup
s≤T

sup
�x�≤T

sup
�t1−t2 �≤δ
t1� t2∈�s�T


�Sε�s� t1�g�ω��x� −Sε�s� t2�g�ω��x��

≤ �4C3�T�� 1
d

(
log

1
δ

)− 1
d

+C2�T�δ 1
4 �

(3.23)
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Let us write

T̂ = �1+C4�T+ 1�
where C4 appeared in Lemma 3.9. Let .

ε
1�T� denote the set of ω ∈ .0 such

that

uε�x� t− s�k1� γs/εω� = uε�x� t− s�k2� γs/εω�

for all �k1� k2� ∈ �ε�T̂� and all �x� s� t� with �x� ≤ T, s ∈ �0�T
, t ∈ �s�T
. From
Lemma 3.9 we know that

lim
ε→0

Q�.ε
1�T�� = 1�(3.24)

Evidently, if ε�i� ≤ T̂, then

ε�kεg1�i� − kεg2�i�� ≤ �g1 − g2�T̂ + c1ε�

for some constant c1. From this and Lemma 3.8 we deduce that for every
ω ∈ .ε

1�T�,
�Sε�s� t�g1�ω� −Sε�s� t�g2�ω��T ≤ �g1 − g2�T̂ + c1ε�(3.25)

Moreover, for every ω ∈ .0,

Sε�s� t�g�ω��0� ≤ g�0� + εp+
(
0�
t

ε

)
+ εp−

(
0�
t

ε

)
�(3.26)

Sε�s� t�g�ω��x� −Sε�s� t�g�ω��0� ≤ v�x��(3.27)

From (3.24)–(3.27) we can readily deduce,

lim sup
ε→0

E sup
0≤s≤t≤T

sup
�g1−g2�T̂≤δ

�Sε�s� t�g1�ω� −Sε�s� t�g2�ω��T ≤ δ�(3.28)

lim
ε→0

E sup
s�t≤T

sup
g∈��T

�Sε�s� t�g�ω��T < ∞�(3.29)

Moreover, (3.23) implies

limsup
ε→0

Esup
g∈��T

sup
s∈�0�T


sup
�t1−t2 �≤δ
t1�t2∈�s�T


�Sε�s�t1�g�−Sε�s�t2�g��T≤c2
(
log

1
δ

)−1/d
�(3.30)

for some constant c2 = c2�T�.

Step 2. In the previous step, we discussed the equicontinuity in the
t-variable (3.30) and in the g-variable (3.28)–(3.29). We now turn to the
equicontinuity in the s-variable. Let .ε

1�T� be as in the previous step. If
ω ∈ .ε

1�T� and 0 ≤ s1 ≤ s2 ≤ t ≤ T, then by (3.25),

�Sε(s2� t�Sε�s1� s2�g�ω��ω) −Sε�s2� t�g�ω��T
≤ �Sε�s1� s2�g�ω� − g�T̂ + c1ε�

(3.31)
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This and the semigroup property (3.4) imply that for ω ∈ .ε
1�T�,

�Sε�s1� t�g�ω� −Sε�s2� t�g�ω��T
≤ �Sε�s1� s2�g�ω� − g�T̂ + c1ε�

(3.32)

We then apply Lemma 3.7 with η as in (3.22) to conclude

lim sup
ε→0

E sup
g∈��

T̂

sup
s1−s2≤δ

s1� s2∈�0�T


sup
t∈�s2�T


�Sε�s1� t�g� −Sε�s2� t�g��T��ω ∈ .ε
1�T��

≤ c3

(
log

1
δ

)− 1
d

(3.33)

for some constant c3. As in the previous step, we can use (3.26)–(3.27) to drop
��ω ∈ .ε

1�T�� in (3.33).

Step 3. Let us write 
 for 	 ��0�T
�� �. With this abbreviation, we may
write

	T = 	 ��0�T
�
 ��
From (3.28)–(3.30), (3.33) and (3.9) we would like to deduce that the family
�� ε� ε > 0� is precompact in 	T. So far we have an approximate equiconti-
nuity of the sequence Ŝε. For the precompactness, we need to verify that for
each s, the probability that the process Ŝε�s� ·� ·� does not belong to a small
neighborhood of a compact subset of
 is small. Since we have an approximate
equicontinuity of Ŝε in the �t� g� variable, we need to show that for each �s� t�,
the probability that the process Ŝε�s� t� ·� does not belong to a small neighbor-
hood of a compact subset of � is small. Given q andR withR ≥ q, let us define
� r
R�q to be the set of F ∈ �̂ such that �F�g��0 ≤ r, and if g1�x� = g2�x� for
every x with �x� ≤ R, then F�g1��x� = F�g2��x� for every x with �x� ≤ R− q.
Lemma 3.9 and the fact that

�Ŝε�s� t�g��0� − g�0�� ≤ εp+
(
0�
T

ε

)
+ εp−

(
0�
T

ε

)
�

imply that

lim
ε→0

Q
(
Ŝε�s� t� ·� /∈ � r

R�q

)
= 0(3.34)

for every R ∈ �q�∞�, provided that q > C4 and r is sufficiently large. We now
argue that the set � r

R�q is contained in a small neighborhood of the set �
r
R if

R is large. (Recall that by Lemma 3.2, the set � r
R is compact.) As in the proof

of Lemma 3.2, define FR�g� = F�γR�g�� where
γR�g��x� = inf

�y�≤R
�g�y� + v�x− y���

As in the proof of Lemma 3.3, we can readily show that if F ∈ � r
R�q, then

FR ∈ � r
R and D�FR� F� ≤ 2−R+q+1. As a result, the set � r

R�q is contained in
the ηR-neighborhood of the compact set �

r
R for ηR = 2−R+q+1. Hence (3.34)
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implies that

lim
ε→0

Q
(
Ŝε�s� t� ·� /∈ �� r

R�η̂R) = 0�

where η̂R = 2−R+C4+2 and we are using the notation

Aη = {
F ∈ �̂ � D�F�G� ≤ η for some G ∈ A}

�

From this, (3.28)–(3.30), (3.33) and (3.9), one can readily deduce the precom-
pactness of the family �� ε � ε > 0� by standard arguments.

Step 4. In this step, we are going to use some well-known facts about the
Skorohod topology that can be found in Chapter 3 of [6]. Recall that we write

 for 	 ��0�T
�� �.
Define �1 to be the set of S ∈ 	T for which the condition (5) of the definition

	T�q� is satisfied. If we show that the set �1 is closed in 	T, then we can use
� ε��1� = 1 to deduce

� ��1� = 1�(3.35)

Suppose that the sequenceSn ∈ �1 converges toSwith respect to the Skorohod
topology of 	 ��0�T
�
 �. We would like to show that S ∈ �1. For this, we need
to establish

S�s1� s3�g� = S
(
s2� s3�S�s1� s2�g�)�(3.36)

for every �s1� s2� s3� with s1 ≤ s2 ≤ s3 and every g ∈ ��. As we vary s in
S�s� t�g�, we have a Skorohod function S�·� ∈ 	 ��0�T
�
 � that, by definition,
is continuous at all but countably many points s. Moreover, for a fixed point
s, we have a Skorohod function S�s� ·� ∈ 
 that is also continuous at all but
countably many points t. From these considerations, we deduce that it suffices
to establish (3.36) for �s1� s2� s3� ∈ A where A is defined to be the set of points
�s1� s2� s3� such that s1 ≤ s2 ≤ s3, S ∈ 	 ��0�T
�
 � is continuous at s = s1
and s = s2, S�s1� ·� ∈ 
 is continuous at t = s2 and t = s3 and S�s2� ·� ∈ 
 is
continuous at t = s3. By assumption,

Sn�s1� s3�g� = Sn
(
s2� s3�Sn�s1� s2�g�)�(3.37)

for every n. Since the convergence in Skorohod topology implies the pointwise
convergence at every continuity point of the limit S, we can readily show that
the left-hand side of (3.37) converges to the left-hand side of (3.36). For the
same reason, limn→∞ gn = S�s1� s2�g�, where gn = Sn�s1� s2�g�. Again, since
�s1� s2� s3� ∈ A, we have Fn = Sn�s2� s3� ∈ � converges to F = S�s2� s3� ∈ � .
As a result,

lim
n→∞Fn�gn� = F

(
S�s1� s2�g�)�

because

�Fn�gn� −F�gn��3 ≤ sup
g∈��

�Fn�g� −F�g��3 = �Fn −F�3 → 0�

as n → ∞. This completes the proof of (3.35).
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Define �2 to be the set of S ∈ 	T for which the condition (1) of the definition
	T�q� is satisfied. As in the previous paragraph, we can show that the set �2
is closed. This can be used to deduce

�
(
�2

) = 1�(3.38)

Fix a set of points �s1� t1� x1�� �s2� t2� x2�� � � � � �sr� tr� xr� and a positive num-
ber η. Let �3 denote the set of S ∈ 	T such that for every g ∈ �� and i,

g�xi� − �λ− + η��ti − si� ≤ S�si±� ti±�g��xi� ≤ g�xi� + �λ+ + η��ti − si��
Here by S�si±� ·� ·� we mean the right and left limits of S�·� ∈ 	 ��0�T
�
 �
at the point si, and by S�si±� ti±� ·� we mean the right and left limits of
S�si±� ·� ∈ 
 at the point ti. It is not hard to show that the set �3 is closed,
and by Lemma 3.10,

lim
ε→0

� ε
(
�3

) = 1�

This implies that for any limit point � ,

�
(
�3

) = 1�(3.39)

Fix x0 ∈ �d, R�δ > 0 and �s0� t0� ∈ �0�T
 with s0 < t0. Let � �s0� t0� x0�
R� δ� q� be the set of S ∈ 	T such that if g1�x� = g2�x� for every x with
�x − x0� ≤ R, then S�s� t�g1��x� = S�s� t�g2��x� for every x with �x − x0� ≤
R − δ − q�t0 − s0� and �s� t� with s0 ≤ s ≤ t ≤ t0. It is not hard to show that
the set � �s0� t0� x0�R� δ� q� is closed. Lemma 3.9 implies

lim
ε→0

� ε
(
� �s0� t0� x0�R� δ�C4�

) = 1�

This in turn implies that for any limit point � ,

�
(
� �s0� t0� x0�R� δ�C4�

) = 1�

We then send δ → 0 and vary �s0� t0� x0�R� in a countable dense set. From
this, (3.35), (3.38) and (3.39) we deduce that any limit point � is concentrated
on the set of S for which the conditions (1)–(2) and (4)–(5) of the definition
	T�C4� are satisfied.

Final step. It remains to show that every limit point of � ε is concentrated
on the set of �s� t�-Lipschitz functions with a Lipschitz constant that is uni-
formly bounded in x.
Define

Rε�s� t�g�ω��x� = λ+�

(
h

(
·� t− s

ε
�kεg� γs/εω

)i
∈ �

)

−λ−�

(
h

(
·� t− s

ε
�kεg� γs/εω

)
i

∈ �
)
�

Mε�s� t�g�ω��x� = Sε�s� t�g�ω��x� − g�x� −
∫ t

s
Rε�s� θ�g�ω��x�dθ�
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for �s� t� with s ≤ t and i = �x/ε
. It is well known that for any local function
f, the processes

Mt2
= f�h�t2�� − f�h�t1�� −

∫ t2

t1

� f�h�θ��dθ�

Nt2
= M2

t2
−

∫ t2

t1

�� f2 − 2f� f��h�θ��dθ

are martingales for t2 ≥ t1. By choosing f�h� = εh�i�, �t1� t2� = �s/ε� t/ε�, and
using

EM2
t2

= E
∫ t2

t1

�� f2 − 2f� f��h�θ��dθ

= E
∫ t/ε

s/ε
ε2
(
λ+��h�θ�i ∈ �� + λ−�

(
h�θ�i ∈ ��)dθ�

we see that for every x ∈ ε�d,
E�Mε�s� t�g�ω��x�2
 ≤ c1�t− s�ε�

with c1 = λ+ + λ−. We then apply Doob’s inequality to deduce

E sup
0≤s≤t≤T

�Mε�s� t�g�ω��x�2
 ≤ 4c1Tε�

for every x ∈ ε�d. From this we deduce that for some constant c2,

sup
x
sup
g∈��

E sup
0≤s≤t≤T

�Mε�s� t�g�ω��x�� ≤ c2
√
ε�(3.40)

Set Rε�s� t�g�ω� = 0 whenever s > t. For each ε, g and ω, the function
Rε�s� t�g�ω��x� is a bounded function of �s� t� x� with values in the interval
�−λ−� λ+
. Let 8 denote the set of measurable functions of �s� t� x� ∈ �0�T
 ×
�0�T
 ×�d with values in �−λ−� λ+
. We equip this set with the weak topology
(the set 8 is a compact subset of the space of signed measures equipped with
the weak topology). A sequence Rn ∈ 8 converges to R ∈ 8 if and only if

lim
n→∞

∫
�d

∫ T

0

∫ T

0
φRn dxdsdt =

∫
�d

∫ T

0

∫ T

0
φRdxdsdt

for every continuous function φ of compact support. We fix g and the map

ω &→ �Sε�s� t�g��Rε�s� t�g��
induces a probability measure �̃ ε

g on the space

	
(�0�T
�	 ��0�T
����) × 8�

Since the space 8 is compact, we may study the limit points of �̃ ε
g . Let �̃g

be a limit point and fix a continuous function φ� �d → � of compact support.
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Define

A�S�R� = sup
0≤s≤t≤T

∣∣∣∣∫ S�s� t�g��x�φ�x�dx−
∫
g�x�φ�x�dx

−
∫ t

s

∫
R�s� θ�g��x�φ�x�dxdθ

∣∣∣∣�
From (3.40) we deduce

lim
ε→0

∫
A�S�R��̃ ε

g �dS�dR� = 0�

This implies ∫
A�S�R��̃g�dS�dR� = 0�

By picking φ from a countable dense subset of Cc��d�, we deduce that the
measure �̃g is concentrated on the set of �S�R� such that

S�s� t�g��x� = g�x� +
∫ t

s
R�s� θ� g��x�dθ�

for every �s� t� with s ≤ t. Since R ∈ 8, we deduce the Lipschitzness of S in
t with the Lipschitz constant at most max�λ−� λ+�. For the Lipschitzness in
s-variable, observe that if s1 < s2 < t, then we apply (3.36) to assert that for
almost all S in the support of � ,

S�s2� t�g� −S�s1� t�g� = S�s2� t�g� −S�s2� t�S�s1� s2�g���
From this, the condition (5) of the definition 	T, and Lemma 3.1 we deduce
that for constant c3 = c3�3�,

�S�s2� t�g� −S�s1� t�g��3 ≤ �g −S�s1� s2�g��3+q0
=

∥∥∥ ∫ s2

s1

R�θ� t�g�dθ
∥∥∥
3+q0

≤ c3�s2 − s1�

almost surely with respect to the measure � . This completes the proof. ✷

For the sake of definiteness, we chose the initial height functions of the
form kεg�i� = �ε−1g�εi�
 in the definition of our microscopic semigroup Sε. In
Lemma 3.11 below, we show that the initial height function kεg can be replaced
with any height function that has the same macroscopic profile g. We only
sketch the proof of Lemma 3.11, which is a straightforward consequence of
Lemmas 3.8 and 3.9.

Lemma 3.11. Assume that for some g ∈ ��,
lim
ε→0

E sup
x∈B0

�uε�x�0� − g�x�� = 0
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for every bounded B0 ⊂ �d. Then

lim
ε→0

E sup
�x� t�∈B

�uε�x� t� −Sε�0� t�g�� = 0

for every bounded set B ⊂ � × �0�∞�.

Proof. Let us use ω0 ∈ .0 for the randomness coming from the initial
data and display this randomness in our notations by writing uε�x�0�ω0� for
the initial data. We also write uε�x� t�ω0�ω� for the resulting rescaled height
function at a later time t. Given R�η > 0, we can find a positive number
ε0 = ε0�R�η� and a set .1 = .1�R�η� ε� ⊆ .0 such that

P�.0 −.1� ≤ η(3.41)

and

�uε�x�0�ω0� − g�x�� ≤ η�(3.42)

for every x with �x� ≤ R, every ε ∈ �0� ε0� and every ω0 ∈ .1. From this and
Lemma 3.8 we deduce that

�uε�x� t�ω0�ω� −Sε0�0� t�g�ω��x�� ≤ η�(3.43)

for x with �x� ≤ R − δ − C4T, ω0 ∈ .1, t ∈ �0�T
 and ω /∈ �ε�T�R�C4� δ�.
The rest of the proof is straightforward and follows from (3.41)–(3.43) and
Lemma 3.9. ✷

4. Equilibrium measures. Throughout this section we assume d = 1,
α1 = 0 and β1 > 0. Recall that by Remark 2.4, we may assume α1 = 0 without
loss of generality.
Define kρ�i� = �iρ
 for ρ ∈ �0� β1
 and i ∈ �. We now state the main result

of this section.

Theorem 4.1. There exists a function H� �0� β1
 → � such that

lim
ε→0

sup
0≤t≤T

E
∣∣uε�0� t�ω�kρ� + tH�ρ�∣∣ = 0�(4.1)

In this section, we mostly follow [5]. Our proof of Lemma 4.2 below uses the
same ideas as in [5], but our presentation is somewhat different and is inspired
by [12]. The arguments that are used for Lemmas 4.5 and 4.6 are identical
to those that appeared in [5]. For the rest of the section after Lemma 4.7, we
use a rather different approach to complete the proof of Theorem 4.1.
Recall η�i� t� = h�i + 1� t� − h�i� t�. Note that η is also a Markov process

with the generator

� f�η� = λ+ ∑
i

b�η�i�� η�i− 1���f�ηi�i−1� − f�η��

+λ− ∑
i

b�η�i�� η�i+ 1���f�ηi�i+1� − f�η���
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where

ηi�j�3� =


η�i� − 1� if 3 = i�
η�j� + 1� if 3 = j�
η�3�� otherwise �

b�n�m� = ��n > 0�m < β1��
Evidently b is nondecreasing in n and nonincreasing in m. Moreover, if

η�i� t� = h�i+ 1� t�k1� − h�i� t�k1��
ζ�i� t� = h�i+ 1� t� k2� − h�i� t�k2��

then both processes η and ζ evolve according to � and they are coupled in
such a way that when

b�η�i� t�� η�j� t�� = b�ζ�i� t�� ζ�j� t�� = 1

with j = i+1 or i−1, then an η-particle and a ζ-particle at site i jump to site
j simultaneously. The generator of the coupled process �η� ζ� will be denoted
by �̃ . Let us define the shift operator τi by

�τiη��j� = η�i− j��
Initially we assume that the process �η�·�0�� ζ�·�0�� is distributed according

to a measure µ̃0�dη�dζ� that is translation invariant and ergodic with respect
to the shift operator τ. The distribution of �η�·� t�� ζ�·� t�� will be denoted by
µ̃t�dη�dζ�. It is well known that the probability measure µ̃ is also ergodic
(see, e.g., [8], page 38). We write �µ1t �dη�� µ2t �dζ�� for the marginals of µ̃t, and
ρ1� ρ2 for the average particle density of the marginals,

ρ1 =
∫
η�0�µ1t �dη�� ρ2 =

∫
ζ�0�µ2t �dζ��

From the translation invariance of µ̃t and the conservation of the number of
particles, it is not hard to deduce that the numbers ρ1 and ρ2 are independent
of t.

Lemma 4.2. Let µ̃t be as above and ρ1 ≤ ρ2. Then

lim
t→∞

∫
�η�0� − ζ�0��+µ̃t�dη�dζ� = 0�(4.2)

The next lemma can be found in [5] or [3] and its proof is omitted.

Lemma 4.3. For every i != j,

lim
t→∞

∫
��η�i� − ζ�i� > 0� η�j� − ζ�j� < 0�µ̃t�dη�dζ� = 0�
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Proof of Lemma 4.2.

Step 1. Let us assume that there exist a positive number δ and a sequence
tn with limn→∞ tn = ∞ such that,∫

�η�0� − ζ�0��±µ̃tn�dη�dζ� ≥ δ�(4.3)

From such an assumption, we eventually arrive at a contradiction.
As the first step, we tag particles in such a way that we can differentiate

between three types of particles. Define γ�i� = η�i�∧ζ�i� and regard γ�i� as the
occupation number of the neutral particles. When η�i� > ζ�i�, the discrepancy
η�i�−ζ�i� is regarded as the occupation number of positive particles and when
ζ�i� > η�i�, the discrepancy ζ�i� −η�i� is regarded as the occupation number
of negative particles. We label the positive and negative particles and write
x±
r for the location of the rth positive and negative particle, where r varies in
the set of integers. The labeling is done in such a way that we always have

r1 < r2 ⇒ x±
r1

≤ x±
r2
�

Let us write x± for the collection of the particle locations x±
r ’s with r in a suit-

able subset of �. It is possible to define a Markov process �x−�t��x+�t�� γ�·� t��
so that we always have∑

r

��x±
r �t� = i� = �η�i� t� − ζ�i� t��±� γ�i� t� = η�i� t� ∧ ζ�i� t��

We omit the tedious and straightforward definition of the generator of the
process �x+�x−� γ� and only make some remarks about it. There are several
cases to consider when we examine the jump rates for the process �x−�x+� γ�:
Case (i) If b�η�i� t�� η�i ± 1� t�� = b�ζ�i� t�� ζ�i ± 1� t�� = 1, then b�γ�i� t��

γ�i ± 1� t�� = 1 and a γ-particle jumps from the site i to the site i ± 1 with
rate λ∓.

Case (ii) If b�η�i� t�� η�i± 1� t�� = 1; b�ζ�i� t�� ζ�i± 1� t�� = 0 and b�γ�i� t��
γ�i ± 1� t�� = 1, then a γ-particle jumps from the site i to the site i ± 1 with
rate λ∓, and simultaneously a negative particle jumps from i± 1 to i.
Case (iii) If b�η�i� t�� η�i± 1� t�� = 1; b�ζ�i� t�� ζ�i± 1� t�� = 0 and b�γ�i� t��

γ�i± 1� t�� = 0, then a positive particle jumps from the site i to the site i± 1
with rate λ∓. Moreover, if there is a negative particle at the site i±1, then the
jumped positive particle and the negative particle are annilated and replaced
with a neutral particle.

Case (iv) In the previous Cases (ii)–(iv), interchange the role of η with ζ,
and the role of positive particle with negative particle.

In summary, the x± and γ particles jump with the exclusion rules but the γ
particles have priority to x± particles, and when an x± particle jumps to a site
that has a particle of the opposite sign, then both particles are annihilated
and replaced with one neutral particle. As a result, the x± particles may have
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a finite lifetime and each x±
r �t� is defined for t < σ±

r , where σ
−
r and σ

+
r are

two random times. One can readily verify

r1 < r2� t < min
(
σ±
r1
� σ±

r2

) ⇒ x±
r1

�t� ≤ x±
r2

�t��(4.4)

We say a particle is immortal if its lifetime is infinite, otherwise such a particle
is called mortal. Define

η±�i� t� t̂ � �= ∑
r

��x±
r �t� = i� σ±

r > t̂ �� η±�i� t� �= η±�i� t� t��

for t̂ ≥ t. The distribution of the pair �η−�·� t� t̂ �� η+�·� t� t̂ �� will be denoted by
νt� t̂ . Evidently, the measure νt� t̂ is translation invariant.

Step 2. Define

X±�t� t̂ � = lim
3→∞

1
3

3∑
i=1

η±�i� t� t̂ ��

The existence of such a (possibly random) limit follows from the ergodic the-
orem. Since the speed of propagation is bounded on average, it is not hard to
show

X±�t� t̂ � = X±�t̂ � t̂ ��(4.5)

In fact, it is not hard to construct a sequence of random variables L3 = L3�ω� ∈
�0� 3
 such that

sup
3
EL3 < ∞(4.6)

and
3+L3∑
i=−L3

η±�i� t� t̂ � ≥
3∑
i=1

η±�i� t̂ � ≥
3−L3∑
i=L3

η±�i� t� t̂ ��(4.7)

From this and (4.6), we can readily deduce (4.5). On the other hand, from
the ergodicity of the process �η� ζ� with respect to the measure µ̃tn , and our
assumption (4.3), we deduce

X±�tn� tn� =
∫

�η�0� − ζ�0��±µ̃tn�dη�dζ� ≥ δ�

From this and (4.5) we conclude that if t < tn, then

X±�t� tn� ≥ δ�(4.8)

almost surely with respect to νt� tn .

Step 3. Let us write πt for the probability measure νt�∞. In other words,
the measure πt is the distribution of the occupation numbers �η−�·� t�∞��
η+�·� t�∞�� of the immortal particles. Given 3 > 0, define

X±�t� = lim
3→∞

1
3

3∑
i=1

η±�i� t�∞��
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Again, the existence of the (possibly random) limit follows from the ergodic
theorem. From the same theorem we also know that EX±�t� = Eη±�0� t�∞�.
Note that we always have

X±�t� ≤ X±�t� tn��
which implies X±�t� ≤ X̂±�t� �= infn X±�t� tn�. It turns out that X̂± = X±

and this can be shown by verifying

EX±�t� ≥ EX̂±�t��
To see this, observe that

EX±�t� = Eη±�0� t�∞� = lim
n→∞Eη

±�0� t� tn� = lim
n→∞EX

±�t� tn� ≥ EX̂±�t��

From X± = X̂± and (4.8) we deduce that

X±�t� ≥ δ�(4.9)

almost surely with respect to the measure πt. Note that (4.9) implies that
there are infinitely many immortal particles of both types on both sides of the
origin. Let ξ�i� t� denote the indicator function of the event that there exists
at least one immortal particle at the site i and the next immortal particle on
the right of i is of the opposite sign. We first claim

qt �=
∫
ξ�i� t�dπt > 0�(4.10)

This is because if qt = 0, then the translation invariance of πt implies that
whenever there is an immortal particle at some site i then the first immortal
particle on the right side of i is of the same type, which contradicts (4.9).
We next claim that qt is independent of t. The proof of this claim can be
established in the same way we showed (4.5). By translation invariance,

qt = E

(
1
3

3∑
i=1

ξ�i� t�
)
�(4.11)

Moreover, since the speed of propagation is bounded on average, and the
immortal particles are neither created, nor annilated, and they do not cross
each other (the order is preserved), we can construct a sequence of the random
variables L3 such that (4.6) is true and

3+L3∑
i=−L3

ξ�i�0� ≥
3∑
i=1

ξ�i� t� ≥
3−L3∑
i=L3

ξ�i�0��

From this and (4.6), it is not hard to deduce

lim
3→∞

1
3

3∑
i=1

ξ�i� t� = lim
3→∞

1
3

3∑
i=1

ξ�i�0��

This and (4.11) imply that qt is independent of t.
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Final step. Let us write A for the event ξ�0� t� = 1. We decompose A into
two disjoint setsBN andCN whereBN consists of those configurations inA for
which the first immortal particle to the right of the origin is located somewhere
in the interval �0�N
. For any configuration that has an immortal particle at
the origin, we define a sequence · · · < y−2 < y−1 < y0 = 0 < y1 < y2 � � � such
that yj is the location of the first immortal particle to the right of yj−1. It is
well known that ∫

�yj+1 − yj�ξ�0� t�dπt ≤ 1�

See, for example, [9], Theorem B47 for a proof. Hence∫
CN

�yj+1 − yj�dπt ≤ 1�(4.12)

Moreover, if a configuration belongs to CN, then there will be no immortal
particle in �0�N
, which means y1 − y0 > N. From this and (4.12) we deduce

πt�CN� ≤ 1
N
�

From this we conclude that for sufficiently large N,

πt�BN� ≥ 1
2
πt�A� = 1

2
qt = 1

2
q0�

for every t ≥ 0. Moreover, if a configuration belongs to BN, then we have two
particles of opposite sign in the interval �0�N
. In other words, for all t ≥ 0,

µ̃t
({�η�i� − ζ�i���η�j� − ζ�j�� < 0 for some i� j ∈ �0�N
 with i != j

})
≥ πt�BN� ≥ 1

2q0�

But this contradicts Lemma 4.3. Hence, (4.3) cannot be true. Since the number
of positive (respectively, negative) particles does not increase with time, we
know

d

dt

∫
�η�0� t� − ζ�0� t��± dµ̃t ≤ 0�

As a result, either (4.2) must be true or

lim
t→∞

∫
�η�0� t� − ζ�0� t��− dµ̃t = 0�(4.13)

If the latter occurs, then any limit point µ̂ of the sequence µ̃t must be concen-
trated on the set of configurations �η� ζ� with η ≥ ζ. On the other hand, since
µ̂ is translation invariant and∫

η�0�dµ̂ = ρ1 ≤ ρ2 =
∫
ζ�0�dµ̂�

we deduce that if (4.13) is true, then the measure µ̂ is concentrated on the set
η = ζ. This again implies (4.2). ✷
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Given two probability measures µ1 and µ2, we write µ1 ≤ µ2 if there exists
a measure µ̃ with marginals µ1 and µ2 that is concentrated on the set

��η� ζ� � η ≤ ζ��
If initially the configuration η (respectively �η� ζ�) is distributed according to
µ (respectively µ̃), then the distribution of η (respectively �η� ζ�) at a later
time t will be denoted by � �t�µ (respectively �̃ �t�µ̃).

Corollary 4.4. Let µ1 and µ2 be two translation invariant ergodic mea-
sures with ∫

η�0�dµ1 =� ρ1 ≤ ρ2 �=
∫
η�0�dµ2�

If limn→∞ tn = ∞ and limn→∞ � �tn�µ1 = µ̄1, limn→∞ � �tn�µ2 = µ̄2 exist,
then µ̄1 ≤ µ̄2. If ρ1 = ρ2 and limn→∞ � �tn�µ1 = µ̄1 exists, then limn→∞ � �tn�×
µ2 = µ̄1.

Proof. Let µ̃ be any ergodic coupling of µ1 and µ2, and let µ̂ be a limit
point of the sequence µ̃tn = �̃ �tn�µ̃ as n → ∞. Then the marginals of µ̂
are µ̄1 and µ̄2, and by Lemma 4.2, the measure µ̂ is concentrated on the set
��η� ζ� � η ≤ ζ�. This implies the first claim of the lemma. If ρ1 = ρ2 and µ̄2
is a limit point of � �tn�µ2, then µ̄1 ≤ µ̄2 and µ̄1 ≥ µ̄2. This clearly implies
µ̄2 = µ̄1. As a result, limn→∞ � �tn�µ2 = µ̄1. ✷

Let 
 denote the space of translation invariant equilibrium probability
measures. More precisely, ν ∈ 
 if and only if∫

� f�η�ν�dη� = 0�∫
τif�η�ν�dη� =

∫
f�η�ν�dη�

for every i ∈ � and every local function f. The space 
 is a convex compact
set with respect to the weak topology, and the set of extreme points of 
 will
be denoted by 
ex. As a result, for every ν ∈ 
 , there exists a measure θ on

ex such that

ν =
∫

ex
αθ�dα��(4.14)

We also write 
erg for the space of the translation invariant ergodic measures.
For a measure ν ∈ 
 , let us write Pν for the law of η�·� ·� when the ran-

dom variable η�·� t� is distributed according to the measure ν. Consider the
operators �τi� τ̂s� acting on the process η�·� ·� where τi is the space translation
and τ̂sη�i� t� = η�i� t + s�. Note that since ν ∈ 
 , we can define the process
η�i� t� for all �i� t� ∈ �×�. By standard arguments, it is not hard to show that
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the law Pν is ergodic with respect to the shift operators �τi� τ̂s� if and only if
ν ∈ 
ex. As a result, if b�η� is a local function and ν ∈ 
ex, then

lim
3→∞

1
32

∫ 3

0

3∑
i=0

τib�η�·� s��ds =
∫
bdν�(4.15)

Pν-almost surely.
Define

χ =
{ ∫

η�0�dν � ν ∈ 
ex
}
�

As we will see below, the space 
ex is parametrized by the set χ.

Lemma 4.5. Suppose ν ∈ 
ex and
∫
η�0�dν = ρ. Then

X�η� �= lim
3→∞

1
3

3∑
j=1

η�j� = ρ�

ν-almost surely.

Proof. Since ν ∈ 
ex, it suffices to show that the conditional measures
ν�· � X = c� belong to 
 . Define

X3�η� �= 1
3

3∑
j=1

η�j��

Let f be a local function and let g� � → � be a continuous function. It is not
hard to show that

lim
3→∞

� �g�X3�f��η� = lim
3→∞

g�X3�η��� f�η� = g�X�η��� f�η��

ν-almost surely. From this and
∫
� �g�X3�f��η�dν = 0 we deduce∫

g�X�� fdν = 0�

From this we conclude that ν�· � X = c� ∈ 
 , completing the proof of the
lemma. ✷

Lemma 4.6. (i) For every ρ ∈ χ, there exists a unique measure νρ ∈ 
ex
such that

∫
η�0�dνρ = ρ.

(ii) If µ is an ergodic measure with∫
η�0�dµ = ρ�(4.16)

then every limit point of � �t�µ as t → ∞ belongs to 
 . Moreover, if ρ ∈ χ,
then limt→∞ � �t�µ = νρ.
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Proof. �i� The uniqueness of νρ follows from Lemma 4.5 and Corollary 4.4.
To see this, fix an ergodic measure µ with

∫
η�0�dµ = ρ and choose a sequence

tn for which limn→∞ � �tn�µ =� νρ exists. Let ν be a probability measure in

ex with density ρ. Let θ be a probability measure on the set 
erg such that

ν =
∫

erg

αθ�dα��

By Lemma 4.5, each α in the support of θ must have density ρ. From this and
Corollary 4.4 we deduce that

lim
n→∞� �tn�α = νρ�

for every α in the support of θ. As a result,

ν = lim
n→∞� �tn�ν = lim

n→∞

∫
� �tn�α θ�dα� = νρ�

This completes the proof of uniqueness. This also shows that if the measure
µ is ergodic with

∫
η�0�dµ = ρ ∈ χ, then limt→∞ � �t�µ = νρ.

(ii) Let µ be an arbitrary ergodic measure for which (4.16) is true. Let µ̄
be a limit point of � �t�µ as t → ∞. Then we have limn→∞ � �tn�µ = µ̄, for
some sequence tn with limn→∞ tn = ∞. The measures µ and � �s�µ are both
ergodic with the same density,∫

η�0�dµ =
∫
η�0�d� �s�µ�

By Corollary 4.4,

lim
n→∞� �tn + s�µ = lim

n→∞� �tn�µ�
From this and the semigroup property of � we deduce � �s�µ̄ = µ̄. Hence
µ̄ ∈ 
 and

∫
η�0�dµ̄ = ρ. ✷

An immediate consequence of Lemma 4.6 is


ex = �νρ � ρ ∈ χ��(4.17)

Lemma 4.7. The set χ is closed. Moreover, if µ is a translation invariant
ergodic measure with ρ = ∫

η�0�dµ !∈ χ, then
lim
t→∞

� �t�µ = νρ �= ανρ̄ + �1− α�νρ�(4.18)

where α = ρ−ρ
ρ̄−ρ and

ρ̄ = inf�m ∈ χ � m > ρ�� ρ = sup�m ∈ χ � m < ρ��

Proof. Suppose ρ !∈ χ and let µ̄ be any limit point of � �t�µ. By (4.17),
(4.14) and Lemma 4.6, there exists a measure θ on χ such that

µ̄ =
∫
χ
νmθ�dm��
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Suppose θ��m2� β1
� != 0 for some m2 > ρ̄ and choose m1 ∈ χ with ρ̄ ≤ m1 <
m2. Then by Lemma 4.5,

µ̄��η � X�η� ≥ m2�� > 0�(4.19)

However, Corollary 4.4 implies that µ̄ ≤ νm1 , which in particular implies
X�η� ≤ m1 with probability 1 with respect to µ̄. This is in contradiction
with (4.19). Hence θ��m2� β1
� = 0 for all such a number m2. From this we
deduce that θ��ρ̄�� = θ��ρ̄� β1
�. Similarly θ��ρ�� = θ��0� ρ
�. Hence, ρ� ρ̄ ∈ χ.
As a result, the set χ is closed and the measure θ is concentrated on the
set �ρ� ρ̄�. ✷

Define

bi�η� �= λ+b�η�i�� η�i−1�� − λ−b�η�i− 1�� η�i���
Also define

H�ρ� �= −
∫
bi�η�νρ�dη��(4.20)

where νρ was defined in Lemma 4.7. Note that H�ρ� = αH�ρ̄� + �1− α�H�ρ�
when ρ !∈ χ.

Lemma 4.8. Let K� �0� β1
 → � be any continuous function that coincides
with the function H on the set χ. If initially the height-difference process
�η�i�0�� i ∈ �� is distributed according to an ergodic measure µ with

∫
η�0�dµ

= ρ, then

lim
3→∞

lim sup
ε→0

E sup
0≤t≤T

∣∣∣∣εh�0� tε−1� − εh�0�0�
(4.21)

+
∫ t

0
K

(
1
3

3∑
1

η�j� θε−1�
)
dθ

∣∣∣∣ = 0�

Moreover, if ρ ∈ χ, then
lim
ε→0

E sup
0≤t≤T

∣∣εh�0� tε−1� − εh�0�0� + tH�ρ�∣∣ = 0�(4.22)

Proof. Without loss of generality, we may assume h�0�0� = 0. Since h ∈ �,
we have

lim
3→∞

lim sup
ε→0

E sup
0≤t≤T

∣∣∣∣εh�0� tε−1� − ε

3

3∑
j=1

h�j� tε−1�
∣∣∣∣ = 0�(4.23)

Let f�h� = ε
3

∑3
j=1 h�j�. It is well known that if

Ms = f�h�s�� − f�h�0�� −
∫ s

0
� f�h�θ��dθ�(4.24)
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thenMs is a martingale and

EM2
s =

∫ s

0
�� f2 − 2f� f��h�θ��dθ�(4.25)

Recall that by Doob’s inequality,

E sup
0≤s≤Tε−1

M2
s ≤ 4EM2

Tε−1 �

A straightforward calculation yields

lim
ε→0

EM2
Tε−1 = 0� � f�h� = ε

3

3∑
j=1

bj�η��

From this, Doob’s inequality and (4.23)–(4.25) we deduce

lim
3→∞

lim sup
ε→0

E sup
0≤t≤T

∣∣∣∣εh�0� tε−1� − 1
3

∫ t

0

3∑
j=1

bj�η�θε−1��dθ
∣∣∣∣ = 0�(4.26)

Define

F3�η� = Eη

∣∣∣∣ 132
∫ 3

0

3∑
j=1

bi�η�s��ds+K

(
1
3

3∑
0

η�j�0�
)∣∣∣∣�

where Eη denotes the expectation when the process η�·� t� starts from the con-
figuration η at time zero. One can use the finiteness of the speed of propagation
(Lemma 3.8) to approximate F3 by local functions and show that the function
F3 is continuous. Recall that the measure νρ was defined in Lemma 4.7 for all
values of ρ ∈ �0� β1
. By Lemma 4.7,

lim
t→∞

1
t

∫ t

0
� �θ�µdθ = lim

t→∞
� �t�µ = νρ�

Note that

lim
3→∞

lim sup
ε→0

E sup
0≤t≤T

∣∣∣∣13
∫ t

0

3∑
j=1

bj�η�θε−1��dθ

− 1
32

∫ t

0

∫ 3

0

3∑
j=1

bj�η�θε−1 + s��dsdθ
∣∣∣∣ = 0�

Hence,

lim
3→∞

lim sup
ε→0

E sup
0≤t≤T

∣∣∣∣13
∫ t

0

3∑
j=1

bj�η�θε−1��dθ+
∫ t

0
K

(
1
3

3∑
0

η�j� θε−1�
)
dθ

∣∣∣∣
≤ lim

3→∞
lim sup
ε→0

E
∫ T

0
F3

(
η�θε−1�)dθ

≤ lim
3→∞

lim sup
ε→0

∫ T

0

∫
F3�η�d� �θε−1�µdθ

= lim
3→∞

T
∫
F3�η�dνρ = 0�

(4.27)
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where for the last equality we used (4.15). This and (4.26) imply (4.21). If
ρ ∈ χ, then a repetition of (4.27) yields

lim
3→∞

lim sup
ε→0

E sup
0≤t≤T

∣∣∣∣13
∫ t

0

3∑
j=1

bi�η�θε−1��dθ+ tH�ρ�
∣∣∣∣ = 0�

This and (4.26) imply (4.22). ✷

Proof of Theorem 4.1. By Lemma 3.11, we may assume that the initial
height differences are distributed according to an ergodic measure with den-
sity ρ. We only establish (4.1) for ρ /∈ χ. The case ρ ∈ χ is a straightforward
consequence of (4.22). Fix ρ /∈ χ. To take advantage of Lemma 4.8, we augment
our sample space by defining the Young measures π3�ε�x� t� dλ�ω� as

∫ β1

0
F�λ�π3�ε�x� t� dλ�ω� = F

(
1
3

3∑
j=1

ηρ��xε−1
 + j� tε−1�ω�
)
�

where F is any continuous function and

ηρ�j� θ�ω� = h�j+ 1� θ�kρ�ω� − h�j� θ�kρ�ω�
with kρ�j� = �ρj
. LetXT denote the space of measurable maps from �×�0�T

into � where � = � ��0� β1
� is the space of probability measures on the
interval �0� β1
. The space � is equipped with the weak topology and the
space XT is also equipped with the weak topology. More precisely, a sequence
πn ∈ XT converges to an element π ∈ XT if and only if

lim
n→∞

∫
�

∫ T

0

∫ β1

0
A�x� t� λ�πn�x� t� dλ�dtdx

(4.28)
=

∫
�

∫ T

0

∫ β1

0
A�x� t� λ�π�x� t� dλ�dx�

for every continuous function A of compact support. Note that we may regard
XT as a subspace of �T, the space of positive measures γ�dx�dt� dλ� on the
set A = � × �0�T
 × �0� β1
. More precisely, the set XT is equal to the set of
measures γ ∈ �T such that∫

�

∫ T

0

∫ β1

0
A�x� t�f�λ�γ�dx�dt� dλ� ≤

∫
�

∫ T

0
�A�x� t��dxdt max

λ∈�0�β1

�f�λ���

for every continuous functions A and f of compact support. The space �T is
also equipped with the topology of weak convergence in the sense of (4.28).
One can easily verify that XT is a closed subset of �T. Since the space �T

is a compact metric space, the space XT is also a compact metric space. The
transformation

ω &→ �Ŝε� π3�ε�
induces a probability measure �̃ ε� 3 on the product space 	T × XT. It is not
hard to show that the compactness of XT and the tightness of � ε imply the
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tightness of �̃ ε� 3. We take convergent subsequences of �̃ ε� 3 as ε → 0. If
��̃ 3� is a sequence of such limit points, we can further take a convergent
subsequence as 3 → ∞. Let �̃ denote a limit point of the sequence �̃ 3. Now
(4.21) can be used to deduce

lim
3→∞

lim sup
ε→0

∫
sup
0≤t≤T

∣∣∣∣S�0� t�gρ��0� +
∫ t

0

∫
K�λ�π�0� θ� dλ�dθ

∣∣∣∣d�̃ ε� 3 = 0�

where gρ�x� = xρ. After a translation and an integration, we deduce that for
every continuous function J of compact support,

lim
3→∞

lim sup
ε→0

∫
sup
0≤t≤T

∣∣∣ ∫
�

(
S�0� t�gρ��x� − gρ�x�)J�x�dx

+
∫ t

0

∫
�
J�x�

∫
K�λ�π�x� θ� dλ�dxdθ

∣∣∣d�̃ ε� 3 = 0�

This implies

lim
3→∞

∫
sup
0≤t≤T

∣∣∣ ∫
�

(
S�0� t�gρ��x� − gρ�x�)J�x�dx

+
∫ t

0

∫
�
J�x�

∫
K�λ�π�x� θ� dλ�dxdθ

∣∣∣d�̃ 3 = 0�

This in turn implies∫
sup
0≤t≤T

∣∣∣ ∫
�

(
S�0� t�gρ��x� − gρ�x�)J�x�dx

+
∫ t

0

∫
�
J�x�

∫
K�λ�π�x� θ� dλ�dxdθ

∣∣∣d�̃ = 0�

(4.29)

for every continuous function J of compact support and every continuous K
that coincides with H on the set χ. We will show in Lemma 5.4 of the next
section that any limit point of � ε is concentrated on the set of semigroups S
for which

S�0� t�gρ� = gρ − tHS�ρ��
for some Lipschitz function HS. From this and (4.29) we deduce that the
measure �̃ is concentrated on the space of the pairs �S�π� such that

S�0� t�gρ��x� = gρ�x� −
∫ t

0

∫
K�λ�π�x� θ� dλ�dθ = gρ�x� − tHS�ρ��

for almost all x, all t ∈ �0�T
 and every continuous K that coincides with H
on the set χ. From this we can readily deduce that the measure π�x� θ� dλ�
must be concentrated on the set �ρ̄� ρ� and that∫

K�λ�π�x� θ� dλ� =
∫
H�λ�π�x� θ� dλ�
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is independent of �x� θ� ∈ � × �0�T
. On the other hand, a straightforward
calculation yields∫ x

0

∫
λπ3� ε�y� t� dλ�ω�dy = Sε�0� t�gρ��x� −Sε�0� t�gρ��0� +O�ε3��

for every x > 0. As a result, the measure �̃ is concentrated on the set of
�S�π� for which, ∫ x

0

∫
λ π�y� t� dλ�dy = gρ�x� − gρ�0��

for every x > 0. Hence, for almost all �x� θ� ∈ � × �0�T
,∫
λ π�x� θ� dλ� = ρ�

Therefore,

HS�ρ� =
∫
K�λ�π�x� θ� dλ� = αH�ρ� + �1− α�H�ρ̄��

for almost all �x� θ� ∈ � × �0�T
, where α satisfies
ρ = αρ+ �1− α�ρ̄�

From this we deduce

S�0� t�gρ� = gρ − tH�ρ��
for almost all S in the support of the measure �̃ . Using this and again
Lemma 4.8, it is not hard to deduce (4.1) because the functional

� �S� = sup
0≤t≤T

�S�0� t�gρ��0� + tH�ρ��

is continuous and for every limit point � of � ε we have
∫
� d� = 0. ✷

5. Continuum limit. If αr = βr = 0 for some r ∈ �1� � � � � d�, then
h�i1� � � � � id� is independent of ir for every h ∈ �. From this, it is not hard to
deduce that if h ∈ �, then hi� hi /∈ � for every i ∈ �d. As a result, h�i� t�k� = k
and we have a continuum limit with H ≡ 0. Recall that by Remark 2.4, we
can always assume αr = 0 for all r ∈ �1� � � � � d�. For the rest of this section,
we assume αr = 0 and βr > 0 for every r ∈ �1� � � � � d�.
The main objective of this section is the identification of the semigroup

S ∈ 	T�q0� in the support of � with the semigroups of the Hamilton–Jacobi
equations. Given a continuous function H� Y → �, we define SH�s� t�g��x� =
u�x� t−s� to be the unique viscosity solution of the Hamilton–Jacobi equation
(2.5). This means that u is continuous, u�x�0� = g�x�, and if φ ∈ C1��d ×
�0�T��, �x0� t0� ∈ �d×�0�T�, u�x0� t0� = φ�x0� t0�, u ≤ φ (respectively, u ≥ φ),
then

φt�x0� t0� +H�φx�x0� t0�� ≤ 0�(5.1)

�φt�x0� t0� +H�φx�x0� t0�� ≥ 0� respectively��(5.2)
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(See [7] for more information on viscosity solutions.) The main result of this
section is Theorem 5.1. This theorem implies Theorems 2.2 and 2.3 and will
be used to prove Theorem 2.1. Define

� = �H ∈ C�Y� � H satisfies the conditions (i)–(iv) of Theorem 2.3��

Theorem 5.1. Let � ε be as in Theorem 3�5. There exists a convex function

H̃ ∈ � such that every limit point � of the sequence � ε is concentrated on
the space of semigroups

�SH � H ∈ � and convex hull of H equals H̃��

The main ingredients of the proof of Theorem 5.1 are Lemmas 5.3 and 5.4.
Lemma 5.2 will be used for the proof of Lemma 5.3 and can be established in
the same way we proved Lemma 3.1. The proof of Lemma 5.2 is omitted. The
proof of Lemma 5.3 follows the semigroup identification result of [10]. Define
B�x0� r� = �x ∈ �d � �x− x0� ≤ r� and

�g�B�x0�r� = sup��g�x�� � x ∈ B�x0� r���

Lemma 5.2. Suppose S ∈ 	T�q0�. Then
�S�s� t�g1��x0� −S�s� t�g2��x0�� ≤ �g1 − g2�B�x0� �t−s�q0��

Lemma 5.3. Let S ∈ 	T�q0�. Suppose that there exists a continuous func-
tion H� Y → � such that

S�s� t�gp� = gp − �t− s�H�p��(5.3)

for every p ∈ Y, where gp�x� = x · p. Then S = SH.

Proof. It suffices to show that u�x� t� = S�s1� s1 + t�g��x� is a viscosity
solution of (2.5). Without loss of generality, we assume s1 = 0. We only verify
(5.1) because the proof of (5.2) is similar.
Let φ ∈ C1��d × �0�T�� with φ�x0� t0� = u�x0� t0� and u ≤ φ. Since S ∈

	T�q0�, we may use the monotonicity and the semigroup property to assert
φ�x0� t0� = u�x0� t0� = S�t0 − δ� t0�u�·� t0 − δ���x0�

≤ S�t0 − δ� t0�φ�·� t0 − δ���x0��
(5.4)

for every δ > 0. Define

T1�δ� �= S�t0 − δ� t0�φ�·� t0 − δ���x0� −S�t0 − δ� t0�φ�·� t0� − δφt�·� t0���x0��
T2�δ� �= S�t0 − δ� t0�φ�·� t0� − δφt�·� t0���x0� −S�t0 − δ� t0�φ�·� t0���x0��
Again, since S ∈ 	T�q0�, we can apply Lemma 5.2 to deduce

�T1�δ�� ≤ �φ�·� t0 − δ� −φ�·� t0� + δφt�·� t0��B�x0� q0δ��

This implies

lim
δ→0

δ−1T1�δ� = 0�(5.5)
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because φ is continuously differentiable. Moreover, from

T2�δ� = −δφt�x0� t0� +S�t0 − δ� t0�φ�·� t0� − δφt�·� t0� + δφt�x0� t0���x0�
−S�t0 − δ� t0�φ�·� t0���x0��

and Lemma 5.2 we deduce

δ−1�T2�δ� + δφt�x0� t0�� ≤ �φt�·� t0� −φt�x0� t0��B�x0� q0δ��

Hence,

lim
δ→0

δ−1�T2�δ� + δφt�x0� t0�� = 0

This and (5.5) imply

lim
δ→0

δ−1∣∣S�t0 − δ� t0�φ�·� t0 − δ���x0�
(5.6)

−S�t0 − δ� t0�φ�·� t0���x0� + δφt�x0� t0�
∣∣ = 0�

Also, if we define g�x� = φ�x0� t0� + φx�x0� t0� · �x − x0�, then Lemma 5.2
implies

�S�t0 − δ� t0�φ�·� t0���x0� −S�t0 − δ� t0�g��x0�� ≤ �φ�·� t0� − g�·��B�x0�q0δ��

This, the continuous differentiability of φ, and our assumption (5.3) imply

lim
δ→0

δ−1∣∣S�t0 − δ� t0�φ�·� t0���x0� − g�x0� + δH�φx�x0� t0��∣∣ = 0�

From this, (5.4) and (5.6) we deduce

φ�x0� t0� ≤ φ�x0� t0� − δφt�x0� t0� − δH�φx�x0� t0�� + o�δ��
This evidently implies (5.1). ✷

The next lemma will allow us to apply Lemma 5.3 to semigroups S in the
support of � . Recall �τyg��x� = g�x−y�, kεg�i� = �ε−1g�εi�
, and gp�x� = x·p.

Lemma 5.4. Let � be any limit point of � ε. Then there exists a Lipschitz
function HS for each semigroup S ∈ 	T�q0� such that

S�s� t�gp� = gp − �t− s�HS�p��
� -almost surely.

Proof. Given a function g ∈ ��, consider the height function k�i� = kεg�i�
and its translate τjk�i� = k�i− j� with j = [y

ε

]
. Since∣∣kετyg�i� − τjk

ε
g�i�∣∣ ≤ c0�

for some constant c0, one can readily show,∣∣uε�x� t�kετyg�ω��x� − uε�x� t� τjkεg�ω�∣∣ ≤ c0ε�
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We then use (2.12) to replace uε�x� t� τjkεg�ω� with

uε
(
x− ε

[y
ε

]
� t�kεg� τ−jω

)
�

As a result,

E
∣∣Sε�s� t� τyg�ω��x� − τyS

ε�s� t�g� τ−�y/ε
ω�∣∣ ≤ c1ε�

for some constant c1. From this and the translation invariance of the measure
Q we deduce that for every bounded continuous function F� 	T → �,

lim
ε→0

∣∣∣ ∫ F�AyS�d� ε −
∫
F�NyS�d� ε

∣∣∣ = 0�

where

�AyS��s� t�g��x� = S�s� t�g��x− y�� �NyS��s� t�g��x� = S�s� t� τyg��x��
As a result, for every bounded continuous function F� 	T → �,∫

F�AyS�d� =
∫
F�NyS�d� �

which is equivalent to saying

AyS = NyS�(5.7)

� -almost surely. By varying y in a countable dense set, we deduce that (5.7)
is true for all y ∈ �d, � -almost surely. This in particular implies

S�s�t�gp��x−y�=S�s�t�τygp��x�=S�s�t�gp−p·y��x�=S�s�t�gp��x�−p·y�
� -almost surely. As a result,

S�s� t�gp��x� = x · p+S�s� t�gp��0��(5.8)

Moreover, by the semigroup property,

S�s1� t�gp� = S�s2� t�S�s1� s2�gp�� = S�s2� t�gp� +S�s1� s2�gp��0��
whenever s1 ≤ s2 ≤ t. This in turn implies

S�s1� t�gp��0� = S�s2� t�gp��0� +S�s1� s2�gp��0��(5.9)

Furthermore, if

OθS�s� t�g� = S�s+ θ� t+ θ�g��
then the invariance of the measure Q with respect to the time-shift operator
γ implies that for every bounded continuous function F� 	T → �,∫

F�OθS�d� ε =
∫
F�S�d� ε�

Hence ∫
F�OθS�d� =

∫
F�S�d� �
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From this we deduce

S�s� t�g� = S�0� t− s�g��
� -almost surely. This and (5.9) imply

S�0� t− s1�gp��0� = S�0� t− s2�gp��0� +S�0� s2 − s1�gp��0��
As a result, S�s� t�gp��0� = −�t− s�HS�p� for some constant HS�p�.
It remains to verify the Lipschitzness of HS. By Lemma 5.2,

HS�p2� −HS�p1� = S�0�1�gp1��0� −S�0�1�gp2��0�
≤ �gp1 − gp2�B�0�q0� ≤ �q0��p1 − p2��

This completes the proof of the lemma. ✷

Lemma 5.5. There exists a convex function �L ∈ �� such that

lim
ε→0

uε�x� t�v�ω� = t�L
(
x

t

)
almost surely.

When the initial data k coincides with the function v, the convergence of uε

can be established with the aid of a subadditive ergodic theorem. Lemma 5.5
appeared as Theorem 4.1 in [14] when λ− = 0. The case of λ− != 0 can be
treated likewise and the proof is omitted. The next lemma will allow us to
relate the function �L to H.

Lemma 5.6. For a continuous function H� Y → �, define

H∗�q� = sup
p∈Y

�p · q−H�p���

Then

SH�0� t�v��x� = tH∗
(
x

t

)
�(5.10)

Proof. Since the initial data v is convex, we may apply the Hopf ’s formula
to assert

SH�0� t�v� = �v∗ + tH�∗�

where

v∗�p� = sup
q

�p · q− v�q�� =
{
0� if p ∈ Y,
∞� otherwise.

See [1] for a proof of Hopf ’s formula. Hence,

SH�0� t�v��x� = sup
p∈Y

�p · x− tH�p���

This clearly implies (5.10). ✷
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We now construct a reversible measure for the process h that is the analog of
the so-called blocking measure for the simple exclusion process. A consequence
of the existence of such a measure is H ≤ 0. We assume λ+ > λ− > 0. [When
λ− = 0, our blocking measure is trivial and is concentrated on a single height
function ṽ�i� = −v�−i�.] To this end, let us set

P = �h ∈ � � h�i� + v�−i� ≤ 0 for every i ∈ �d�
and define a measure ν which is concentrated on the set P, and for h ∈ P,

ν��h�� = 1
Z

(
λ+

λ−

)K�h�
�

where

K�h� = ∑
i∈�d

�h�i� + v�−i��� Z = ∑
h∈P

(
λ+

λ−

)K�h�
�

This measure is well defined if Z < ∞. Moreover, if ν��h�� != 0 then h�i� +
v�−i� = 0 for all but finitely many i’s. Hence ν has a countable support.

Lemma 5.7. The normalization constant Z is finite and the measure ν is
reversible with respect to the generator � .

Proof. Recall that by Remark 2.4, we may assume that αr = 0 for r =
1� � � � d. For each nonnegative 3, define

P3 = �h ∈ P � K�h� = −3��
Given h ∈ P, we also define

p�h� = �i � h�i� + v�−i� != 0��
We may regard p�h� as a union of 2d sets

p�h� = ∪�p�h� τ1 � � � τd� � τ1� � � � � τd ∈ �−1�1���
p�h� τ1� � � � � τd� = p�h� ∩ ��i1 � � � id� � τrir ≥ 0 for r = 1� � � � � d��

To get a bound on �P3�, we restrict each h ∈ �3 to its corresponding set
p�h� τ1� � � � � τd� and call the resulting configuration h�·� τ1� � � � � τd�. We would
like to find an upper bound on the number of such configurations h�·� τ1� � � � �
τd�. First we argue that there is a one-to-one correspondence between the con-
figurations h�·� τ1� � � � � τd� for different �τ1� � � � � τd�. We only verify this for the
case τ1 = τ2 = · · · = τd = 1 and τ1 = τ2 = · · · = τd = −1. Define

ĥ�i� = h�−i� +
d∑
r=1

βrir�

It is not hard to see that h ∈ P if and only if ĥ ∈ P. Evidently,

ĥ�i�−1� � � � �−1� = h�−i�1� � � � �1� +
d∑
r=1

βrir�
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This identity provides us with a one-to-one correspondence between the con-
figurations h ∈ P restricted to the set �d+ = ��i1 · · · id� � i1� � � � � id ≥ 0� and the
configurations h ∈ P restricted to the set �d− = ��i1� � � � � id� � i1� � � � � id ≤ 0�.
From now on we write p1�h� for p�h�1�1� � � � �1� and count the number of
possible configurations h ∈ P3 that we may have when such a configuration
h is restricted to p1�h�. In fact, a result of [2] asserts that the number of
k� �d+ → �+ with k�i+ er� ≥ k�i� for r = 1� � � � � d and∑

i∈�d
k�i� = n�

is bounded above by exp�c1 n
d−1
d �, for some constant c1. From this we easily

deduce �P3� ≤ 2d exp�c1 3
d−1
d �. This certainly implies the finiteness of Z.

The reversibility is straightforward and follows from

h ∈ P� hi ∈ � ⇒ hi ∈ P�
h ∈ P� hi ∈ � ⇒ hi ∈ P�
λ+ν��h����h�hi ∈ P� = λ−ν��hi����h�hi ∈ P��
λ−ν��h����h�hi ∈ P� = λ+ν��hi����h�hi ∈ P�� ✷

Proof of Theorem 5.1. Let� be any limit point of� ε. From Lemmas 5.3,
5.4 and Theorem 3.5 we learn that S = SH for some Lipschitz function H,
for almost all S in the support of � . (Note that H may depend on S.) Using
Lemma 5.5, it is not hard to deduce that for all rational points �x� t�, the
measure � is concentrated on the set of S for which S�0� t�v��x� = t�L�x

t
�. By

the continuity of S, we have this for all �x� t�. From this and Lemma 5.6 we
deduce that �L∗ =� H̃ is the convex hull of H.
Pick a point p on the boundary of Y, say p = �p1� p2� � � � � pd� with p1 ∈

�0� β1�. Let k�i� = �i · p
. It is not hard to see that for such a choice of p,
we always have ki� ki /∈ � for every i ∈ �d. This implies that h�i� t�k� = k�i�.
From this we deduce S�0� t� gp��x� = gp�x�, for almost all S in the support of
� and every p on the boundary of Y.
Lemma 5.7 can be used to deduce that � is concentrated on the set of

S = SH with

S�0� t� ṽ� = ṽ�

where ṽ�x� = −v�−x�. If we choose φ�x� t� = x · p for some p ∈ Y and x0 = 0
in (5.1), we deduce H�p� ≤ 0.
The property H�p� = H�p̄ − p� was established as a part of Theorem 7.1

in [14] when λ− = 0. The proof of the general case is identical. This completes
the proof of H ∈ � �� -almost surely. ✷

Proof of Theorem 2.1. From Theorem 4.1, it is not hard to deduce that
any limit point of � ε is concentrated on the set of S such that S�0� t�gp� =
gp − tH�p�, where H is defined by (4.20). From this we deduce that H is
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non-random. By uniqueness, � is concentrated on a single semigroup SH.
Since the functional

� �S� = sup
0≤s≤t≤T

sup
�x�≤T

�S�s� t�g��x� −SH�s� t�g��x��

is continuous with respect to the topology of 	T, we deduce

lim
ε→0

∫
� �S�� ε�dS� = 0�

This evidently completes the proof when the initial height function is kεg. The
general case follows from Lemma 3.11. ✷
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