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RENORMALIZATION OF THE VOTER MODEL IN EQUILIBRIUM1

By Iljana Zähle

Universität Erlangen-Nürnberg

We consider the d-dimensional voter model for d ≥ 3. Our interest is
the large scale limit of the equilibrium state of the voter model, where we
prove the d = 3 results of [1] for d ≥ 4, which turn out to be of a different
nature than for d = 3. For this purpose we use the historical process. We
establish some surprising facts about the Green’s function of random walks
in dimension d ≥ 4, which lead to the different features in d = 3 versus
d ≥ 4. Secondly, we prove an analogous result for the voter model on the
hierarchical group.

1. Introduction and the main result. In this paper we study the struc-
ture of invariant measures of the voter model (cf. [8] and [11]). In contrast to
other situations (e.g., the exclusion process), where we have a good charac-
terization of the invariant measures (e.g., product measure), we do not have
an explicit representation of the invariant measures of the voter model. The
dependence between components is only slowly decaying so that we do not
expect simply classical fluctuation behavior. However, since dependence of the
components in equilibrium is induced by a local interaction, we can try a
renormalization scheme. Rescaling in other contexts was investigated, for ex-
ample, by Holley and Stroock; see [9]. Bramson and Griffeath investigated
renormalization of the voter model on �3, [1]. They studied the discrete time
voter model which is defined with respect to a local symmetric random walk
with finite second moments. The proof of their renormalization result is based
on the methods of moments.

Major gave another proof of their result in [12] based on the historical
process in today’s terminology. The idea of his proof is easy to grasp; however,
essential parts of the proof are not correct. The claim in [12] is also that these
results hold on �d with d ≥ 4; however, this is based on wrong assumptions on
the behavior of the Green’s function of random walks. Major’s idea works in
case of finite moments of order 3d − 1 of the underlying random walk, which
is in fact not necessary.

The generalization to the cases d ≥ 4 is more subtle and uses some obser-
vations on random walks recently made by Lawler [10]. This paper contains
the right assumptions on the model and the right formulation of results for
the continuous time voter model. Furthermore, we establish the result for the
voter model on the hierarchical group. In a self-contained section we state the
asymptotics of the Green’s function of random walks. Similar questions and
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problems arise in branching models, which are studied by rescaling from a
different point of view by Dawson, Gorostiza and Wakolbinger, see [4].

We hope that the techniques used here for the voter model can be refined in
order to study limiting states of branching evolutions and interacting Fisher-
Wright diffusions in randomly fluctuating media. In fact, more generally lo-
cally interacting systems for which a historical process can be defined should
be accessible and shall be treated in a forthcoming paper.

1.1. The model. We consider the voter model �ξt�t≥0 on a countable Abelian
group S, which we shall later specialize to the two cases �d and the hierarchi-
cal group ��N�. (For a survey see [11], Chapter V.) It is an interacting particle
system with state space �0�1�S. Each site j ∈ S is occupied by an individual.
The value 0 or 1 denotes for instance the political opinion of the person (the
individual). The transition mechanism is specified by the function

c�i� ξ� =



∑
j

p�i� j�ξ�j�� if ξ�i� = 0�∑
j

p�i� j�	1− ξ�j�
� if ξ�i� = 1�
(1.1)

where p�i� j� ≥ 0 for i� j ∈ S and∑
j∈S

p�i� j� = 1 for i ∈ S�(1.2)

The function c represents the rate at which the coordinate ξ�i� flips from 0 to
1 or from 1 to 0 when the system is in the state ξ. That means

Pξ	ξt�i� �= ξ�i�
 = c�i� ξ�t + o�t�(1.3)

as t ↓ 0 for each i ∈ S and ξ ∈ �0�1�S. Furthermore, we require that in each
transition only one coordinate changes, that is,

Pξ	ξt�i� �= ξ�i�� ξt�j� �= ξ�j�
 = o�t�(1.4)

as t ↓ 0 for each i� j ∈ S with i �= j and ξ ∈ �0�1�S. An equivalent way
of describing the rates of the voter model is to say that a site i waits an
exponential time with parameter one; after that time it flips to the value it
sees at that time at a site j which is chosen with probability p�i� j�.

Let us consider the translation invariant setting, that is, p�i� j� = p�0�
j − i�. We define p�i� = p�0� i�. We will need the symmetrized kernel

p̂�i� = p�i� + p�−i�
2

�(1.5)

For 0 < λ < 1 let the initial distribution � 	ξ0
 = ν be a translation invari-
ant, ergodic measure ν with intensity

ν�η ∈ �0�1�S � η�i� = 1� = λ ∀i ∈ S�(1.6)

The following basic result can be found in [11], V.1.13 or [8], Section 5. Liggett
only does this for �d but the same proof works in the general Abelian case.
Holley and Liggett do not restrict to �d.
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Basic ergodic theorem. In the translation invariant setting of the voter
model on a countable Abelian group there is the following dichotomy in p̂
concerning the longtime behavior:

(a) If p̂ is recurrent�
� ν	ξt
 �⇒

t→∞
λδ1 + �1− λ� δ0�(1.7)

where 0 �resp. 1� denotes the configuration with all sites 0 �resp. 1�.
(b) If p̂ is transient, there exists a unique probability measure µλ, depending

only on λ, such that

� ν	ξt
 �⇒
t→∞

µλ�(1.8)

This µλ has the following properties:

(i) µλ is an invariant measure of the process �ξt�.
(ii) µλ is ergodic.
(iii) Let ξ∞ have the distribution µλ, then for all i� j ∈ S:

E	ξ∞�i�
 = λ�

E	ξ∞�i�ξ∞�j�
 ↘
�i−j�→∞

λ2�(1.9)

The symbol ⇒ denotes weak convergence.

Remark 1. Wewant to mention that the convergence in (1.9) is polynomial
and not exponential.

1.2. Main result on �d. Our goal is to study the regime in the transient
case by means of renormalization of the random field under the equilibrium
distribution. Here renormalization means forming sums over spatial blocks
and rescaling their size.

Let ξ be a random variable with distribution µλ given in (1.8). (We omit
the index ∞ in ξ∞.) Now we define the rescaled field. As mentioned at the
beginning, we are interested in the group �d and the hierarchical group. We
have to distinguish between these two cases.

If S = �d �d ≥ 3�, we define for a test function ϕ ∈ � (Schwartzian space
of rapidly decreasing functions) the following random variable

Fλ�ϕ� =
∑
i∈�d

	ξ�i� −Eξ�i�
ϕ�i� = ∑
i∈�d

	ξ�i� − λ
ϕ�i��(1.10)

This random variable will be rescaled now. For sums of independent random
variables one chooses the classical rescaling of the central limit theorem. There
are results that this rescaling can also be used in the case of dependent ran-
dom variables, if the correlations are weak enough, for example, if they are
exponentially decreasing. This means that the correlation function ρ of the
distribution µλ (recall that � 	ξ
 = µλ) defined by

ρ�A� = P
[
ξ�i� = 1 for all i ∈ A

]
(1.11)
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fulfills ∣∣ρ�A ∪ B� − ρ�A�ρ�B�∣∣ ≤ C1e
−C2d�A�B��(1.12)

where C1 and C2 are constants depending only on the cardinality of A ∪ B,
and d�A�B� = min��i − j� � i ∈ A�j ∈ B� is the distance between A and B.
This result can be found in [13].

However, since the process has positive spatially slowly decreasing correla-
tions (cf. Remark 1), a classical rescaling as for i.i.d. random fields does not
work. We choose

Fλ�r�ϕ� = Fλ�ϕr��(1.13)

with

ϕr�x� = h�r�ϕ
(x

r

)
�(1.14)

where we have to choose the function h�r� depending on the Green’s function
of the underlying random walk and decreasing much faster than the classical
rescaling

1√
#�i ∈ �d � �i� ≤ r�

�(1.15)

Let Z�p� = �Z�p�
1 � � � � �Z

�p�
d � denote a random variable with distribution p.

We assume:

The group � generated by �i � p�i� > 0� is d-dimensional,(1.16)

Z�p� has finite second moments; E	Z�p�
l Z

�p�
k 
 = σl�k� l� k = 1� � � � � d.(1.17)

The first assumption ensures transience of p̂. Let Q = �Ql�k�dl�k=1 denote the
matrix of second moments, that is, Ql�k = σl�k. Let �Q� denote the determi-
nant of Q. From (1.16) one can derive that Q is positive definite. Hence Q is
invertible. Let Q̄�x� denote the following quadratic form

Q̄�x� = xtrQ−1x� x ∈ �d�(1.18)

Note that the bar above Q indicates that the quadratic form is defined in
terms of the matrix Q−1 and not of Q.

Now we formulate the main result.

Theorem 1. Assume S = �d with d ≥ 3. Then under assumptions (1.16),
(1.17) and for d > 3 under the additional assumption

for d = 4 � n2P	�Z�p�� ≥ n
 = o

(
1

log n

)
�(1.19)

for d ≥ 5 � finite moments of order d − 1�(1.20)

and with the choice

h�r� = r− d+2
2(1.21)
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we obtain weak convergence

� 	Fλ�r�ϕ�
 �⇒
r→∞

� �0�CλB�ϕ�ϕ���(1.22)

Here B is the bilinear functional

B�ϕ�ψ� =
∫
�d

∫
�d

ϕ�x�ψ�y�
Q̄�x − y��d−2�/2 dxdy�(1.23)

with Q̄�x� defined in �1�18�. Cλ has the form

Cλ = λ�1− λ� γ

2πd/2�Q�1/2*
(

d − 2
2

)
�(1.24)

where * denotes the Gamma function and γ denotes the escape probability of
the discrete time random walk Y with kernel p̂�i� = 1

2�p�i� + p�−i��, which
starts in 0:

γ = P	Yn �= 0 ∀n ≥ 1
�(1.25)

One can formulate Theorem 1 in terms of generalized random fields. The
concept of generalized random fields has a physical motivation. Every actual
measurement is accomplished by means of an apparatus. It is often impossible
to measure the value of the random variable X�s� at the instant s. Instead
of this one gets a certain averaged value F�ϕ� = ∫

ϕ�s�X�s�ds, where ϕ is a
function characterizing the apparatus.

The distribution of a generalized random field is a probability measure on
the σ-algebra of Borel subsets (with respect to the weak topology) of the dual
space � ′ of � (cf. [7], Chapter III). Since � is a normed space the dual � ′

is a Banach space. The convergence statement can be easily extended to the
whole random field and its rescaled versions Fλ�r. Then we have:

Corollary 1. Let d ≥ 3 and consider the generalized random field Fλ�r.

Under the assumptions of Theorem 1 and with h�r� = r−�d+2�/2:

� 	Fλ�r
 �⇒
r→∞

� 	Cλ.
�(1.26)

where Cλ > 0 is given in �1�24� and . is the Gaussian self-similar generalized
random field with covariance functional

E	.�ϕ�.�ψ�
 = B�ϕ�ψ��(1.27)

with B given in �1�23��

The convergence in (1.26) is weak convergence of probability measures on
� ′. It is well-known that the function class �ϕ�t� = eixt�x ∈ �� is separating
for the probability measures on �. In the case of probability measures on � ′
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the class �/�F� = eiF�ϕ��ϕ ∈ � � is separating. That means to get (1.26) one
needs to show

E
[
eiFλ�r�ϕ�] −→

r→∞ exp
{− 1

2CλB�ϕ�ϕ�}�(1.28)

This in turn is the assertion of Theorem 1.
We want to interpret the rescaling factor h�r�. If the �ξ�i�� i ∈ �d� were in-

dependent random variables, one would have to choose the classical rescaling
one over the root of the volume of the ball with radius r. But the ξ�i� are not
independent. We will define a subdivision in families of the �ξ�i�� i ∈ �d�, to
which 0’s or 1’s are assigned independently. To be more precise, all members
of a family are assigned the same value and the values of different families
are independent. Supposing that there are Nr families in the ball with radius
r and a typical family has a size of order Mr, we have to choose the following
rescaling term

h�r� = 1

Mr

√
Nr

= 1√
Mr

· 1√
NrMr

�(1.29)

The second factor is the classical rescaling. The first factor is the correction
term. We observe that the correction factor is one over the root of the size of
a typical family. For a more precise explanation we refer to Remark 2.

The main idea of cluster decomposition and the interpretation of the cor-
rection factor in terms of the historical process can be tested on other groups.
An interesting candidate for that is the hierarchical group. We are able to
establish the analogous result to Theorem 1 on the hierarchical group.

1.3. Main result on the hierarchical group. The hierarchical group plays
an important role in spatial models in population genetics. It was introduced
by Sawyer [14] and has appeared recently, for example, in [3], [6] and [5]. The
hierarchical group ��N� is defined by

��N� �=
{
i = (

i�m�)
m∈�� i�m� ∈ �0� � � � �N − 1��

i�m� �= 0 only for finitely many m
}(1.30)

with addition componentwise modulo N and distance �i� = max�k � i�k� �=
0� ∨ 0. We are interested in transition kernels with the property that p�i�
depends only on �i�. Let r be a distribution on �0�1� � � ��. Define an associated
probability law p on ��N� by setting

p�i� = r�i�
R�i�

�(1.31)

where

Rk = #�i ∈ ��N� � �i� = k�(1.32)

is the number of elements in the kth level set �
�N�
k = �i ∈ ��N� � �i� = k�.
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We consider the geometric kernels pc (c > 1/N) of the form (1.31) with

rk = θc · �Nc�−k(1.33)

with the normalizing constant θc = Nc−1
Nc

. We assume c < 1 to get transience
of pc. (One can easily verify that pc is transient iff c < 1.)

The rescaled field is defined by

Fλ�r = h�r� ∑
i∈��N�

�i�<r

[
ξ�i� −Eξ�i�] = h�r� ∑

i∈��N�

�i�<r

[
ξ�i� − λ

]
�(1.34)

We formulate the main result on the hierarchical group.

Theorem 2. Assume the voter model on the hierarchical group with geo-
metric transition kernel pc �1/N < c < 1�. With the choice

h�r� = N−rc−r/2(1.35)

we obtain weak convergence

� 	Fλ�r
 �⇒
r→∞

� �0�Cλ�(1.36)

with

Cλ = λ�1− λ�γ �N3c2 − N2c2 − N2c + Nc�
�N2c − 1��1− c�

N − 1
N2�Nc − 1� �(1.37)

Here γ is the escape probability of the discrete time random walk Y with kernel
pc, which starts in 0:

γ = P	Yn �= 0 ∀n ≥ 1
�(1.38)

The interpretation of the rescaling factor is the same as in the lattice case.
We refer to Remark 3.

2. The asymptotic behavior of the Green’s function on �d. The ba-
sis of the proof of the main result is the asymptotics of the Green’s function
G�x�y� of random walks. In particular the question arises under what condi-
tions does G�x�y� behave for �x−y� → ∞ as the Green’s function of Brownian
motion which decays like �x−y�−�d−2� for �x−y� → ∞. The first guess is that
it should suffice that the random walk is in the domain of normal attraction.
However, this is only true for d = 3. In d ≥ 4 this is false; here one needs
stronger moment conditions. Since these facts are of independent interest, we
state them here.

We consider a discrete time random walk �Yn� with kernel q which starts in
the origin. We assume (1.16) and (1.17) (with q instead of p) and in addition
EZ�q� = 0. That means Q is the covariance matrix of q. Let G�x� be the
expected number of visits in x, that is,

G�x� =
∞∑

n=0
qn�x��(2.1)
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where qn denotes the n-step transition probability of the kernel q. G is called
the Green’s function of the random walk Y. We want to establish the asymp-
totics of G�x� as �x� → ∞.

First of all we consider the case � = �d. Y is an aperiodic random walk on
�d (aperiodic means � = �d). We have to distinguish the three cases d = 3,
d = 4 and d ≥ 5, where only the first case is well-known.

Case 1 (d = 3). Here we use [15], 26.P1, to obtain a statement about the
asymptotic behavior of the Green’s function [recall (1.18) for Q̄�x� and that
�Q� denotes the determinant of Q]:

lim
�x�→∞

Q̄�x�1/2G�x� = 1
2π�Q�1/2 �(2.2)

We want to generalize this result to dimension d ≥ 4. First we consider the
case where Y is a strongly aperiodic random walk. That means

��y ∈ �d � y = x + z� where p�z� > 0� = �d for all x ∈ �d�(2.3)

where ��· · ·� denotes the group generated by �· · ·�. For instance, the symmet-
ric nearest-neighbor random walk is aperiodic but not strongly aperiodic.

Case 2 (d = 4). Assuming only (1.16) and (1.17), the above asymptotics do
not hold (cf. [10]).

In [10] we find the result that under the slightly stronger boundedness as-
sumption (1.19) (with q instead of p) one can guarantee the following asymp-
totics

lim
�x�→∞

Q̄�x�G�x� = 1
2π2�Q�1/2 �(2.4)

Case 3 (d ≥ 5). We obtain an analogous result under the stronger assump-
tions (1.20) suggested by Lawler. Since he did not write a paper about it, we
want to establish this result.

Theorem 3. Let d ≥ 5. Suppose �Yn�n≥0 is a mean zero, finite variance,

strongly aperiodic random walk on �d with covariance matrix Q. Assume also
that the moments of order d − 1 are finite, that is,

∞∑
n=1

nd−2P	�Y1� ≥ n
 < ∞�(2.5)

Then

lim
�x�→∞

Q̄�x� d−2
2 G�x� = *�d−2

2 �
2πd/2�Q�1/2(2.6)

as �x� → ∞.

Now we summarize the results of the three cases d = 3, d = 4 and d ≥ 5
and we extend it to aperiodic random walks on � .
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Corollary 2. Let Y be the random walk defined at the beginning of
this chapter. Under assumptions �1�16�� �1�17� and the additional assump-
tions �1�19� for d = 4 and �1�20� for d ≥ 5 (each with q instead of p) we have
the following asymptotics of the Green’s function�

G�x� ∼
{

C · Q̄�x�− d−2
2 � as �x� → ∞� x ∈ � �

0� if x ∈ �d\� �
(2.7)

where

C = ��d/� �*�d−2
2 �

2πd/2�Q�1/2 �(2.8)

and � is the group generated by �i ∈ �d � q�i� > 0��

Proof of Theorem 3. The transition probabilities are given by q. Let qn

denote the n-step transition probabilities. The finiteness of the moments of
order d − 1 and the local central limit theorem ([2], Corollary 22.3) give us

sup
x∈�d

(( �x�√
n

)d−1
+ 1

)∣∣∣∣qn�x� − n−d/2ϕ0�Q

(
x√
n

)

×
(
1+

d−3∑
k=1

n−k/2Pk

(
x√
n

))∣∣∣∣
= o

(
n−�2d−3�/2)�

(2.9)

where Pk is a polynomial of degree 3k, and ϕ0�Q is the density of the normal
distribution with expectation 0 and covariance matrix Q,

ϕ0�Q�y� = 1
�2π�d/2�Q�1/2 e

−Q̄�y�/2�(2.10)

Let

q̄n�x� = n−d/2ϕ0�Q

(
x√
n

)
= 1

�2πn�d/2�Q�1/2 exp
{
−Q̄�x�

2n

}
�(2.11)

To prove the asymptotics of the Green’s function we write (consider x �= 0)

G�x�Q̄�x��d−2�/2=
∞∑

n=1
Q̄�x��d−2�/2q̄n�x�

+
∞∑

n=1
Q̄�x��d−2�/2	qn�x� − q̄n�x�
�

(2.12)
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We can calculate the first sum on the r.h.s. of (2.12) as follows (let 8 = Q̄�x�−1):
∞∑

n=1
Q̄�x��d−2�/2q̄n�x� = 1

�2π�d/2�Q�1/2
∞∑

n=1
Q̄�x��d−2�/2 1

nd/2
exp

{
−Q̄�x�

2n

}

= 1
�2π�d/2�Q�1/2

∞∑
n=1

8

(
1
n8

)d/2

e−1/�2n8�

→ 1
�2π�d/2�Q�1/2

∫ ∞

0
s−d/2e−1/�2s� ds

= 1
2πd/2�Q�1/2*

(
d − 2
2

)
(2.13)

as �x� → ∞.
It remains to show that the second sum on the r.h.s. of (2.12) goes to 0 as

�x� → ∞. By (2.9) we know

∞∑
n=1

Q̄�x��d−2�/2	qn�x� − q̄n�x�


=
∞∑

n=1
Q̄�x��d−2�/2

[
E�n�x�

n�2d−3�/2
((

�x�√
n

)d−1
+ 1

)

+ 1
�2πn�d/2�Q�1/2 e

− Q̄�x�
2n

d−3∑
k=1

n−k/2Pk

(
x√
n

)]
�

(2.14)

where E�n�x� → 0 as n → ∞ uniformly in x. We investigate the second sum
on the r.h.s. of (2.14). It suffices to consider

∞∑
n=1

Q̄�x��d−2�/2 1
�2πn�d/2�Q�1/2 e

− Q̄�x�
2n n−k/2 xβ

nl/2
(2.15)

for multi-indices β with �β� = l and 0 ≤ l ≤ 3k� 1 ≤ k ≤ d − 3. Analogously to
the calculation in (2.13) we obtain

∞∑
n=1

Q̄�x��d−2�/2 1
�2πn�d/2�Q�1/2 e

− Q̄�x�
2n n−k/2 xβ

nl/2

∼ O
(
xβQ̄�x�− k

2− l
2
) ∫ ∞

0
s−�d+k+l�/2e−1/�2s� ds(2.16)

≤ O��x�−k� −→
�x�→∞

0�

Here we used that Q−1 is positive definite and thus Q̄�x� ≥ c�x�2, where c is
a constant independent of x.
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Finally we investigate the first error sum on the r.h.s. of (2.14)

∞∑
n=1

Q̄�x��d−2�/2 E�n�x�
n�2d−3�/2(( �x�√

n

)d−1 + 1
) ≤O��x�−1�

∞∑
n=1

E�n�x�
n�d−2�/2

=O��x�−1� −→
�x�→∞

0�

(2.17)

The sum on the r.h.s. of the first inequality is uniformly bounded since the
error term E�n�x� goes to 0 as n → ∞ uniformly in x.

Equations (2.13), (2.16) and (2.17) lead to the assertion. This completes the
proof. ✷

Proof of Corollary 2. First note that G�x� = 0 for x /∈ � .
At the last step of the proof of [15], 26.P1, we find an argument for the

extension of the result from strongly aperiodic random walks to aperiodic
random walks on �d. This argument works also in dimension d > 3. Hence
we obtain (2.7) for aperiodic random walks on �d.

It remains to consider the case of an aperiodic random walk on � . By
assumption (1.16) � is d-dimensional. Hence there exists a bijective linear
mapping A� � → �d. We know that �A−1� = ��d/� �.

We are given a random walk on � with transition kernel q. We define the
following transition kernel q̃ on �d:

q̃�x� = q�A−1x��(2.18)

For y ∈ � we obtain G�y� = G̃�Ay�, where G̃ is the Green’s function of the
kernel q̃.

Since q̃ is aperiodic on �d we know from the first part of this proof that

G̃�x� ∼ *�d−2
2 �

2πd/2�Q̃�1/2
Q̃�x�− d−2

2 �(2.19)

where Q̃�x� = xtrQ̃−1x. Obviously Q̃ = AQAtr, hence �Q̃� = �A�2�Q� and
Q̃�x� = Q̄�A−1x�. Thus by (2.19),

G�y� = G̃�Ay� ∼ *�d−2
2 �

2πd/2�Q̃�1/2
Q̃�Ay�− d−2

2 = ��d/� �*�d−2
2 �

2πd/2�Q�1/2 Q̄�y�− d−2
2 �(2.20)

This completes the proof. ✷

3. Proof of Theorem 1 (voter model on ��d). The proof is based on the
characterization of the equilibrium µλ as the limit of � 	ξt
 as t → ∞. From
[11], V.1.13, we know that the limiting distribution µλ is the same for all initial
distributions ν which are translation invariant and ergodic and have property
(1.6). Thus it is enough to consider the special initial distribution νλ being the
product measure on �0�1��d

with intensity λ.
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The proof is split into four parts. The first part contains the basic idea.
We construct the historical process of the voter model, that is, we define a
richer structure containing a family structure, which explains all dependencies
of the components. This allows a cluster decomposition of the equilibrium
state. Namely we can view it as an infinitely old system and decompose the
components into clusters belonging to the same family. Then 0’s and 1’s are
assigned in an i.i.d. fashion to the families, and we can apply the central limit
theorem. In the second part we check the assumptions of the central limit
theorem. The crucial quantities for this, as moments and covariances, can be
expressed in terms of random walk quantities. The lemmas of the second part
are proved in the third part, and some more technical facts are collected in
the fourth part.

Part 1 (Representation via historical process). Our goal here is to write
the random variableFλ�r�ϕ� as a functional of the historical process associated
with the voter model.

First we formulate a graphical representation of the voter model which
allows the definition of the law of the historical process in a very natural way.
Let �X�j��j ∈ �d� be a system of coalescing continuous time random walks.
They move according to the transition kernel

pt�i� j� =
∞∑

n=0
e−t t

n

n!
p�n��i� j��(3.1)

where p�n� denotes the n-step transition probability of the kernel p. The ran-
dom walk X�j� starts in j. Any random walk X�j� evolves independently
of each other except for the following collision rule. Whenever two or more
random walks attempt to occupy the same site at the same time they merge
into one.

Moreover let �α�j��j ∈ �d� be i.i.d. random variables, which are indepen-
dent of the random walks �X�j��j ∈ �d� and have marginal distribution

P	α�j� = 1
 = 1−P	α�j� = 0
 = λ�(3.2)

To determine the “opinion” ξt�j� at site j at time t we follow the sites where
the “opinion” came from. Define

ξ̂t�j� �= α�Xt�j��(3.3)

for j ∈ �d. The following duality equation is valid for j1� � � � � jk ∈ �d� k ∈ �:

P
[
ξt�j1� = 1� � � � � ξt�jk� = 1

] = P
[
ξ̂t�j1� = 1� � � � � ξ̂t�jk� = 1

]
�(3.4)

which means that the common distribution of �ξt�j��j ∈ �d� and the common
distribution of �ξ̂t�j��j ∈ �d� are equal. (For a treatment of duality of a voter
model or more general of a spin system see [11], Section III.4.) Note that the
process in (3.3) can be defined for all t ≥ 0.
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In the ˆ-process we can define “one”-opinions of the same family which come
from the same ancestor at time 0. We are even able to define the depth of the
relationship of two “one’s.”

At time t we partition �d in families of components which have the same
value at time t and where the values in different families are independent. The
configurations in one family are dependent. These families are determined by
the coalescing random walks.

We define the time t and the equilibrium decomposition of the state in
family clusters. This is obtained by partitions ��t����∞�. Two sites j and j′

belong to the same family cluster, that is, to the same element of the partition
��t� if the random walks X�j� and X�j′� coalesce by time t, that is, if Xt�j� =
Xt�j′�. Analogously we can define partition ��∞� in the equilibrium. Two
sites j and j′ belong to the same element of the partition ��∞� if the random
walks X�j� and X�j′� coalesce eventually, i.e., if there exists a t such that
Xt�j� = Xt�j′�.

Now we are going to analyze the rescaled process by means of the clus-
ter decomposition. First of all we consider the case of a test function ϕ with
compact support, that is, ϕ ∈ 	∞

c ��d�. Let D�r� be the d-dimensional ball

D�r� = �j ∈ �d � �j� < r��(3.5)

For ϕ there exists an A > 0 such that supp�ϕ� ⊂ D�A�, hence D�Ar� contains
the support of ϕr.

Since ϕ vanishes outside D�Ar�, we are only interested in those elements
of the partition which intersect D�Ar�. The partition ��r� t� [resp. ��r�∞�]
is generated by ��t� [resp. ��∞�] by taking the intersection of the elements
of ��t� [resp. ��∞�] with D�Ar�. These elements are denoted by B1�r� t�� � � � �
BK�r�t��r� t� [resp. B1�r�∞�� � � � �BK�r�∞��r�∞�]. The number of elements is
random. (Capital letters stand for random variables, small letters stand for
fixed quantities.) For abbreviation we omit the sign ∞.

With the duality equation we establish the following equation:

∑
j∈�d

	ξt�j� − λ
ϕr�j� d= ∑
j∈�d

	ξ̂t�j� − λ
ϕr�j�

=
K�r�t�∑
k=1

∑
j∈Bk�r�t�

	ξ̂t�j� − λ
ϕr�j�

=
K�r�t�∑
k=1

	αk − λ
 ∑
j∈Bk�r�t�

ϕr�j��

(3.6)

where �αk� k ∈ �� are i.i.d. random variables being independent of the parti-
tion and satisfying P	αk = 1
 = 1−P	αk = 0
 = λ. The last equality in (3.6) is
valid since ξ̂t�j� = ξ̂t�j′� if j and j′ are of the same element of the partition,
and since ξ̂t�j� and ξ̂t�j′� are independent if j and j′ are of different elements
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of the partition. Define

ϕ�B�r� = ∑
j∈B

ϕr�j��(3.7)

Thus

∑
j∈�d

	ξt�j� − λ
ϕr�j� d=
K�r�t�∑
k=1

	αk − λ
ϕ�Bk�r� t�� r��(3.8)

Let 
r� t be the distribution of ��r� t� and let 
r be the distribution of ��r�.
Since ��r� t� −→

t→∞
��r� a.s. we obtain weak convergence


r� t �⇒
t→∞


r�(3.9)

By (3.9) and by � 	ξ∞
 = limt→∞ � 	ξ0�ξ−t i�i�d� configuration
, we derive
from (3.8) the main result of part 1, namely

Fλ�r�ϕ� d=
K�r�∑
k=1

	αk − λ
ϕ�Bk�r�� r��(3.10)

Remark 2. We observe that our rescaling is classical rescaling times a
correction term, namely

1√
rd

· 1√
r2

= r− d+2
2 �(3.11)

The correction factor to the classical rescaling is 1 over the root of the expected
size of the family which contains the origin and which lies in the ball with
radius r. The expected size of that family is

∑
�i�<r Ĝ�i�, where Ĝ is the Green’s

function of the symmetrized kernel p̂. It turns out later that
∑

�i�<r Ĝ�i� =
const r2.

Part 2 (Assumptions of the CLT). The idea is to fix a partition, to condi-
tion on this partition and to apply the following version of the central limit
theorem. That makes sense because given a particular partition we have a
sum of independent random variables in (3.10).

Central limit theorem. Let �Zn�k�n ∈ ��1 ≤ k ≤ kn� be a system of
random variables where the Zn�k� k = 1� � � � � kn� are independent for each
n. Let s2n = Var	∑kn

k=1 Zn�k
. If s2n → c and if the system �Zn�k� satisfies the
Lyapunov condition

∃δ > 0 � lim
n→∞

kn∑
k=1

E	�Zn�k −EZn�k�2+δ
 = 0�(3.12)

then

�

[
kn∑

k=1
�Zn�k −EZn�k�

]
�⇒
n→∞

� �0� c��(3.13)
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We consider the expectation and the variance, and we check the Lyapunov
condition for δ = 2.

Step 1 (Expectation). Since E	αk
 = λ and since �αk� k ∈ �� are indepen-
dent of the partition we have

E

[
K�r�∑
k=1

�αk −λ�ϕ�Bk�r�� r�
∣∣∣∣�
]
=

K�r�∑
k=1

ϕ�Bk�r�� r�E	�αk − λ�
=0 a�s�(3.14)

Step 2 (Variance).

Var

[
K�r�∑
k=1

�αk − λ�ϕ�Bk�r�� r�
∣∣∣∣�
]
= λ�1− λ�

K�r�∑
k=1

ϕ�Bk�r�� r�2�(3.15)

We have to investigate the expression
∑

ϕ�Bk�r�� r�2. In Lemma 1 we prove

Var

[
K�r�∑
k=1

ϕ�Bk�r�� r�2
]
−→
r→∞0�(3.16)

With Chebychev’s inequality and with (3.16) we can then conclude

K�r�∑
k=1

ϕ�Bk�r�� r�2 −E

[
K�r�∑
k=1

ϕ�Bk�r�� r�2
]

P−→
r→∞0�(3.17)

where “
P−→ ” denotes convergence in probability. Lemma 2 provides

E

[
K�r�∑
k=1

ϕ�Bk�r�� r�2
]
−→
r→∞

γ

2�Q� 12 π d
2

*

(
d − 2
2

)
B�ϕ�ϕ��(3.18)

Thereby we have

K�r�∑
k=1

ϕ�Bk�r�� r�2
P−→

r→∞
γ

2�Q� 12 π d
2

*

(
d − 2
2

)
B�ϕ�ϕ��(3.19)

From (3.15) and (3.19) we can conclude

Var

[
K�r�∑
k=1

�αk − λ�ϕ�Bk�r�� r�
∣∣∣∣�
]

P−→
r→∞CλB�ϕ�ϕ��(3.20)

Step 3 (Lyapunov condition). In Lemma 3 we show

K�r�∑
k=1

ϕ�Bk�r�� r�4
P−→

r→∞0�(3.21)
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Hence with the independence of �αk� and � again we get

E

[
K�r�∑
k=1

�αk − λ�4ϕ�Bk�r�� r�4
∣∣∣∣�
]

=
K�r�∑
k=1

ϕ�Bk�r�� r�4E
[�αk − λ�4 ��]

= [�1− λ�4λ + λ4�1− λ�]K�r�∑
k=1

ϕ�Bk�r�� r�4
P−→

r→∞0�

(3.22)

Step 4 (Application of the CLT). Now we are able to deal with the expres-
sion

K�r�∑
k=1

�αk − λ�ϕ�Bk�r�� r��(3.23)

since it satisfies (3.14), (3.20) and (3.22). We want to show

E

[
exp

{
i

K�r�∑
k=1

�αk − λ�ϕ�Bk�r�� r�
}]

−→
r→∞ exp

(
−CλB�ϕ�ϕ�

2

)
�(3.24)

First of all we prove

E

[
exp

{
i

K�r�∑
k=1

�αk − λ�ϕ�Bk�r�� r�
} ∣∣∣∣�

]
P−→

r→∞ exp
(
−CλB�ϕ�ϕ�

2

)
�(3.25)

For that purpose we fix a subsequence �rl� of �r� with rl → ∞. Then there
exists a subsequence �r′

l� of �rl�, such that by (3.20)

Var

[
K�r′

l�∑
k=1

�αk − λ�ϕ�Bk�r′
l�� r′

l�
∣∣∣∣�
]

a�s�−→
l→∞

CλB�ϕ�ϕ�(3.26)

and by (3.22)

E

[
K�r′

l�∑
k=1

�αk − λ�4ϕ�Bk�r′
l�� r′

l�4
∣∣∣∣�
]

a�s�−→
l→∞

0�(3.27)

By (3.14), (3.26) and (3.27) we obtain that for P�-a.e. �,{
k�r′

l�∑
k=1

�αk − λ�ϕ�bk�r′
l�� r′

l�� l ∈ �

}
(3.28)
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is an array of independent random variables, which satisfies the assumptions
of the central limit theorem. If we apply this theorem we get

E

[
exp

{
i

K�r′
l�∑

k=1
�αk − λ�ϕ�Bk�r′

l�� r′
l�
} ∣∣∣∣�

]
a�s�−→

l→∞
exp

(
−CλB�ϕ�ϕ�

2

)
�(3.29)

That means for every subsequence there exists an a.s. convergent subsequence
such that all limits are the same and deterministic. Hence we obtain (3.25).
We observe that the following set of random variables

{∣∣∣∣∣E
[
exp

{
i

K�r�∑
k=1

�αk − λ�ϕ�Bk�r�� r�
}∣∣∣∣�

]∣∣∣∣∣� r ≥ 0

}
(3.30)

is uniformly integrable. Hence (3.24) holds.
We finally proved for ϕ ∈ 	∞

c ��d� that Fλ�r�ϕ� converges in distribution
to a normally distributed random variable with expectation 0 and variance
CλB�ϕ�ϕ�.

This statement is also true for ϕ ∈ � by Lemma 6. Thus the proof of
Theorem 1 is complete. ✷

Part 3 (Proofs of the lemmas). We establish the lemmas used in part 2.
For notation recall the definition of the partitions of �d as well as the defini-
tions of ϕ�B�r� given in (3.7). Recall also that D�r� is the ball with
radius r.

The lemmas in this part are used to check the assumptions of the central
limit theorem.

Lemma 1 (Variance estimate). Under assumptions �1�16�� �1�17�� �1�19�
and �1�20��

Var

[
K�r�∑
k=1

ϕ�Bk�r�� r�2
]
−→
r→∞0(3.31)

holds for ϕ ∈ 	∞
c ��d� with supp�ϕ� ⊂ D�A��

Proof. With the help of the hitting probability of the random walks and
the notation

Vj1�����jk
= {

X�j1�� � � � �X�jk� all coalesce eventually
}

(3.32)

we can write

E

[
K�r�∑
k=1

ϕ�Bk�r�� r�2
]
= ∑

i� j∈D�Ar�
P	Vi�j
 ϕr�i�ϕr�j��(3.33)
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Hence

(
E

[
K�r�∑
k=1

ϕ�Bk�r�� r�2
])2

= ∑
j1�����j4∈D�Ar�

P
[
Vj1�j2

]
P	Vj3�j4


ϕr�j1�ϕr�j2�ϕr�j3�ϕr�j4��
(3.34)

Analogously we write

E

[
K�r�∑
k=1

ϕ�Bk�r�� r�2
]2

= ∑
j1�����j4∈D�Ar�

P
[
Vj1�j2

∩ Vj3�j4

]
ϕr�j1�ϕr�j2�ϕr�j3�ϕr�j4��

(3.35)

Then by (3.34) and by (3.35),

Var
[K�r�∑

k=1
ϕ�Bk�r�� r�2

]

= ∑
j1�����j4∈D�Ar�

(
P
[
Vj1�j2

∩ Vj3�j4

]−P
[
Vj1�j2


 P	Vj3�j4

])

× ϕr�j1�ϕr�j2�ϕr�j3�ϕr�j4��

(3.36)

Let Ṽj1�����j4
denote the event that the random walks X�j1� and X�j2� coalesce

and so do the random walks X�j3� and X�j4� but the random walks X�j1�
and X�j2� do not meet the random walks X�j3� and X�j4�. Then

P
[
Vj1�j2

∩ Vj3�j4

] = P	Ṽj1�����j4

 +P	Vj1�����j4


�(3.37)

Let �X′�j��j ∈ �d� be a system of independent continuous time random
walks evolving as �X�j��j ∈ �d� but running independent also after hitting.
Let τi� j denote the first hitting time of the two random walks X′�i��X′�j�.
With this notation we write

P	Ṽj1�����j4

=P

[
τj1�j2

< ∞� τj3�j4
< ∞� τj1�j3

= ∞� τj1�j4
> τj3�j4

�
τj2�j3

> τj1�j2
� τj2�j4

> τj1�j2



≤P
[
τj1�j2

< ∞� τj3�j4
< ∞] = P	τj1�j2

< ∞
P	τj3�j4
< ∞


=P	Vj1�j2

P	Vj3�j4


�

(3.38)

From (3.37) and from (3.38) we conclude

P	Vj1�j2
∩ Vj3�j4


 ≤ P	Vj1�j2

 P	Vj3�j4


 +P	Vj1�����j4

�(3.39)
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Hence applying (3.39) to (3.36) we obtain

Var

[
K�r�∑
k=1

ϕ�Bk�r�� r�2
]

≤ ∑
j1�����j4∈D�Ar�

P	Vj1�����j4

ϕr�j1�ϕr�j2�ϕr�j3�ϕr�j4�

≤ �ϕ�4∞r−2�d+2� ∑
j1�����j4∈D�Ar�

P	Vj1�����j4

�

(3.40)

since ϕ is bounded. From Lemma 5 below we know
∑

P	Vj1�����j4

 = O�rd+6�.

Hence Var	∑K�r�
k=1 ϕ�Bk�r�� r�2
 = O�r−d+2�. Since d ≥ 3 this leads to the

assertion. ✷

Lemma 2 (Variance convergence). Recall Cλ from Theorem 1� Under the
assumptions of Lemma 1 and for ϕ ∈ 	∞

c ��d� with supp�ϕ� ⊂ D�A� we have

E

[
K�r�∑
k=1

ϕ�Bk�r�� r�2
]
−→
r→∞

γ

2�Q� 12 π d
2

*

(
d − 2
2

)
B�ϕ�ϕ��(3.41)

Proof. With the help of the hitting probability we can write [cf. (3.33)]

E

[
K�r�∑
k=1

ϕ�Bk�r�� r�2
]
= ∑

i� j∈�d

P	Vi�j
 r−�d+2� ϕ
(

i

r

)
ϕ

(
j

r

)
�(3.42)

We want to show that

∑
i� j∈�d

P	Vi�j
r−�d+2�ϕ
(

i

r

)
ϕ

(
j

r

)

−→
r→∞ const

∫
�d

∫
�d

ϕ�x�ϕ�y�
Q̄�x − y��d−2�/2 dxdy�

(3.43)

Note that the integral on the r.h.s. is well defined.
Fix ε > 0. In order to employ the asymptotics on P	Vi�j
 for �i−j� large, we

split the sum into two parts depending on whether �i−j� < M or �i−j� ≥ M.
Here M = M�ε� is a constant that depends only on ε and will be chosen below
in (3.46).

In order to show that the sum over �i − j� < M is negligible the crude
estimate P	Vi�j
 ≤ 1 is sufficient to get (recall supp�ϕ� ⊂ D�A�)

∣∣∣∣ ∑
�i−j�<M

P	Vi�j
r−�d+2�ϕ
(

i

r

)
ϕ

(
j

r

)∣∣∣∣ ≤ r−2�2M�d�2A�d�ϕ�2∞�(3.44)
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It remains to investigate the sum over �i − j� ≥ M on the r.h.s. of (3.42).
Obviously for �i − j� /∈ � , P	Vi�j
 = 0. Hence we get

∑
�i−j�≥M

P	Vi�j
r−�d+2�ϕ
(

i

r

)
ϕ

(
j

r

)

= ∑
i−j∈� �
�i−j�≥M

P	Vi�j
r−�d+2�ϕ
(

i

r

)
ϕ

(
j

r

)
�

(3.45)

Let ε̃ > 0. By Lemma 4 there exists a constant M�ε̃� such that for �i − j� /∈
� � �i − j� > M�ε̃�

∣∣∣∣∣ P	Vi�j

C

Q̄�i−j��d−2�/2
− 1

∣∣∣∣∣ < ε̃�(3.46)

where

C = γ��d/� �
2�Q� 12 π d

2

*

(
d − 2
2

)
�(3.47)

We write

∑
i−j∈� �
�i−j�≥M

P	Vi�j
r−�d+2�ϕ
(

i

r

)
ϕ

(
j

r

)

= ∑
i−j∈� �
�i−j�≥M

(
P	Vi�j
 −

C

Q̄�i − j��d−2�/2
)
r−�d+2�ϕ

(
i

r

)
ϕ

(
j

r

)
(3.48)

+ ∑
i−j∈� �
�i−j�≥M

(
C

Q̄�i − j��d−2�/2
)
r−�d+2�ϕ

(
i

r

)
ϕ

(
j

r

)
�

We investigate the two sums on the r.h.s. of (3.49). For the second sum we
observe that

∑
i−j∈� �
�i−j�≥M

1

Q̄�i − j��d−2�/2 r
−�d+2�ϕ

(
i

r

)
ϕ

(
j

r

)

= ∑
i−j∈� �
�i−j�≥M

r−2d ϕ
(

i
r

)
ϕ
( j

r

)
Q̄
(

i
r
− j

r

)�d−2�/2 −→
r→∞

1
��d/� �B�ϕ�ϕ��

(3.49)
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For the first sum on the r.h.s. of (3.49) we get by (3.46)∣∣∣∣∣
∑

i−j∈� �
�i−j�≥M

(
P	Vi�j
 −

C

Q̄�i − j��d−2�/2
)
r−�d+2�ϕ

(
i

r

)
ϕ

(
j

r

)∣∣∣∣∣
≤ ε̃C

∑
i−j∈�
�i−j�≥M

1

Q̄�i − j��d−2�/2 r
−�d+2�

∣∣∣∣ϕ
(

i

r

)∣∣∣∣
∣∣∣∣ϕ
(

j

r

)∣∣∣∣
(3.50)

for M ≥ M�ε̃�. The sum on the r.h.s. of (3.50) converges to B��ϕ�� �ϕ��/��d/� �
as r → ∞ [analogously to (3.49)]. For the given ε we choose ε̃ such that
ε̃ CB��ϕ�� �ϕ��/��d/� � < ε. Hence the l.h.s. of (3.50) is less than ε for M >
M�ε� = M�ε̃�ε��. Combining this fact with (3.49) we obtain

E

[
K�r�∑
k=1

ϕ�Bk�r�� r�2
]
−→
r→∞

C

��d/� �B�ϕ�ϕ��(3.51)

This leads to assertion (3.41). ✷

Lemma 3 (For the Lyapunov condition). Under the assumptions of Lemma
1�

K�r�∑
k=1

ϕ�Bk�r�� r�4
P−→

r→∞0(3.52)

for ϕ ∈ 	∞
c ��d� with supp�ϕ� ⊂ D�A�.

Proof. Similarly as in (3.33) we write

E

[
K�r�∑
k=1

ϕ�Bk�r�� r�4
]
= ∑

j1�����j4

P	Vj1�����j4

ϕr�j1� � � � ϕr�j4��(3.53)

We estimate as in (3.40), hence by Lemma 5,

E

[
K�r�∑
k=1

ϕ�Bk�r�� r�4
]
= O�r−d+2��(3.54)

Since d ≥ 3 this completes the proof. ✷

Part 4 (Some tools). The following lemmas are auxiliary lemmas for the
previous results.

Lemma 4 (Used in Lemma 2). Recall Vi�j from �3�32�. Under the assump-
tions of Lemma 1 there exists a constant C > 0 such that

P	Vi�j
 ∼

C · (Q̄�i − j�)− d−2

2 � i − j ∈ � �

0� i − j /∈ � �
(3.55)
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for �i − j� → ∞. Moreover C has the following form�

C = γ��d/� �
2�Q� 12 π d

2

*

(
d − 2
2

)
�(3.56)

with γ defined in �1�25��

Proof. Recall that �X′�j��j ∈ �d� is a system of independent continuous
time random walks evolving as �X�j��j ∈ �d� but running independent also
after hitting. Recall that Vi�j is the hitting probability of X�i� and X�j�. Note
that the random walks X�i� and X�j� coalesce if and only if the difference
random walk X′�i� − X′�j� hits the origin. The difference random walk runs
according to the symmetrized kernel p̂ defined in (1.5) at double speed. Due
to the symmetry we have P	Vi�j
 = P	∃t � X̂t = i − j
, where X̂ starts in the
origin and it runs according to p̂ at double speed, that is,

P	X̂t = x
 =
∞∑

n=0
e−2t

�2t�n
n!

p̂�n��0� x��(3.57)

Using the Markov property it is easy to verify P	∃t � X̂t = i − j
 = Ĝ�i −
j�/Ĝ�0�, where Ĝ is the Green’s function of p̂. Hence P	Vi�j
 = Ĝ�i−j�/Ĝ�0�.
It is well-known that Ĝ�0� = γ−1. This relation immediately implies that in
order to prove the asymptotics of the hitting probability we need the asymp-
totics of the Green’s function. However such an asymptotics was established
in Corollary 2, namely [observe that the covariance matrix of p̂ is Q given in
(1.17)]

Ĝ�x� ∼
{

C · Q̄�x�−�d−2�/2� as �x� → ∞� x ∈ � �

0� if x ∈ �d\� �
(3.58)

where

C = ��d/� �*�d−2
2 �

2�Q�1/2πd/2
�(3.59)

This completes the proof. ✷

Lemma 5 (Used in Lemma 1 and Lemma 3). Recall Vj1�����j4
from �3�32�

and D�Ar� from �3�5�. Under the assumptions of Lemma 1 the following holds:∑
j1�����j4∈D�Ar�

P	Vj1�����j4

 = O�rd+6��(3.60)

Proof. In order to apply Lemma 9 we have to check assumptions (5.1)
and (5.2).

Concerning the first assumption we observe the following. Recall that Ĝ is
the Green’s function of the symmetrized kernel p̂. By Corollary 2 we find a
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constant C′ such that for all i ∈ �d

Ĝ�i� ≤ C′

��i� + 1�d−2 �(3.61)

Hence Ĝ�i� = O�r−�d−2�� for all �i� ≥ r. That means condition (5.1) is fulfilled
with f�r� = r−�d−2�.

The second assumption is satisfied with g�r� = r2. Namely we perform the
following short calculation. Define

D�r� k� �=
{
i ∈ �d � r

2k+1 ≤ �i� < r

2k

}
�(3.62)

We can estimate∑
i∈D�r�

Ĝ�i� ≤O�1� ∑
i∈D�r�

1
��i� + 1�d−2

=O�1�
∞∑

k=0

∑
i∈D�r�k�

1
��i� + 1�d−2 + 1

≤O�1�
∞∑

k=0
�D�r� k�� 1

� r
2k+1 + 1�d−2 + 1

=O�r2�
∞∑

k=0

(
1
4

)k

�

(3.63)

where we used (3.61) in the first inequality.
By Lemma 9 we obtain [note �D�r�� = O�rd�]∑

j1�����j4∈D�r�
P	Vj1�����j4


 = O�rd+6��(3.64)

This completes the proof. ✷

Now we have to generalize the result for ϕ ∈ 	∞
c ��d� to the result for ϕ ∈ � .

Lemma 6 (For general test functions). If

� 	Fλ�r�ϕ�
 �⇒
r→∞

� �0�CλB�ϕ�ϕ��(3.65)

is valid for ϕ ∈ 	∞
c ��d�, then the statement is true for ϕ ∈ � �

Proof. Let ϕ ∈ � . For ε > 0 there exists a ϕε ∈ 	∞
c ��d� such that

B
(�ϕ − ϕε�� �ϕ − ϕε�

)
< ε�(3.66)

Recall

EFλ�r�ϕ�2 = ∑
i� j∈�d

P	Vi�j
ϕr�i�ϕr�j��(3.67)



RENORMALIZATION OF THE VOTER MODEL 1285

Using Lemma 4 we find a constant K such that

P	Vi�j
 ≤ K · (Q̄�i − j�)− d−2
2(3.68)

for all i� j ∈ �d. Now we can estimate as in the proof of (3.43). Note that we do
not have to take the constants M and ��d/� � into account since we are only
interested in an estimate of the limit

lim sup
r→∞

E	Fλ�r�ϕ�
2 ≤ lim sup
r→∞

∑
i� j

P	Vi�j

∣∣ϕr�i�

∣∣ ∣∣ϕr�j�
∣∣

≤ K lim sup
r→∞

∑
i� j

r−2d
(
Q

(
i

r
− j

r

))− d−2
2
∣∣∣∣ϕ
(

i

r

)∣∣∣∣
∣∣∣∣ϕ
(

j

r

)∣∣∣∣(3.69)

≤ KB��ϕ�� �ϕ���
By the last equation applied to ϕ − ϕε we can estimate

lim sup
r→∞

E	Fλ�r�ϕ� − Fλ�r�ϕε�
2= lim sup
r→∞

E	Fλ�r�ϕ − ϕε�
2

≤KB
(�ϕ − ϕε�� �ϕ − ϕε�

) ≤ Kε�
(3.70)

From this and the assumption

� 	Fλ�r�ϕε�
 �⇒
r→∞

� �0�CλB�ϕε�ϕε���(3.71)

we can conclude

� 	Fλ�r�ϕ�
 �⇒
r→∞

� �0�CλB�ϕ�ϕ���(3.72)

This completes the proof. ✷

4. Proof of Theorem 2 (The voter model on ��N�). Now we come to the
proof of Theorem 2. Note first that the reason behind the nonclassical scaling
is as before. Namely:

Remark 3. As in the case of the group �d we observe that the correction
factor to the classical rescaling is 1 over the root of the expected size of the
family which contains the origin and which lies in the ball with radius r. The
expected size of that family is

∑
�i�<r Gc�i�. One can verify that

∑
�i�<r Gc�i� =

const�Nc�r. Hence the correction term together with the classical rescaling
factor is given by

1√
Nr

· 1√
Nrcr

= N−rc−r/2�(4.1)

This is exactly the rescaling we chose in (1.35).
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First of all we want to mention that is suffices to consider r ∈ �, since the
distance between two points in ��N� is always integral.

The proof of Theorem 2 is similar to the one of Theorem 1 except the ran-
dom walk estimates and the coalescing random walk estimates. Hence only
the Green’s function, which will have another asymptotics, and the coalesc-
ing probabilities have to be analyzed. We want to sketch the modifications
of the arguments needed in order to transfer the argument from �d to the
hierarchical group. Analogously to (3.10) we obtain

Fλ�r =
K�r�∑
k=1

�αk − λ�h�r��Bk�r���(4.2)

The term ϕ�Bk�r�� r� has here the form h�r��Bk�r��. We have to prove the
versions of the lemmas of Section 3 part 3 on the hierarchical group. That
means we have to deal with Lemma 1, Lemma 2 and Lemma 3. Let D�r� be
the ball with radius r

D�r� = �i ∈ ��N� � �i� < r��(4.3)

4.1. Modification of Lemma 1. The proof of this lemma for the hierarchical
group works exactly the same as in the lattice case until equation (3.40). Then
we can use Lemma 8. We obtain

Var

[
K�r�∑
k=1

ϕ�r�2�Bk�r��2
]
≤ N−4rc−2r

∑
j1�����j4∈D�r�

P	Vj1�����j4

 = O�cr��(4.4)

Since c < 1 this leads to the assertion

Var

[
K�r�∑
k=1

ϕ�r�2�Bk�r��2
]
−→
r→∞0�(4.5)

4.2. Modification of Lemma 2. By Lemma 7 we know that

P	Vi�j
 = γ C�N�c� c�i−j��(4.6)

where

C�N�c� = N3c2 − N2c2 − N2c + Nc

�N2c − 1��1− c� �(4.7)

since P	Vi�j
 = γGc�j − i�. Hence

E

[
K�r�∑
k=1

h�r�2�Bk�r��2
]

= N−2rc−r
∑

i� j∈D�r�
P	Vi�j


= γC�N�c� · N−2rc−r
∑

i� j∈D�r�
c�i−j�(4.8)
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= γC�N�c�N−2rc−r
r−1∑
k=0

∑
i� j∈D�r��
�i−j�=k

ck

= γC�N�c�N−2rc−r

[
�N − 1�Nr−1

r−1∑
k=1

ckNk−1 + Nr−1
]

= γC�N�c��N − 1�N−r−1c−r+1 �Nc�r−1 − 1
Nc − 1

+ γC�N�c�N−r−1c−r�

This leads to

E

[
K�r�∑
k=1

�h�r��Bk�r���2
]
−→
r→∞γC�N�c� N − 1

N2�Nc − 1� �(4.9)

4.3. Modification of Lemma 3� By Lemma 8 we know∑
j1�����j4∈D�r�

P	Vj1�����j4

 = O�N4rc3r��(4.10)

Hence

E

[
K�r�∑
k=1

h�r�4�Bk�r��4
]
= h�r�4 ∑

j1�����j4∈D�r�
P	Vj1�����j4


 = O�cr��(4.11)

This leads to

K�r�∑
k=1

h�r�4�Bk�r��4
P−→

r→∞0�(4.12)

4.4. Tools. We want to investigate the asymptotics of the Green’s function
as the argument tends to infinity. We need the following formula:

Lemma 7. The Green’s function of a random walk on the hierarchical group
with geometric transition kernel given in �1�31� and �1�33� has the following
form�

Gc�i� = c�i�
N3c2 − N2c2 − N2c + Nc

�N2c − 1��1− c� � i �= 0�(4.13)

Proof. From [6] (2.10) we know

p
�n�
c �i� = −	1− δ0�i�
N−�i��f�i��n + �N − 1� ∑

k>�i�
N−k�fk�n�(4.14)

where

fk = r0 + r1 + � � � + rk−1 −
rk

N − 1
(4.15)



1288 I. ZÄHLE

and �rl� given by (1.33). A short calculation shows

1− fk =
(

1
Nc

)k N2c − 1
�N − 1�Nc

�(4.16)

One can verify that �fk� < 1. Hence we obtain for i �= 0

Gc�i� =
∞∑

n=1
p

�n�
c �i� =

∞∑
n=1

[
�N − 1� ∑

k>�i�
N−k�fk�n − N−�i��f�i��n

]

= �N − 1� ∑
k>�i�

N−k

(
1

1− fk

− 1
)
− N−�i�

(
1

1− f�i�
− 1

)
(4.17)

= �N − 1� ∑
k>�i�

(
ck �N − 1�Nc

N2c − 1
− N−k

)
−
(
c�i�

�N − 1�Nc

N2c − 1
− N−�i�

)
�

By a straightforward calculation we get (4.13). This completes the proof. ✷

Lemma 8. Recall Vj1�����j4
from �3�32�. Under the assumptions of Theorem

2 the following holds�
∑

j1�����j4∈D�r�
P	Vj1�����j4


 = O�N4rc3r��(4.18)

Proof. In order to apply Lemma 9 we have to check assumptions (5.1)
and (5.2).

Concerning the first assumption we observe the following. By Lemma 7 we
know

Gc�i� = O�c�i���(4.19)

Hence Gc�i� = O�cr� for all �i� ≥ r. That means condition (5.1) is fulfilled
with f�r� = cr.

The second assumption is satisfied with g�r� = Nrcr, since one can easily
check

∑
i∈D�r�

c�i� = O�Nrcr��(4.20)

Furthermore note �D�r�� = O�Nr�. Hence by Lemma 9,

∑
j1�����j4∈D�r�

P	Vj1�����j4

 = O�N4rc3r��(4.21)

This completes the proof. ✷
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5. A coalescent random walk estimate. Let S be a countable Abelian
group with a metric � · �. Let D�r� denote the ball with radius r in S.

We consider a system �X�j��j ∈ S� of coalescing random walks with con-
tinuous time kernel p and X0�j� = j for all j ∈ S. We define Vj1�����jk

for a
k ∈ � as the event that the random walks X�j1�� � � � �X�jk� coalesce eventu-
ally.

Lemma 9. Assume for the Green’s function of the symmetrized kernel p̂
that

Ĝ�i� = O�f�r�� for all �i� ≥ r(5.1)

for some function f. Furthermore assume∑
i∈D�r�

Ĝ�i� = O�g�r��(5.2)

for some other function g. Then∑
j1�����j4∈D�r�

P	Vj1�����j4

 = O

(
�D�r��g�r� 	�D�r��f�r� + g�r�
2

)
�(5.3)

Proof. First of all we want to distinguish whether the indices j1� � � � � j4
are different or not. We split the sum∑

j1�����j4∈D�r�
P	Vj1�����j4


 = ∑
j1�����j4∈D�r�

j1 �=��� �=j4

P	Vj1�����j4



+ 6
∑

j1�j2�j3∈D�r�
j1 �=j2 �=j3

P	Vj1�j2�j3

(5.4)

+ 7
∑

j1�j2∈D�r�
j1 �=j2

P	Vj1�j2

 + ∑

j1∈D�r�
1�

In step 1 we will show∑
j1�����j4∈D�r�

j1 �=����=j4

P	Vj1�����j4

 = O

(
�D�r��g�r� 	�D�r��f�r� + g�r�
2

)
�(5.5)

In step 5 we prove∑
j1�j2�j3∈D�r�

j1 �=j2 �=j3

P	Vj1�j2�j3

 = O

(
�D�r��g�r� 	�D�r��f�r� + g�r�


)
�(5.6)

For the sum with two different indices we observe the following. It is well
known that ∑

j1�j2∈D�r�
j1 �=j2

P	Vj1�j2

 ≤ O�1� ∑

j1�j2∈D�r�
Ĝ�j2 − j1��(5.7)
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The assumption (5.2) then justifies∑
j1�j2∈D�r�

j1 �=j2

P	Vj1�j2

 = O

(
�D�r��g�r�

)
�(5.8)

Since g is obviously increasing in r, (5.5), (5.6) and (5.8) lead to assertion (5.3).
It remains to prove equations (5.5) and (5.6).

Step 1. In order to establish (5.5) we consider in which order do the ran-
dom walks meet each other. If two of the four random walks have coalesced
we have two general possibilities for the second coalescing event. Either the
two other walks coalesce or the two coalesced walks meet one of the remaining
walks. That means there are the following two general coalescing orders:

First order: �i� X�j1� ↔ X�j2��
�ii� X�j1� ↔ X�j3��
�iii� X�j1� ↔ X�j4��

(5.9)

Second order: �i� X�j1� ↔ X�j2��
�ii� X�j3� ↔ X�j4��
�iii� X�j1� ↔ X�j3��

(5.10)

We denote the first (resp. the second) event with V
�1�
j1�����j4

resp. V�2�
j1�����j4

. We
can change the roles of the jl in each case. There are twelve combinations of
the jl to obtain the first coalescing order and six for the second one. Since we
sum over all j1� j2� j3� j4 ∈ D�r��j1 �= � � � �= j4 and we have symmetry we can
write ∑

j1�����j4∈D�r�
j1 �=����=j4

P	Vj1�����j4

=12

∑
j1�����j4∈D�r�

j1 �=��� �=j4

P
[
V

�1�
j1�����j4

]

+ 6
∑

j1�����j4∈D�r�
j1 �=��� �=j4

P
[
V

�2�
j1�����j4

]
�

(5.11)

In step 3 we will prove∑
j1�����j4∈D�r�

j1 �=����=j4

P
[
V

�1�
j1�����j4

]
= O

(
�D�r��g�r� 	�D�r��f�r� + g�r�
2

)
(5.12)

and in step 4 we will show∑
j1�����j4∈D�r�

j1 �=����=j4

P	V�2�
j1�����j4


 = O
(
�D�r��g�r� 	�D�r��f�r� + g�r�
2

)
�(5.13)

This leads to the assertion (5.5). It remains to prove (5.12) and (5.13).
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Step 2. Here we want to establish the basic techniques and the basic es-
timates we will use in step 3 and 4 repeatedly. The basic technique which will
be used is the following. Assume that we have to deal with an expression of
the form ∑

i� j∈S

Ĝ�j − i�ψ�i� j��(5.14)

for some function ψ. We want to distinguish between the cases “large distance
between i and j” and “small distance between i and j.” In the first case we
want to exploit the assumption (5.1) on the Green’s function of �i� j�. On the
other hand there are not too many pairs �i� j� fulfilling the second condition.

Denote for i ∈ S:

Di�r� = �j ∈ S � �j − i� < r��(5.15)

We use the following splitting technique for �i� j�∑
i� j∈S

Ĝ�j − i�ψ�i� j�

= ∑
i∈S

∑
j/∈Di�r�

Ĝ�j − i�ψ�i� j� + ∑
i∈S

∑
j∈Di�r�

Ĝ�j − i�ψ�i� j��
(5.16)

Then we treat the two sums separately. For the first sum we will use that
�j − i� ≥ r, thus by (5.1)

Ĝ�j − i� = O�f�r���(5.17)

Hence we obtain∑
i∈S

∑
j/∈Di�r�

Ĝ�j − i�ψ�i� j� ≤ O�f�r�� ∑
i� j∈S

ψ�i� j��(5.18)

For the second sum we will use that j − i ∈ D�r� for all j ∈ Di�r�, hence∑
i∈S

∑
j∈Di�r�

Ĝ�j − i�ψ�i� j� ≤ ∑
j∈D�r�

Ĝ�j�∑
i∈S

ψ�i� j + i��(5.19)

Step 3a. In order to prove (5.12) we establish first of all the following
estimate: for j1� � � � j4 different in pairs

P	V�1�
j1�����j4




≤O�1� ∑
x�y�z�w∈S

∫ ∞

0
dtpt�j1�x�pt�j2�x�pt�j3�y�

×
∫ ∞

0
dsps�x�z�ps�y�z�pt+s�j4�w�

∫ ∞

0
dup̂2u�z�w��

(5.20)

This can be seen by the following argument. We have to subdivide the coa-
lescing event in all possible coalescing times and locations.
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As in the proof of Lemma 1 we introduce the following notation. Let �X′�j��
j ∈ S� be a system of independent continuous time random walks evolving as
�X�j��j ∈ S� but running independent also after hitting. First of all we turn
our attention to the coalescing times. Let τi� j denote the first hitting time of
the two random walks X′�i� and X′�j� and let Gj1�����jn

= inf�t ≥ 0� ∃k �= l �
X′

t�jk� = X′
t�jl��. We rewrite

P
[
V

�1�
j1�����j4

] = P
[
Gj1�j2�j3�j4

=τj1�j2
�Gj1�j3�j4

=τj1�j3
�τj1�j4

<∞]
(5.21)

=
∫ ∞

0
P
[
Gj1�j2�j3�j4

=τj1�j2
∈dt�Gj1�j3�j4

=τj1�j3
� τj1�j4

<∞
�

Now we sum over all hitting locations. Due to the Markov property,

P
[
V

�1�
j1�����j4

]
= ∑

x�y�z∈S

∫ ∞

0
P	Gj1�j2�j3�j4

=τj1�j2
∈dt�Gj1�j3�j4

=τj1�j3
�τj1�j4

<∞�

X′
t�j1�=X′

t�j2�=x�X′
t�j3�=y�X′

t�j4�=z

(5.22)

≤ ∑
x�y�z∈S

∫ ∞

0
P
[
τj1�j2

∈dt�X′
t�j1�=X′

t�j2�=x�

X′
t�j3�=y�X′

t�j4�=z
]

×P
[
Gx�y�z=τx�y�τx�z<∞]

�

Here we estimate P	τj1�j2
∈ dt� � � �
 by P	� � �
dt. This can be justified by

the following argument. The event �τj1�j2
∈ 	s� t
� ∩ A (with A = �X′

t�j1� =
X′

t�j2� = x� X′
t�j3� = y� X′

t�j4� = z�) is less likely than the event that there
is a jump of one of the random walks X′�j1� and X′�j2� in the time-interval
	s� t
 intersected with A. Since A is independent of the jump event this leads
to

P
[�τj1�j2

∈ 	s� t
� ∩ A
]≤�1− e−2�t−s��P	A

≤4�t − s�P	A
 for all 0 ≤ �t − s� ≤ 1/4�

(5.23)

This estimate gives us

P	V�1�
j1�����j4




≤O�1� ∑
x�y�z∈S

∫ ∞

0
dtP

[
X′

t�j1�=X′
t�j2�=x�X′

t�j3�=y�X′
t�j4�=z

]
(5.24)

×P
[
Gx�y�z=τx�y� τx�z<∞]

�
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We treat the remaining expression P	� � �
 on the r.h.s. of (5.24) in the same
way as the expression in the middle of (5.21). Hence we obtain

P	V�1�
j1�����j4




≤ O�1� ∑
x�y�z∈S

∫ ∞

0
dtpt�j1� x�pt�j2� x�pt�j3� y�pt�j4� z�

× ∑
v�w∈S

∫ ∞

0
dsps�x� v�ps�y� v�ps�z�w�

∫ ∞

0
du p̂2u�v�w�

= O�1� ∑
x�y�v�w∈S

∫ ∞

0
dtpt�j1� x�pt�j2� x�pt�j3� y�

×
∫ ∞

0
dsps�x� v�ps�y� v�pt+s�j4�w�

∫ ∞

0
du p̂2u�v�w��

(5.25)

This completes the proof of (5.20). ✷

Step 3b. Return now to inequality (5.20). Estimating the integral over u
by the Green’s function we obtain∑

j1�����j4∈D�r�
j1 �=����=j4

P	V�1�
j1�����j4


 ≤O�1� ∑
j1�����j4∈D�r�

∑
x�y�z�w∈S

Ĝ�w − z�

×
∫ ∞

0
dt pt�j1� x�pt�j2� x�pt�j3� y�

×
∫ ∞

0
ds ps�x� z�ps�y� z�pt+s�j4�w��

(5.26)

Now we use the splitting technique given in (5.16) for �z�w�. Hence∑
j1�����j4∈D�r�

j1 �=����=j4

P	V�1�
j1�����j4


 ≤ O�1�
[
I1�r� + I2�r�

]
�(5.27)

where

I1�r� =
∑

j1�����j4∈D�r�

∑
x�y�z∈S

∑
w/∈Dz�r�

Ĝ�w − z�

×
∫ ∞

0
dt pt�j1� x�pt�j2� x�pt�j3� y�(5.28)

×
∫ ∞

0
ds ps�x� z�ps�y� z�pt+s�j4�w�

and

I2�r� =
∑

j1�����j4∈D�r�

∑
x�y�z∈S

∑
w∈Dz�r�

Ĝ�w − z�

×
∫ ∞

0
dt pt�j1� x�pt�j2� x�pt�j3� y�(5.29)

×
∫ ∞

0
ds ps�x� z�ps�y� z�pt+s�j4�w��
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For I1�r� we use the estimate (5.18), hence

I1�r�≤O�f�r�� ∑
j1�����j4∈D�r�

∑
x�y�z�w∈S

∫ ∞

0
dt pt�j1� x�pt�j2� x�pt�j3� y�

×
∫ ∞

0
ds ps�x� z�ps�y� z�pt+s�j4�w�

≤O�f�r�� ∑
j1�����j4∈D�r�

∑
x�y�z∈S

∫ ∞

0
dt pt�j1� x�pt�j2� x�pt�j3� y�

×
∫ ∞

0
ds ps�x� z�ps�y� z��

(5.30)

where we performed the sum over w. There is no occurrence of j4 in the sum
any more. We can estimate the sum over j4 by �D�r��. Furthermore we perform
the sum over z. We get

I1�r�≤O��D�r��f�r�� ∑
j1�j2�j3∈D�r�

∑
x�y∈S

∫ ∞

0
dt pt�j1� x�pt�j2� x�pt�j3� y�

×
∫ ∞

0
ds p̂2s�x�y��

(5.31)

Return to (5.27). To I2�r� we apply (5.19), hence

I2�r�≤O�1� ∑
j1�����j4�w∈D�r�

∑
x�y�z∈S

Ĝ�w�
∫ ∞

0
dt pt�j1� x�pt�j2� x�pt�j3� y�

×
∫ ∞

0
ds ps�x� z�ps�y� z�pt+s�j4�w + z��

(5.32)

Now we estimate
∑

j4∈D�r� pt+s�j4�w + z� ≤ 1. We obtain

I2�r�≤O�1� ∑
w∈D�r�

Ĝ�w�

× ∑
j1�j2�j3∈D�r�

∑
x�y�z∈S

∫ ∞

0
dt pt�j1� x�pt�j2� x�pt�j3� y�

×
∫ ∞

0
ds ps�x� z�ps�y� z��

(5.33)

Using (5.2) and performing the sum over z we end up with

I2�r�≤O�g�r�� ∑
j1�j2�j3∈D�r�

∑
x�y∈S

∫ ∞

0
dt pt�j1� x�pt�j2� x�pt�j3� y�

×
∫ ∞

0
ds p̂2s�x�y��

(5.34)
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We combine (5.31) and (5.34), thus∑
j1�����j4∈D�r�

j1 �=����=j4

P	V�1�
j1�����j4




≤ O
(
�D�r��f�r� + g�r�

)
× ∑

j1�j2�j3∈D�r�

∑
x�y∈S

∫ ∞

0
dt pt�j1� x�pt�j2� x�pt�j3� y�

×
∫ ∞

0
ds p̂2s�x�y��

(5.35)

In step 5, (5.75), we prove∑
j1�j2�j3∈D�r�

∑
x�y∈S

∫ ∞

0
dt pt�j1� x�pt�j2� x�pt�j3� y�

∫ ∞

0
ds p̂2s�x�y�

= O
(
�D�r��g�r� 	�D�r��f�r� + g�r�


)
�

(5.36)

Hence ∑
j1�����j4∈D�r�

j1 �=����=j4

P
[
V

�1�
j1�����j4

] = O
(
�D�r��g�r� 	�D�r��f�r� + g�r�
2

)
�(5.37)

This completes the proof of assertion (5.12). ✷

Step 4a. In order to prove (5.13) we can establish the following estimate
analogously to step 3a:∑

j1�����j4∈D�r�
j1 �=����=j4

P	V�2�
j1�����j4




≤ O�1�

× ∑
j1�����j4∈D�r�

∑
x�y�z�v�w∈S

∫ ∞

0
dtpt�j1� x�pt�j2� x�pt�j3� y�pt�j4� z�

×
∫ ∞

0
dsps�y� v�ps�z� v�ps�x�w�

∫ ∞

0
du p̂2u�v�w��

(5.38)

Step 4b. On the r.h.s. of (5.38) we estimate the integral over u by the
Green’s function, thus∑

j1�����j4∈D�r�
j1 �=����=j4

P	V�2�
j1�����j4


 ≤ O�1� ∑
j1�����j4∈D�r�

∑
x�y�z�v�w∈S

Ĝ�w − v�

×
∫ ∞

0
dtpt�j1� x�pt�j2� x�pt�j3� y�pt�j4� z�(5.39)

×
∫ ∞

0
dsps�y� v�ps�z� v�ps�x�w��
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Now we use the splitting technique given in (5.16) for �v�w�. Hence∑
j1�����j4∈D�r�

j1 �=����=j4

P	V�2�
j1�����j4


 ≤ O�1�
[
I3�r� + I4�r�

]
�(5.40)

where

I3�r� =
∑

j1�����j4∈D�r�

∑
x�y�z�v∈S

∑
w/∈Dv�r�

Ĝ�w − v�

×
∫ ∞

0
dtpt�j1� x�pt�j2� x�pt�j3� y�pt�j4� z�(5.41)

×
∫ ∞

0
dsps�y� v�ps�z� v�ps�x�w�

and

I4�r� =
∑

j1�����j4∈D�r�

∑
x�y�z�v∈S

∑
w∈Dv�r�

Ĝ�w − v�

×
∫ ∞

0
dtpt�j1� x�pt�j2� x�pt�j3� y�pt�j4� z�(5.42)

×
∫ ∞

0
dsps�y� v�ps�z� v�ps�x�w��

For I3�r� we use the estimate (5.18) to find

I3�r� ≤ O�f�r��

× ∑
j1�����j4∈D�r�

∑
x�y�z�v�w∈S

∫ ∞

0
dtpt�j1� x�pt�j2� x�pt�j3� y�pt�j4� z�

×
∫ ∞

0
dsps�y� v�ps�z� v�ps�x�w�

(5.43)
= O�f�r��

× ∑
j1�����j4∈D�r�

∑
x�y�z∈S

∫ ∞

0
dtpt�j1� x�pt�j2� x�pt�j3� y�pt�j4� z�

×
∫ ∞

0
ds p̂2s�y� z��

where we performed the sums over v and w in the latter equality. Estimating
the integral over s by the Green’s function we get

I3�r�≤O�f�r�� ∑
j1�����j4∈D�r�

∑
x�y�z∈S

Ĝ�z − y�

×
∫ ∞

0
dtpt�j1� x�pt�j2� x�pt�j3� y�pt�j4� z��

(5.44)

Now we use the splitting technique given in (5.16) again but now for �y� z�,
I3�r� ≤ I3�1�r� + I3�2�r��(5.45)
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where

I3�1�r�=O�f�r�� ∑
j1�����j4∈D�r�

∑
x�y∈S

∑
z/∈Dy�r�

Ĝ�z − y�

×
∫ ∞

0
dtpt�j1� x�pt�j2� x�pt�j3� y�pt�j4� z�

(5.46)

and

I3�2�r�=O�f�r�� ∑
j1�����j4∈D�r�

∑
x�y∈S

∑
z∈Dy�r�

Ĝ�z − y�

×
∫ ∞

0
dtpt�j1� x�pt�j2� x�pt�j3� y�pt�j4� z��

(5.47)

For I3�1�r� we use the estimate (5.18), thus

I3�1�r� ≤ O�f2�r�� ∑
j1�����j4∈D�r�

∑
x�y�z∈S

×
∫ ∞

0
dtpt�j1� x�pt�j2� x�pt�j3� y�pt�j4� z�(5.48)

≤ O�f2�r�� ∑
j1�����j4∈D�r�

∫ ∞

0
dt p̂2t�j1� j2��

where we performed the sums over x, y and z in the latter equality. We esti-
mate the integral over t by the Green’s function and we apply (5.2), hence

I3�1�r� ≤O
(
�D�r��2f2�r�

) ∑
j1�j2∈D�r�

Ĝ�j2 − j1�

=O
(
�D�r��3 f2�r�g�r�

)
�

(5.49)

Return to (5.45). To I3�2�r� we apply (5.19), hence

I3�2�r�≤O�f�r�� ∑
j1�����j4�z∈D�r�

Ĝ�z�

× ∑
x�y∈S

∫ ∞

0
dtpt�j1� x�pt�j2� x�pt�j3� y�pt�j4� z + y�

≤O�f�r�� ∑
j1�j2�j3�z∈D�r�

Ĝ�z�

× ∑
x�y∈S

∫ ∞

0
dtpt�j1� x�pt�j2� x�pt�j3� y��

(5.50)

where we estimated
∑

j4
pt�j4� z+ y� ≤ 1. Performing the sums over x and y

we get

I3�2�r�≤O�f�r�� ∑
j1�j2�j3�z∈D�r�

Ĝ�z�
∫ ∞

0
dt p̂2t�j1� j2�

≤O
(
�D�r��f�r�

) ∑
z∈D�r�

Ĝ�z� ∑
j1�j2∈D�r�

Ĝ�j2 − j1��
(5.51)
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We apply (5.2), thus

I3�2�r� = O
(
�D�r��2 f�r�g2�r�

)
�(5.52)

Hence by (5.49) and by (5.52)

I3�r� = O
(
�D�r��2 f�r�g�r� 	�D�r��f�r� + g�r�


)
�(5.53)

Return to (5.40). For I4�r� we use the estimate (5.19), hence

I4�r� ≤ O�1� ∑
j1�����j4�w∈D�r�

Ĝ�w�

× ∑
x�y�z�v∈S

∫ ∞

0
dtpt�j1� x�pt�j2� x�pt�j3� y�pt�j4� z�

×
∫ ∞

0
dsps�y� v�ps�z� v�ps�x�w + v�

(5.54)
≤ O�1� ∑

j1�j2�j3�w∈D�r�
Ĝ�w�

× ∑
x�y�z�v∈S

∫ ∞

0
dtpt�j1� x�pt�j2� x�pt�j3� y�

×
∫ ∞

0
dsps�y� v�ps�z� v�ps�x�w + v��

where we used
∑

j4
pt�j4� z� ≤ 1. Next perform the sum over z, thus

I4�r� ≤ O�1� ∑
j1�j2�j3�w∈D�r�

Ĝ�w� ∑
x�y�v∈S

∫ ∞

0
dtpt�j1� x�pt�j2� x�pt�j3� y�

×
∫ ∞

0
dsps�y� v�ps�x − w�v�

(5.55)
≤ O�1� ∑

j1�j2�j3�w∈D�r�
Ĝ�w� ∑

x�y∈S

∫ ∞

0
dtpt�j1� x�pt�j2� x�pt�j3� y�

×
∫ ∞

0
ds p̂2s�y�x − w��

where we performed the sum over v. Estimating the integral over s by the
Green’s function we end up with

I4�r� ≤O�1� ∑
j1�j2�j3�w∈D�r�

Ĝ�w� ∑
x�y∈S

Ĝ�x − w − y�

×
∫ ∞

0
dtpt�j1� x�pt�j2� x�pt�j3� y�

=O�1� ∑
j1�j2�j3�w∈D�r�

Ĝ�w� ∑
x�y∈S

Ĝ�x − y�

×
∫ ∞

0
dtpt�j1� x�pt�j2� x�pt�j3� y − w��

(5.56)
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Then we use the splitting technique given in (5.16) for �x�y�. We obtain

I4�r� ≤ I4�1�r� + I4�2�r��(5.57)

where

I4�1�r�=O�1� ∑
j1�j2�j3�w∈D�r�

Ĝ�w� ∑
x∈S

∑
y/∈Dx�r�

Ĝ�x − y�

×
∫ ∞

0
dtpt�j1� x�pt�j2� x�pt�j3� y − w�

(5.58)

and

I4�2�r�=O�1� ∑
j1�j2�j3�w∈D�r�

Ĝ�w� ∑
x∈S

∑
y∈Dx�r�

Ĝ�x − y�

×
∫ ∞

0
dtpt�j1� x�pt�j2� x�pt�j3� y − w��

(5.59)

For I4�1�r� we use the estimate (5.18), thus

I4�1�r�≤O�f�r�� ∑
j1�j2�j3�w∈D�r�

Ĝ�w�

× ∑
x�y∈S

∫ ∞

0
dtpt�j1� x�pt�j2� x�pt�j3� y − w�

≤O�f�r�� ∑
j1�j2�j3�w∈D�r�

Ĝ�w�
∫ ∞

0
dt p̂2t�j1� j2��

(5.60)

where we performed the sums over x and y. We estimate the integral over t
by the Green’s function, thus, by assumption (5.2),

I4�1�r� ≤O
(
�D�r��f�r�

) ∑
w∈D�r�

Ĝ�w� ∑
j1�j2∈D�r�

Ĝ�j2 − j1�

=O
(
�D�r��2 f�r�g2�r�

)
�

(5.61)

To I4�2�r� we apply estimate (5.19), thus

I4�2�r�≤O�1� ∑
j1�j2�j3�w�y∈D�r�

Ĝ�w�Ĝ�y�

× ∑
x∈S

∫ ∞

0
dtpt�j1� x�pt�j2� x�pt�j3� x − y − w�

≤O�1� ∑
j1�j2�w�y∈D�r�

Ĝ�w�Ĝ�y� ∑
x∈S

∫ ∞

0
dtpt�j1� x�pt�j2� x��

(5.62)
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where we used
∑

j3
pt�j3� x − y − w� ≤ 1. Next perform the sum over x, thus

I4�2�r�≤O�1� ∑
j1�j2�w�y∈D�r�

Ĝ�w�Ĝ�y�
∫ ∞

0
dt p̂2t�j1� j2�

≤O�1� ∑
w∈D�r�

Ĝ�w� ∑
y∈D�r�

Ĝ�y� ∑
j1�j2∈D�r�

Ĝ�j2 − j1��
(5.63)

We apply (5.2) and obtain

I4�2�r� = O
(
�D�r��g3�r�

)
�(5.64)

Hence by (5.61) and to (5.64)

I4�r� = O
(
�D�r��g2�r� 	�D�r��f�r� + g�r�


)
�(5.65)

Thus by (5.53) and (5.65)

∑
j1�����j4∈D�r�

j1 �=����=j4

P	V�2�
j1�����j4


 = O
(
�D�r��g�r� 	�D�r��f�r� + g�r�
2

)
�(5.66)

That means we proved assertion (5.13).

Step 5. In order to establish (5.6) we first observe that, analogously to
(5.11),

∑
j1�j2�j3∈D�r�

j1 �=j2 �=j3

P	Vj1�j2�j3

 = 3

∑
j1�j2�j3∈D�r�

j1 �=j2 �=j3

P	V�1�
j1�j2�j3


�(5.67)

where V
�1�
j1�j2�j3

denotes the event that X�j1� and X�j2� coalesce at first. Anal-
ogously to (5.20),

P	V�1�
j1�j2�j3


 ≤O�1� ∑
x�y∈S

∫ ∞

0
dtpt�j1� x�pt�j2� x�pt�j3� y�

×
∫ ∞

0
ds p̂2s�x�y��

(5.68)

Hence ∑
j1�j2�j3∈D�r�

j1 �=j2 �=j3

P	Vj1�j2�j3



≤ O�1� ∑
j1�j2�j3∈D�r�

∑
x�y∈S

∫ ∞

0
dtpt�j1� x�pt�j2� x�pt�j3� y�

×
∫ ∞

0
ds p̂2s�x�y��

(5.69)
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We estimate the integral over s by the Green’s function, and then we use the
splitting technique given in (5.16) for �x�y�, thus∑

j1�j2�j3∈D�r�

∑
x�y∈S

∫ ∞

0
dtpt�j1� x�pt�j2� x�pt�j3� y�

∫ ∞

0
ds p̂2s�x�y�

≤ ∑
j1�j2�j3∈D�r�

∑
x�y∈S

Ĝ�y − x�
∫ ∞

0
dt pt�j1� x�pt�j2� x�pt�j3� y�(5.70)

= I5�r� + I6�r��
where

I5�r�=
∑

j1�j2�j3∈D�r�

∑
x∈S

∑
y/∈Dx�r�

Ĝ�y − x�

×
∫ ∞

0
dt pt�j1� x�pt�j2� x�pt�j3� y�

(5.71)

and

I6�r�=
∑

j1�j2�j3∈D�r�

∑
x∈S

∑
y∈Dx�r�

Ĝ�y − x�

×
∫ ∞

0
dt pt�j1� x�pt�j2� x�pt�j3� y��

(5.72)

For I5�r� we use the estimate (5.18), hence

I5�r� ≤ O�f�r�� ∑
j1�j2�j3∈D�r�

∑
x�y∈S

∫ ∞

0
dt pt�j1� x�pt�j2� x�pt�j3� y�

= O�f�r�� ∑
j1�j2�j3∈D�r�

∫ ∞

0
dt p̂2t�j1� j2�(5.73)

≤ O
(
�D�r��f�r�

) ∑
j1�j2∈D�r�

Ĝ�j2 − j1��

To I6�r� we apply the estimate given in (5.19), thus

I6�r� ≤
∑

j1�j2�j3�y∈D�r�
Ĝ�y� ∑

x∈S

∫ ∞

0
dt pt�j1� x�pt�j2� x�pt�j3� y + x�

≤ ∑
j1�j2�y∈D�r�

Ĝ�y� ∑
x∈S

∫ ∞

0
dt pt�j1� x�pt�j2� x�(5.74)

≤ ∑
y∈D�r�

Ĝ�y� ∑
j1�j2∈D�r�

Ĝ�j2 − j1��

Now we apply (5.2) to (5.74) and to (5.75), hence∑
j1�j2�j3∈D�r�

∑
x�y∈S

∫ ∞

0
dt pt�j1� x�pt�j2� x�pt�j3� y�

∫ ∞

0
ds p̂2s�x�y�

= O
(
�D�r��g�r� 	�D�r��f�r� + g�r�


)
�

(5.75)
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Thus by (5.69),∑
j1�j2�j3∈D�r�

j1 �=j2 �=j3

P	Vj1�j2�j3

 = O

(
�D�r��g�r� 	�D�r��f�r� + g�r�


)
�(5.76)

That means we proved assertion (5.6). This completes the proof. ✷
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