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EQUILIBRIUM FLUCTUATIONS FOR ∇ϕ INTERFACE MODEL
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We study the large scale space–time fluctuations of an interface which
is modeled by a massless scalar field with reversible Langevin dynam-
ics. For a strictly convex interaction potential we prove that on a large
space–time scale these fluctuations are governed by an infinite-dimensional
Ornstein–Uhlenbeck process. Its effective diffusion type covariance matrix
is characterized through a variational formula.

1. Introduction. It is a common phenomenon that at low temperature
two pure thermodynamic phases spatially coexist and are separated by an
interface, which is very sharp with a width of a few atomic distances. In ther-
mal equilibrium such an interface is planar and local deformations will relax
back diffusively in order to minimize surface tension. To build a statistical
mechanics model for the interface, one assumes that transverse deviations
from the perfectly flat interface are given through a scalar field ϕ, that is,
ϕ� �2 → � with ϕ ≡ 0 corresponding to the flat interface. To have a mathe-
matically well-defined model we discretize �2. We also generalize to arbitrary
dimension. Then ϕ� �d → � with ϕx is the height of the interface at site
x ∈ �d. Neighboring heights are connected through an elastic potential V.
While we need more stringent assumptions later on, at this point V should
be bounded from below and increase sufficiently rapidly for large arguments.
To each configuration ϕ we associate the (elastic) energy

H�ϕ� = 1
2

∑
	x−y	=1

V�ϕx − ϕy��(1.1)

The formal equilibrium measure is given by

Z−1 exp�−H�ϕ��∏
x

dϕx	(1.2)

where for simplicity we have absorbed the inverse temperature in V.
If the order parameter of the pure phases is not conserved, then there is no

constraint on the interface. Thus it is natural to assume a Langevin dynamics
reversible with respect to (1.2) which is governed by

dϕx�t� = ∑
	e	=1

V′(ϕx+e�t� − ϕx�t�
)
dt+

√
2dBx�t�	 x ∈ �d�(1.3)
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Here �Bx�t�	 x∈�d� is a collection of independent standard Brownian motions.
In the physics literature (1.2) is called the static and (1.3) the dynamic
Ginzburg–Landau ∇ϕmodel since in the continuum approximation the energy
is given by H�ϕ� = ∫

V�∂ϕ�x��dx. We have used the notation ∂ for the gradi-
ent in �d.

In [13], macroscopic deviations from the average equilibrium profile were
studied and, for a strictly convex V with bounded second derivative, were
shown to relax according to the nonlinear diffusion equation

∂

∂t
h�x	 t� =

d∑
α	β=1

σαβ�∂h� ∂2

∂xα∂xβ
h�x	 t��(1.4)

Here h�·	 t�� �d → � is the height at time t on the macroscopic scale and ∇h
is the spatial gradient. σ�u� is the surface tension at tilt u, which is defined
through

σ�u� = lim
�↗�d

− 1
	�	 log

∫
e−H�ϕ� ∏

x∈�
dϕx

∏
y∈∂�

δ�ϕy − u · y�(1.5)

for a sequence of boxes � tending to �d and

σαβ�u� = ∂2

∂uα∂uβ
σ�u��(1.6)

Note that in (1.5) we fixed the boundary heights, ϕy, to enforce a definite tilt
u. We warn the reader regarding (1.5) that up to now there is no proof that
σ � �d → � is twice differentiable (the best result is that σ ∈ C1 with Lipschitz
derivatives, cf. [13]), even if it is expected to be C∞. Therefore (1.6) and (1.4)
are formal, and (1.4) should be intended in a weak form (see [13] for a precise
formulation).

In this paper we will study small (central limit type) fluctuations. Such fluc-
tuations should relax according to the linearized version of (1.4) and, according
to (1.3) should be perturbed by white noise. Thus if we fix the average slope
u and denote the fluctuations relative to the average by ζ, they should be
governed by

∂

∂t
ζ =

d∑
α	β=1

σαβ
∂2

∂xα∂xβ
ζ +

√
2Ẇ(1.7)

with Ẇ normalized Gaussian space–time white noise.
Our main result will be a proof of (1.7) with some strictly positive diffusion

matrix qαβ. Unfortunately, we still miss the identity qαβ = σαβ although it
does hold at finite volume; compare Appendix A. In our proof we rely on the
beautiful observation of Naddaf and Spencer [20] that the Helffer–Sjöstrand
[14] elliptic PDE representation translates the fluctuation problem for (1.2)
into a massless homogenization problem. This observation naturally extends
to dynamic correlations and we reinterpret the PDE representation in a proba-
bilistic way: equilibrium expectations will be expressed in terms of an auxiliary
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random walk in a dynamic random environment (see also [8], Section 2). If
V�η� = �η�2 for every η ∈ �, then the equilibrium measure (1.2) is Gaussian,
the diffusion process (1.3) is linear, and the auxiliary random walk is homo-
geneous. Here V is strictly convex but not quadratic. The transition rates of
the auxiliary random walk then become random and one is led to understand
this homogenization problem. While in [20] functional analytic methods were
used, we will fully exploit the probabilistic structure.

At first glance, our results look rather similar to the hydrodynamic fluc-
tuation theory for stochastic particle systems. (We refer to the recent book
by Kipnis and Landim [16] where these notions are discussed and reference
to previous work can be found. For general background on stochastic particle
systems see [18].) There is, however, one important distinction. For particle
systems, the Laplacian in the drift of (1.7) comes from the conservation of
the number of particles. In our case there is no local conservation law and
the Laplacian has its origin in the long-range correlations of the equilibrium
measure.

We close our introduction with a few remarks to motivate the mathematical
set-up of our problem. If in (1.2) we fix the heights to be zero at the boundary
of a box, �, centered at the origin, then

�ϕ2
0�� =



� �	�	�	 in d = 1,
� �log 	�	�	 in d = 2,
� �1�	 in d ≥ 3

(1.8)

for large 	�	 [4]. Thus, in dimension d = 1	2, the infinite volume Gibbs mea-
sure does not exist, whereas in d ≥ 3 the average height will be determined
through the boundary conditions. To avoid such inessential complications and
to have a unified framework it is more convenient to go over the gradient field
η�x	y� = ϕy − ϕx, 	x − y	 = 1, which by construction is constrained to have
zero curl. Clearly, (1.3) can be read as a dynamics for the gradient field. In
equilibrium the gradient field is stationary in space and time. Prescribing the
tilt means to fix the average value of η�x	y��t�. Although the scalar field ϕ is
more intuitive, it has completely dropped out of the picture. Of course, given
say ϕ0, it can be reconstructed from η.

We note that in one dimension, the dynamics of the η’s corresponds to a
usual Ginzburg–Landau model with a conserved order parameter. The hydro-
dynamic fluctuations have been studied both for equilibrium [25] and nonequi-
librium [6]. In the former case no convexity assumption is needed.

A word on notation: as already seen in this introduction, we reserve the
symbol ∇ for discrete gradients. The continuum gradients are denoted by ∂
and its components are denoted, according to the context, by ∂/∂xi, ∂/∂uα, and
so on (x and u are vectors and i and α are natural numbers). Sometimes we
will also use the short-cut notation ∂i meaning the derivative with respect
to the ith component. We anticipate, however, that later on in the text the
notation ∂x, x ∈ �d will be introduced and it should not be confused with ∂i.
Finally, by � we will always mean the Laplacian on �d; that is −∂ · ∂. The
Laplacian on �d (see below) will be denoted by �1.
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2. Main Results.

2.1. The model.
2.1.1. Configurations. At each site x of the d-dimensional lattice �d, there

is a real random variable ϕx to be interpreted as the height of the interface. We
regard ϕ as a real-valued function on �d. Let us denote by eα, α = 1	 � � � 	 d the
unit vector in the direction α; that is, �eα�β = δαβ. �d∗ is the set of positively
directed bonds b = �x	 x+ eα� for some x and α. We will also use the notation
b = �x	y� = �xb	 yb� and −b for the negatively directed bond, −b = �y	x�. The
basic objects are the increments ηb = ϕy−ϕx with b = �x	y�. We set ηx	α = ηb
for b = �x	 x+ eα�. Notationally it will be convenient to define also η−b = −ηb,
but η−b is not regarded as an independent variable. Finally, given a function
f� �d → � we set ∇αf�x� = f�x + eα� − f�x�, ∇∗

αf�x� = f�x − eα� − f�x� and
�1 = ∑d

α=1 ∇∗
α∇α.

As a vector field, ηb has zero curl. This means∑
b∈�

ηb = 0(2.1)

for every closed loop � , that is, the bonds �xi	 xi+1� of the finite sequence
�xi�i=1	���	n of points in �d such that x1 = xn and 	xi − xi+1	 = 1 for i =
1	 � � � 	 n− 1. Conversely, given a vector field ηb which satisfies (2.1) for all � ,
then up to a constant (say the value of ϕ0), there exists a unique scalar field ϕ
such that ∇αϕx = ηx	α = η�x	x+eα�. We denote by χ the subset of ��d∗

which has

zero curl in the sense of (2.1). ��d and χ are equipped with the local product
topology unless otherwise stated. Given a measurable space �E	��E�� we will
denote by � �E� the set of probability measures over E.

2.1.2. Equilibrium measures. For the interaction potential V� � → � we
assume that:

1. V ∈ C2��� and it is even.
2. There exists C− > 0 and C+ > 0 such that

C− ≤ V′′�η� ≤ C+ for all η ∈ ��(2.2)

The strict convexity is crucial for the proof. Even for V�η� = aη2 + bη4 we
miss several steps.

To write down the Gibbs measure for the gradient field, we have to explain
how to set up the boundary conditions. Let � ⊂ �d a finite set of sites. Then
�∗ is the set of positively directed bonds with at least one endpoint in �. We
set �η∨ξ�b = ηb if b ∈ �∗ and �η∨ξ�b = ξb otherwise. The set of configurations
with boundary condition ξ is then

χ�	ξ ≡ {
η ∈ ��∗ 	η ∨ ξ ∈ χ}�(2.3)

Note that χ�	ξ depends on ξ only through those ξb where b borders �∗. The
finite volume Gibbs measure with b.c.’s ξ is defined as

µ�	ξ�dη� = Z−1
�	ξ exp

{
− ∑

b∈�∗
V�ηb�

}
dη�	ξ ∈ �

(
χ�	ξ

)
	(2.4)
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where dη�	ξ is the uniform measure over χ�	ξ and Z�	ξ is the normalization.
Infinite volume Gibbs measures are defined via the DLR equations.

Definition 2.1 (Gibbs measures). A measure µ ∈ � �χ� is an infinite vol-
ume Gibbs state if

∫ �ηb�2 dµ < ∞ for all b ∈ �d
∗

and

µ
( · 	��d∗\�∗

)�ξ� = µ�	ξ�·�	(2.5)

for any finite � ⊂ �d and µ-a.e. ξ. We used also the notation �A ≡ σ�η�b�	
b ∈ A� with A ⊂ �d∗.

Let us denote by τx	 x ∈ �d, the shift in χ by x; that is, τxηb = ηb+x, with
b + x = �xb + x	yb + x�. We set τα = τeα , α = 1	 � � � 	 d. The set of all shift
invariant Gibbs measures is denoted by � τ. Then, given any u ∈ �d, there
exists a unique shift ergodic µu; that is, µu is an extremal point of � τ, such
that ∫

χ
η0	 αdµu�η� = uα	(2.6)

for every α = 1	 � � � 	 d (cf. [13], Theorems 3.1 and 3.2). Here u is the tilt and
µu the u-tilted measure. Finally we will use the following exponential bound,
which is a consequence of the Brascamp–Lieb inequality (cf. [3])∫

exp
{
λ

[∑
x

f�x��ηx	α − uα�
]2}

dµu�η� ≤
[
1 − 2λ2

C−

∑
x∈�d

�f�x��2
]−1/2

(2.7)

for some λ > 0 small enough. Here f is a bounded function on �d with compact
support.

2.1.3. Reversible dynamics. We require the dynamics to be reversible with
respect to the Gibbs measure of Definition 2.1. If the noise does not depend
on the process, then the ϕ field is governed by (1.3), which implies that the
gradient field is governed by the SDEs

dηx	α�t� = −
d∑

β=1

∇α∇∗
βV

′�ηx	β�dt+
√

2 ∇α dBx�t��(2.8)

Under the growth condition (2.2), it is by now standard to build the dynamics
for a large set of initial conditions η�0� [9, 12, 13, 22]. In particular if for r > 0
we define

χr = {
η ∈ χ� �η�2

r ≡ ∑
b∈�d∗

	ηb	2e−2r	xb	 < ∞}
	(2.9)

and we equip it with the norm �·�r, we have that ([13], Lemma 2.2) for
each η∈χr, r > 0 (2.8) has a unique C0��+�χr� solution starting at η�0� = η.
We denote by 	η the law of �η�t��t≥0 (and by Ɛη the corresponding expecta-
tion). It is immediate to verify that if η is distributed according to µu, any
u ∈ �d, there exists µu-a.s. a unique solution to (2.8) and µu is an invariant
reversible measure for the evolution ([13], Proposition 3.1). The law of such
an evolution will be denoted by 	µu

(and Ɛµu the corresponding expectation).
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2.2. Convergence to an infinite dimensional Ornstein–Uhlenbeck process.
The large scale fluctuations of the interface will be studied by looking at a
suitable empirical field. For the moment we view the fluctuation field as taking
values in � ′ = � ′��d�, the Schwartz distributions. For the duality between
� and � ′ we use the notation �·	 ·�� .

We fix the tilt u ∈ �d and start the η�t� process in the Gibbs measure µu,
which implies that η�t� is stationary in space and time.

Definition 2.2 (Fluctuation fields). For any ε > 0, f ∈ C∞
0 ��d���, α =

1	 � � � 	 d, and t ≥ 0 let us define

ξεα�f	 t� = εd/2
∑
x∈�d

f�εx�[ηx	α�ε−2t� − uα
]
�(2.10)

The fluctuation field ξε = �ξεα�t��α	 t ∈ C0��+� �� ′�d� is defined by �ξεα�t�	
f�� ≡ ξεα�f	 t�.

Definition 2.3 (Limit Gaussian field). Let us call ξ = �ξα�t��α	 t a contin-
uous �� ′�d-valued version of the centered Gaussian stochastic process, of law
	0 with covariance given by

Ɛ0�ξα�f	 t�ξβ�g	 s�� =
∫
kαkβ�k · qk�−1e−�k·qk�	t−s	f̂�k�∗ĝ�k�dk	(2.11)

where ξα�f	 t� = �f	 ξα�t��� , f	g ∈ � and f̂ denotes the Fourier transform of
f (f̂�k� = �2π�−d/2 ∫ eik·xf�x�dx, k ∈ �d). In (2.11) q is a d×d strictly positive
definite (symmetric) matrix.

We note that ξα�x	 t� = ∂ζ�x	 t�/∂xα (in the distributional sense) where ζ is
governed by (1.7) with σαβ = qαβ. Our limit procedure will select one special
matrix q = qu, which can be characterized through the variational formula
for its quadratic form: for every v ∈ �d,

v · quv ≡ 2 inf
ψ

{ d∑
α=1

〈(
vα −Dαψ�η�)2V′′�η0	 α�

〉
µu

+ ∑
x∈�d

〈(
∂xψ�η�)2〉

µu

}
	(2.12)

where �·�µu denotes the expectation with respect to µu, Dαψ�η� =
ψ�ταη�−ψ�η� and the infimum is taken over smooth, bounded, local functions
ψ� χ → �. The derivative ∂x, and consequently the notion of smooth function
from χ → �, is defined as follows. In Section 2.1 it has been pointed out that
for every ϕ ∈ ��d there is a unique increment configuration η ∈ χ; we there-
fore define an application η∗� ��d → χ such that η∗�ϕ� = η. A local function
F� χ → � is said to be differentiable if the local function F�η∗�·��� ��d → �
is differentiable as a function of its finitely many arguments. In this case we
define ∂xF�η� = ∂F�η∗�ϕ��/∂ϕx and this is a good definition since the right-
hand side evaluated at ϕ = ϕ′ coincides with the same expression evaluated
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at ϕ = ϕ′′ if η∗�ϕ′� = η∗�ϕ′′�. Observe moreover that (2.12) is well posed, since,
as explained in Section 4, in the sense of matrices

2C−� ≤ qu ≤ 2C+�	(2.13)

where � is the d × d identity matrix and C± are the constants from (2.2). A
slightly better bound is given in (4.13).

For our purposes � ′ is unnecessarily large and we introduce a more
restricted family of distribution spaces. Let 
κ be the Sobolev space associated
to the scalar product

�f	g�κ =
∫
�d
f�r�(	r	2 − �

)κ
g�r� dr	(2.14)

and let 
−κ be its dual space (with respect to the L2 scalar product).
Our main result is the following.

Theorem 2.1. Let κ > 1 + d.

(i) For every ε > 0, we have that the process ξε ∈ C0��+� �
−κ�d�		µu
-a.s.,

and ξ ∈ C0��+� �
−κ�d�, 	-a.s.
(ii) The law of ξε on C0��0	T�� �
−κ�d�, T > 0, converges, as ε → 0, to the

law of the Gaussian process ξ with covariance specified by �2�11�, where q = qu
as given by the variational formula �2�12�.

Theorem 2.1 is proved in Section 5. A direct corollary of Theorem 2.1 is a
central limit theorem for the equilibrium measure µu.

Corollary 2.2. (i) The �
−κ�d-valued random variable ξε�0� converges in
law to the centered Gaussian field ξ�0� with covariance

Ɛ0[ξα�f	0�ξβ�g	0�] =
∫
�d

kαkβ

�k	 qk� f̂�k�∗ĝ�k�dk	(2.15)

for all test functions f and g and every α	β ∈ �1	 � � � 	 d�.
(ii)

lim
ε→0

Ɛµu�exp�ξεα�f	0��� = exp
(

1
2

∫
�d

k2
α

�k	 qk� 	f̂�k�	2 dk
)
	(2.16)

The exponential moment convergence (2.16) is a direct consequence of (2.15)
and (2.7).

2.3. Strategy of the proof. We start proving an infinite-dimensional version
of the identity of Helffer and Sjöstrand [14] to express static correlations as
the solution of suitable elliptic PDEs. Rewriting them in terms of diffusion
processes, we obtain a random walk in a dynamic random environment. This
environment turns out to be governed by the SDEs (2.8), which in particular
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explains that dynamical correlations can be handled in the same fashion. The
Helffer–Sjöstrand (H–S) identity in the probabilistic form is proved easily at
finite volume (see [8], where one can find a detailed treatment of this case
for general graphs, including various bounds that can be extracted from this
representation). However, the extension to infinite volume is nontrivial since
it requires time-mixing of the Langevin dynamics (2.8) with respect to the
measure µu, which we prove by exploiting the coupling in [13].

Once the infinite volume H–S representation is established, it translates the
original fluctuation problem into a problem involving an invariance principle
for a certain random walk in a dynamic random environment; that is, we have
to prove the convergence of this random walk to a Brownian motion in �d with
diffusion matrix qu. This will follow directly by a well-known result of Kipnis
and Varadhan [15], which is applicable to general reversible Markov processes
(Section 4). In essence only the existence of the dynamics and some ergodic
properties are required.

From the homogenization step we would like to conclude that the dynamic
covariance has a limit as ε → 0 as given by (2.11). This is, however, not
immediate, because the H–S identity contains an integration over all t ≥ 0,
whereas the homogenization yields the convergence of the integrand only in
bounded time intervals. To overcome this difficulty we need sufficiently sharp
bounds on the kernel of the semigroup generated by divergence form operator
with time-dependent coefficients. For d ≥ 3 the basic Nash inequality suffices.
However, for d = 2 the sharper Nash continuity estimate is required. Such an
estimate can be found in the literature in the generality we need only in the
case of diffusions in �d, for example, in [10]. In �d the situation is technically
more involved and the needed results have been developed only in the case of
operators which are independent of time [24].

In Section 5 we lift the proof from the covariance to the convergence of
the process ξε by first establishing its tightness and then by identifying the
limit. This identification is based on showing that any limit point satisfies a
martingale problem. The martingale part will converge to (the gradient of a)
Gaussian white noise, while with the help of the reversibility of the process and
the information on the limit dynamic covariance (2.11) we will prove that the
drift is the diffusion operator in (1.7) with σαβ = qαβ. The martingale problem
that arises has a unique solution, up to the initial conditions, which is the
infinite-dimensional Ornstein–Uhlenbeck process (1.7). To have ξ stationary
in time, the field at t = 0 must be distributed as the space derivative of a
massless Gaussian field and this will allow us to conclude the proof.

3. The random walk representation. In this section we will establish
the validity of a formula which represents space–time correlations of function-
als of our process in terms of expectations over a random walk in a dynamic
random environment. Our formula can be understood as the nonlinear ana-
log of the standard random walk representation of the spatial correlations for
the Gaussian massless field. In that case we would just be dealing with a
simple random walk (see, e.g., [4, 11]). Our representation here is an infinite
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dimensional probabilistic version of the (H–S) PDE representation [14]. While
the finite volume case is already contained in [14, 8], the infinite volume case
requires some extra work.

For the rest of the paper we fix the tilt u once for all and therefore drop it
from the expressions (in particular µ = µu). Moreover we will sometimes use
the shorthand �·�, which stands for �·�µu .

3.1. The evolution semigroup. To introduce the generator of the dynamics
we make use of the operator ∂x defined right after (2.12). Here we observe
that if F is the restriction to χ of a differentiable local function G� ��d

∗ → �
then for η ∈ χ,

∂xF�η� =
d∑
α=1

∇∗
α

∂G

∂η′
x	 α

�η′�
∣∣∣∣
η′=η

=
d∑
α=1

(
∂G

∂η′
x−eα	α

�η′� − ∂G

∂η′
x	 α

�η′�
)∣∣∣∣

η′=η
�(3.1)

As made explicit in (3.1), ∇ acts on the x variable in the expression to follow.
The pregenerator of the η-dynamics is defined as

LF�η� = − ∑
x∈�d

[
∂2
xF�η� −

( d∑
α=1

∇∗
αV

′�ηx	α�
)
∂xF�η�

]
	(3.2)

for F� χ → � local, bounded and smooth such that both ∂xF and ∂2
xF are

bounded and smooth for every x (call �0 this set of functions). By using the
DLR equations for µ one can easily verify that for F	G ∈ �0

� �F	G� ≡ �FLG� = ∑
x∈�d

�∂xF∂xG�(3.3)

and therefore L is symmetric in �0. We extend L to a closed self-adjoint
operator on L2�χ�µ� [with domain � �L�]. We denote this extension still by L
and by �e−Lt�t≥0 the L2�µ�-semigroup generated by L. Note that the adjoint
∂∗
x of ∂x in L2�µ� is −∂x + ∑d

α=1 ∇αV
′�ηx−eα	α�. The equality in (3.3) still holds

for F and G in � �L� which extends the definition of the Dirichlet form � ,
provided we interpret the derivatives ∂x in the weak sense: F ∈ L2�µ� is
weakly differentiable if for every x ∈ �d there exists a function ∂xF ∈ L2�µ�
such that �∂xF	G� = �F	∂∗

zG� for every G ∈ �0.
We have already remarked in the Introduction that the evolution equa-

tion (2.8), with initial datum inχr [cf. (2.9)] has a unique solution inC0��+�χr�.
Since a trajectory typical for µ is in χr for any r > 0, the evolution is well
posed when the initial datum is µ-typical. The construction of the associated
probability translation semigroup in L2�µ�, �Pt�t≥0, is carried out, for exam-
ple, in [12], Section 3 and Theorem 4.2. In particular the two semigroups Pt

and e−Lt coincide.

3.2. The random walk process. A basic object for our analysis is a Markov
process on �d×χ which we denote by �X�t�	 η�t��t≥0. It is easily constructed in
the following way: given the process �η�t��t≥0, with initial condition η�0� ∈ χr
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for some r > 0, �X�t��t≥0 is the random walk which performs nearest neighbor
jumps starting from X�0� = x ∈ �d with time dependent rates given by

V′′�ηb�t��	 b ∈ �d∗�(3.4)

Since (2.2) is assumed, this is nondegenerate random walk with bounded rates
and its construction is straightforward. We will denote the law of this pro-
cess by Px	n with �x	η� the initial condition (and by Ex	η the corresponding
expectation).

The (pre)generator of this process is given by

�� f��x	η� = �Lf�x	 ·���η� +
d∑
α=1

�∇∗
α�V′′�ηx	α�∇αf���x	η�	(3.5)

where f�x	η� has compact support in x and is local and smooth in η. As in
the case of L, we observe that � is symmetric with respect to L2�; ⊗ µ�,
where ; is the counting measure on �d. We keep the notation � for its closed
self-adjoint extension.

We are now ready to state the main result of this section. We say that
F ∈ Ck

loc�χ�	 k ∈ �+, if F is local and it is Ck as a function of its (finitely
many) entries. We also set �∂F��x	η� ≡ ∂xF�η�.

Proposition 3.1. For any F and G in C2
loc ∩ L2�χ�µ�, such that both LF

and LG ∈ L2�χ�µ�, and any τ ≥ 0,

Ɛµ�F�η�0��G�η�τ��� − Ɛµ�F�η�0���Ɛµ�G�η�τ���

=
∫ ∞

0

∑
x∈�d

��∂F��x	η�Ex	η��∂G��X�t+ τ�	 η�t+ τ����µ dt�
(3.6)

We will use the following lemma.

Lemma 3.2. For any F ∈ C2
loc ∩L2�χ�µ�, such that LF ∈ L2�χ�µ� and such

that �F�µ = 0 we have that

lim
t→∞

Ɛµ�F�η�0��F�η�t��� = 0�(3.7)

Proof. First of all we claim that it is sufficient to prove the statement for
F uniformly Lipschitz with respect to its finitely many arguments. In fact, for
general F ∈ C2

loc ∩ L2�χ�µ�, let us define Fl�η� = F�η�χl�η� − �Fχl� where
l > 0 and χl is a suitable smooth function equal to 1 if

∑
α

∑
�x�≤R η2

x	 a ≤ l and
equal to 0 if the same sum is larger than 2l, with R larger than the diameter
of the support of F. Since F is locally Lipschitz, Fl is uniformly Lipschitz, and
since liml→∞ Fl = F in L2�χ	µ�, the claim is proved.

Then let us set u�η	 t� = ƐηF�η�t��. Consider (as in [13], Proposition 2.1)
the coupled process �η�t�	 η̄�t��t≥0, where η and η̄ are two solutions of (2.8).
We take η�0� and η̄�0� to be independent and distributed according to µ. The
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law of this coupled process will be denoted by 	⊗2. By applying twice Jensen’s
inequality we obtain that

varµ�u�·	 t�� ≤
∫ ∫

�u�η	 t� − u�η̄	 t��2 dµ�η�dµ�η̄�

≥ Ɛ⊗2��F�η�t�� −F�η̄�t���2�
≤ Cmax

x	 α
Ɛ⊗2[�ηx	α�t� − η̄x	 α�t��2]	

(3.8)

where C is the Lipschitz constant of F and the maximum is over a finite
number of bonds. Since by [13], Proposition 2.1, for all x and α,

lim
T→∞

1
T

∫ T

0
Ɛ⊗2[�ηx	α�t� − η̄x	 α�t��2]dt = 0	(3.9)

and since, by (3.3) and the fact that u�·	 t� ∈ � �L� [because F ∈ � �L�], for
any t > 0,

d

dt
varµ�u�·	 t�� = −�u�·	 t�Lu�·	 t�� ≤ 0	(3.10)

we conclude that

lim
t→∞

varµ�u�·	 t�� = 0�(3.11)

Therefore by conditioning and by using the Cauchy–Schwarz inequality, we
obtain (3.7). ✷

Proof of Proposition 3.1. It is sufficient to prove the result for F = G
and �F� = 0. By applying Lemma 2.2 we obtain that

Ɛµ�F�η�0��F�η�t��� =
∫ ∞

0
�FLe−�t+s�LF�dt	(3.12)

and using (3.3) we can rewrite

�FLe−�t+s�LF� = ∑
x∈�d

�∂xF�η�∂xe−�t+s�LF�η���(3.13)

The aim is to commute ∂x and the semigroup e−tL guided by the observation
that for G ∈ C3

loc�χ�,

∂xLG = L∂xG+
d∑
α=1

∇∗
α�V′′�ηx	α�∇α∂xG�	(3.14)

where the operators L and ∂ act on η and ∇ acts on x; that is,

∂xLG�η� = �� �∂G���x	η��(3.15)

More precisely we will show that

Ɛµ�F�η�0��F�η�t��� =
∫ ∞

0

∑
x∈�d

〈�∂F��x	η�[e−�t+τ�� �∂F�]�x	η�〉dτ�(3.16)
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To prove (3.16) it is sufficient to show that for every t > 0,

∂e−tLF = e−t� �∂F�	(3.17)

where the terms in both sides of (3.17) are clearly in L2�; ⊗ µ�. Equation
(3.17) is a consequence of the following lemma.

Lemma 3.3. For any λ > 0 and F as above,

∂x�λ+L�−1F�η� = �λ+ � �−1�∂F��x	η��(3.18)

Given this lemma, the proof of Proposition 3.1 is as follows. Equation (3.18)
can be rewritten as

∂x

∫ ∞

0
e−λte−tLF�η�dt =

∫ ∞

0
e−λte−t� �∂F��x	η�dt�(3.19)

Observe that, since F ∈ � �L�	 ∂etLF ∈ L2�;⊗µ� for every t ≥ 0. We claim also
that if G ∈ � �L�, then ∂hxG, defined for h > 0 as �G�η+ hξx� −G�η��/h	 ξxb =
∇bϕ

�x� with ϕ
�x�
y = 1x�y�, converges in L2�µ� to ∂xG. This follows because for

µ-a.e. η∂hxG�n� = �1/h� ∫ h0 ∂xG�η+ sξx�ds and therefore, by Jensen’s inequal-
ity, we have that

〈[
∂hxG− ∂xG

]2〉 ≤ 1
h

∫ h

0
��∂xG�· + sξx� − ∂xG�·��2�ds�(3.20)

However, the integrand in the right-hand side of (3.20) vanishes as s → 0, by
continuity of the L2 norm, and the claim is proved. Therefore, by approximat-
ing ∂x with ∂hx and by taking the limit [in L2�µ�] as h → 0 one verifies that
for every x,

∂x

∫ ∞

0
e−λte−tLF�η�dt =

∫ ∞

0
e−λt∂xe

−tLF�η�dt�(3.21)

By (3.19), (3.21) and by applying the Cauchy–Schwarz inequality and the con-
tractivity of the semigroup to justify the exchange of the order of integration,
we obtain that for every λ > 0,∫ ∞

0

∑
x

�∂xF�η�e−λt∂xe
−tLF�η��dt

=
∫ ∞

0

∑
x

�∂F�x	η�e−λte−t� �∂F��x	η��dt
(3.22)

and by using the fact that positive finite measures are identified by their
Laplace transform on �+ combined with the fact that the left-hand side for
λ = 0 is equal to �F2� and therefore it is finite, we obtain that for every t ≥ 0,∑

x

�∂xF�η�∂xe−tLF�η�� = ∑
x

�∂F�x	η�e−t� �∂F��x	η���(3.23)

By polarization we conclude that (3.17) holds and the proof of Proposition 3.1
is complete. ✷
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Proof of Lemma 3.3. Let uλ be solution of the resolvent equation λuλ +
Luλ = F. Then uλ is in the domain of L, so ∂xuλ ∈ L2�µ� exists for every x.
Since F ∈ � �L�, we have that ∂xLuλ exists for every x too. We can therefore
write λ∂xuλ + ∂xLuλ = ∂xF and if we show that (3.14) holds with G = uλ we
are done, since this establishes that �∂uλ�λ>0 is the resolvent of � . This is
once again established via approximation: choose h > 0 and set ηx	h = η+hξx.
We obtain

∂hxLuλ = L∂hxuλ +
d∑
α=1

∇∗
α�V′	h�ηx	α�∇α∂xuλ�ηx	h��	(3.24)

where V′	 h�·� = �V′�·+h�−V′�·��/h. Since limh→0 supη∈� 	V′	 h�η�−V′′�η�	 = 0
and ∂xuλ�ηx	h� − ∂xuλ�η� → 0 in L2�µ� as h → 0, the last term in (3.24)
converges in L2�µ� to

d∑
α=1

∇∗
α�V′′�ηx	α�∇α∂αuλ�η���(3.25)

However, by (3.20), also the left-hand side as well as ∂hxuλ converge in L2�µ�,
respectively, to ∂xLuλ and to ∂xuλ. Since L is a closed operator, (3.14) is estab-
lished if G = uλ and the proof of Lemma 3.3 is complete. ✷

4. Homogenization and effective diffusivity. For any ε > 0 we set

Xε�t� ≡ εX�ε−2t�	 t ≥ 0�(4.1)

Moreover, we will denote by �Y�t��t∈≥0 the �d-valued Brownian process with
covariance matrix qu = q > 0, as given by the variational formula (2.12), that
is, the centered continuous Gaussian process with covariance

Eq
0�Yα�t�Yβ�s�� = �t ∧ s�qαβ	 α	β = 1	 � � � 	 d(4.2)

and t	 s ≥ 0. By Pq
z we will denote the same process starting from z ∈ �d and

by Eq
z the corresponding expectation.

The main result of this section is the following.

Proposition 4.1. As ε tends to zero, Xε�t� converges to Y�t� weakly in the
Skorohod space D��0	T���d�, for any T ≥ 0.

We follow the Kipnis–Varadhan approach [15, 7, 21]. Consider the process
describing the environment as seen from the position of the random walk,

η̃�t� = τ−X�t�η�t��(4.3)

We obtain in this way a process on χ. The pregenerator of this process, acting
on F ∈ �0, is given by

�̃ F�η� = LF�η� +
d∑
α=1

D∗
α

[
Ṽ′′
α�η�DαF

]�η�	(4.4)
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where Dαf�η� = F�ταη� −F�η� and Ṽ′′
α� χ → � is defined by

Ṽ′′
α�η� = Ṽ′′�η0	 α��(4.5)

As a consequence of the fact that L is self-adjoint and that the jump intensity
is bounded, it is easy to see that �̃ is essentially self-adjoint in L2�χ�µ�.
The process is therefore reversible with respect to µ. Once again we keep the
notation �̃ for its self-adjoint extension.

The process �η̃�t��t≥0 will always be considered at equilibrium; that is, η̃�0�
is distributed according to µ. The law of the process will be denoted by 	̃.

An important ingredient for the Kipnis–Varadhan approach is the following
lemma.

Lemma 4.2. The process �η̃�t��t≥0 is time ergodic, that is, any F ∈ L2�χ�µ�
such that e−�̃ tF = F, for all t ≥ 0, is constant µ-a.s.

Proof. For F local and smooth we introduce the Dirichlet form

�̃ �F	F� ≡ �F	 �̃ F� =
〈 ∑
x∈�d

�∂xF�2 +
d∑
α=1

Ṽ′′
α�η��F�ταη� −F�η��2

〉
(4.6)

and, by the first line, we can extend the definition to any F ∈ � ��̃ �. The
second equality holds as well in this generality with ∂x interpreted in the
distribution sense, by a standard approximation procedure. Observe that, by
definition of domain, e−�̃ tF = F implies that F ∈ � ��̃ � and that �̃ F = 0,
therefore �̃ �F	F� = 0. But by (2.2),

�̃ �F	F� ≥ C−

〈 d∑
α=1

�F�ταη� −F�η��2
〉
	(4.7)

which implies that F�ταη�−F�η� = 0 for every α	µ-a.s. Therefore, F is trans-
lation invariant and, since µ is shift ergodic, F is a constant µ-a.s. ✷

Proof of Proposition 4.1. We want to apply Theorem 1.8 of [15] and we
have therefore to verify its conditions. First, we observe that the position of
the random walk X�t� is an additive functional of the process η̃�t� and it can
be written as

Xα�t� = Mα�t� +
∫ t

0
�D∗

αV
′′
α��η̃�s��ds	(4.8)

where Mα�t� is a (	̃	 �̃ )-martingale. �̃ is the natural filtration associated to
�η̃�s��s≥0, such that

Ɛ̃�Mα�t�Mβ�t�� = 2t
〈
V′′
α

〉
δαβ�(4.9)
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Observe that �D∗
αV

′′
α� = 0 and that there exists a constant C, depending only

on C−, such that for all ψ ∈ � ��̃ �,〈
ψ�η�D∗

αV
′′
α�η�〉 ≤ 〈(

V′′
α

)2〉1/2〈�Dαψ�2〉1/2 ≤ C
〈
ψ�̃ ψ

〉1/2
	(4.10)

which verifies the condition (1.14) of [15]. Since the requested time ergodicity
is shown by Lemma 4.2 we can apply Theorem 1.8 of [15] and we have that
εX�ε−2t� converges as ε tends to zero to a �d-Brownian motion y�t�, weakly
in the Skorohod topology (in any finite time interval).

We now turn to computing the effective diffusion matrix q of y�t�. It follows
by a simple time-reversal argument (cf. Theorem 2.2 in [7] and its proof) that
for every v ∈ �d,

Ɛ̃

[( d∑
α=1

vαMα�t�
)2]

= Ɛ̃

[( d∑
α=1

vαXα�t�
)2]

+ Ɛ̃

[(∫ t

0

d∑
α=1

vα�D∗
αV

′′
α��η̃�s��ds

)2]
�

(4.11)

From (4.9) and (4.11) it follows that

qαβ = 2�V′′
α�δαβ − 2

∫ ∞

0
Ɛ̃
[(
D∗
αV

′′
α

)�η̃�t���D∗
βV

′′
β��η̃�0��]dt	(4.12)

which is equivalent to the variational formula (2.12) (cf [7], [21]).
From (2.12) we obtain the bounds

2
d∑
α=1

v2
α

〈�V′′
α�−1〉−1 ≤ v · qv ≤ 2

d∑
α=1

v2
α

〈
V′′
α

〉
�(4.13)

The upper bound is immediate; just take ψ to be constant in (2.12) or drop the
second term in (4.12). The lower bound follows since, by translation invariance
and Cauchy–Schwarz, we have that

v2
α = �vα −Dαψ�2 =

〈[
�vα −Dαψ�

√
V′′
α

]
1√
V′′
α

〉2

≤
〈(
vα −Dαψ

)2
V′′
α

〉〈(
V′′
α

)−1
〉
�

(4.14)

From (2.2) and (4.13), we derive (2.13). In particular q is strictly positive. ✷

5. Equilibrium fluctuations. This section is devoted to the proof of
Theorem 2.1. We break the proof into four main steps:

1. Computation of the limiting covariance of the fluctuation field, which will
require the heat kernel estimates of Appendix B.

2. Boltzmann–Gibbs principle, that will identify the drift of the limiting
process.

3. Tightness of the fluctuation field in a suitable path space.
4. Identification of the limit.

Each one of these points will be considered in a separate subsection.
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5.1. Computation of the limit covariance.

Proposition 5.1. For every α	β ∈ �1	 � � � 	 d� and any f	g ∈ C∞
0 we have

lim
ε→0

Ɛµ�ξεα�f	 ε−2τ�ξεβ�g	0�� =
∫
�d
kαkβ

e−τk·qkĝ�k�f̂�k�∗

k · qk dk�(5.1)

Proof. By introducing the notation fε�·� = f�ε·� for any f ∈ C∞
0 and using

(3.6), we can write the covariance of the ξ-fields as

Ɛµ
[
ξεα�f	 ε−2τ�ξεβ�g	0�]
=
∫ ∞

0
εd

∑
x∈�d

∇∗
βgε�x�Ɛxµ

[∇∗
αfε�X�ε−2τ + t��]dt

=
∫ ∞

0
εd

∑
x∈�d

ε−1∇∗
βgε�x�Ɛxµ

[
ε−1∇∗

αfε�X�ε−2�t+ τ���]dt
=
∫ ∞

0
εd

∑
x∈�d

∇ε ∗
β g�z�Ɛz/εµ

[∇ε ∗
α f�εX�ε−2�t+ τ���]dt	

(5.2)

where 	x
µ = ∫

Px	η dµ�η� and, in the last step, we have used the notation
∇ε
αf�·� = ε−1�f�· + εeα� − f�·�� and the analogous notation for the adjoint.
For any fixed T > 0 we can apply the invariance principle of the previous

section (Proposition 4.1) and by [2], Theorem 5.5, and the bounded convergence
theorem we conclude that

lim
ε→0

∫ T

0
εd

∑
z∈ε�d

∇ε∗
β g�z�Ɛz/εµ

[∇ε∗
α f�εX�ε−2�t+ τ���]dt

=
∫ T

0

∫
�d
∂βg�z�Eq

z�∂αf�y�t+ τ���dtdz�
(5.3)

Let us set

Rε
T =

∣∣∣∣ ∫ ∞

T
εd

∑
z∈ε�d

hε1�z�Ɛz/εµ

[
hε2�εX�ε−2�t+ τ���]dt∣∣∣∣	(5.4)

where

hε1�z� = ∇ε ∗
β g�z�	 hεT�z� = ∇ε∗

α f�z��(5.5)

We have the following lemma.

Lemma 5.2. With the above definitions, for every f	g ∈ C∞
0 ��d�,

lim
T→∞

sup
ε∈�0	1�

Rε
T = 0�(5.6)
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Once Lemma 5.2 is proved, the proof of Proposition 5.1 is complete, since it
is immediate to verify that

∫ ∞

0

∫
�d
∂βg�z�Eq

z�∂αf�y�t+ τ���dtdz =
∫
�d
kαkβĝ�k�f̂�k�e

−τk·qk

k · qk dk� ✷(5.7)

In order to prove Lemma 5.2 we need some notation. Let us first introduce
the scalar product of L2�ε�d�,

�f	g�ε = εd
∑

x∈ε�d
f�x�g�x�	(5.8)

together with

�f�pε	p = εd
∑

x∈ε�d
	f�x�	p	(5.9)

and the corresponding Lp�ε�d� spaces, for 1 ≤ p < ∞ and the standard
definition of L∞. With some abuse of notation, f and g can either be functions
from ε�d to �, or functions from �d to �. Finally, if A is an operator from
Lp�ε�d� to Lq�ε�d�, its norm will be donoted by �A�p	q.

Definition 5.1 (The inhomogeneous random walk process). Let �Pε
s	t�0≤s≤t

be the time inhomogeneous semigroup on L2�ε�d� characterized by

d

dt

(
g	Pε

s	 tf
)
ε

= εd
∑
x∈�d

d∑
α=1

aεx	α�t�∇ε
αg�εx�∇ε

αP
ε
s	 tf�εx�	(5.10)

for all t, s such that 0 ≤ s ≤ t < ∞, all g, f ∈ L2�ε�d� and Pε
s	 s is the identity

operator. In (5.10) aεx	α�·� is (for convenience) assumed to be C0 and for all x
and all ε > 0,

0 < C− ≤ aεx	α�·� ≤ C+ < ∞�(5.11)

Proof of Lemma 5�2. The link between the semigroup Pε
s	 t and the ran-

dom walk Xε is made once we fix a trajectory η ∈ C0��+�χ� and define
aεx	α�t� = V′′�ηx	α�ε−2t��. Below we will always assume this choice. We distin-
guish the case d ≥ 3 and the case d = 2, but the starting point is in common,

Rε
T ≤ sup

η∈C0��+�χ�

∫ ∞

T

∣∣(hε1	Pε
0	 th

ε
2

)
ε

∣∣dt�(5.12)

Therefore it is sufficient to show that there exists δ > 0 and a constant C =
C�f	g� < ∞ that

∣∣(hε1	Pε
0	 th

ε
2

)
ε

∣∣ ≤ C

t1+δ 	(5.13)

for every ε > 0.
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The case d ≥ 3. In this case it is sufficient to use the bound �Pε
0	 t�1	∞ ≤

C1/t
d/2, uniform in η (which is a direct consequence of Proposition B.2). In

fact this implies

∣∣(hε1	Pε
0	 th

ε
2

)
ε

∣∣ ≤ ∥∥hε1∥∥ε	1∥∥hε2∥∥ε	1 C1

td/2
	(5.14)

and, since f and g are in C∞
0 , (5.13) is proved provided d ≥ 3.

The case d = 2. In this case we have to exploit the fact that

εd
∑

x∈ε�d
hε1�x� = 0	(5.15)

for every ε > 0. We keep the notation of a general d, since the estimates work
in all dimensions. Let us define hε2	 t = Pε

t/2	 th
ε
2 and observe that, by (5.15) and

the semigroup property,(
hε1	P

ε
0	 th

ε
2

)
ε

= (
hε1	P

ε
0	 th

ε
2	 t

)
ε

= εd
∑

x∈ε�d
hε1�x�[Pε

0	 t/2h
ε
2	 t�x� −Pε

0	 t/2h
ε
2	 t�0�]�(5.16)

By Proposition B.6,

εd
∑

x∈ε�d
hε1�x�[Pε

0	 t/2h
ε
2	 t�x� −Pε

0	 t/2h
ε
2	 t�0�]

≤ C2

[
εd

∑
x∈ε�

∣∣hε1�x�∣∣( 	x	√
t/2

)A]∥∥hε2	 t∥∥∞

and applying again Proposition B.2, using f	g ∈ C∞
0 , we obtain that, if d = 2,

(5.13) is verified with δ = A/2. ✷

5.2. Boltzmann–Gibbs principle. By (2.8), or (3.2), (2.10) and the scaling
properties of Brownian motion, we have that

ξεα�f	 ε−2t� = ξεα�f	0� +
∫ t

0
γεα
(
η�ε−2s�)ds+Mε

α�f	 t�	(5.17)

where

γεα�η� = −εd/2 ∑
x∈�d

d∑
β=1

V′
β�η�ε−2∇β∇∗

αf�εx�(5.18)

and Mε
α�f	 t� is a martingale that has the same law of

εd/2
∑
x∈�d

ε−1∇∗
αfε�x�

√
2Bx�t��(5.19)

For ease of notation we set γεα�s� = γεα�η�ε−2s��. The following lemma will
identify the limit drift.
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Lemma 5.3. For any f ∈ C∞
0 ��d�, any α ∈ 1	 � � � 	 d and any T > 0,

lim
ε→0

Ɛµ

[(∫ t

0

(
γεα�s� − ξεα�Af	 s�

)
ds

)2]
= 0	(5.20)

where

A = −
d∑

β	 θ=1

qθβ
∂

∂xθ

∂

∂xβ
�(5.21)

Proof. Lemma 5.3 is a direct consequence of (5.1) and the reversibility of
the process. In fact for every g ∈ C∞

0 by time reversal we have that

Ɛµ

[
�ξεα�g	 t� − ξεα�g	0��

∫ t

0
γεα�s�ds

]
= 0�(5.22)

Then we can rewrite the argument of the limit on the left-hand side of (5.20) as

Ɛµ

[((
ξεα�f	 t� − ξεα�f	0�) −Mε

α�f	 t� −
∫ t

0
ξεα�Af	 s�ds

)2]

= −Ɛµ
[(
ξεα�f	 t� − ξεα�f	0�)2] + Ɛµ

[
Mε

α�f	 t�2](5.23)

+Ɛµ

[(∫ t

0
ξεα�Af	 s�ds

)2]
+ 2Ɛµ

[
Mε

α�f	 t�
∫ t

0
ξεα�Af	 s�ds

]
�

Using the martingale property and again (5.22) we can rewrite the last term as

2Ɛµ

[
Mε

α�f	 t�
∫ t

0
ξεα�Af	 s�ds

]

= 2
∫ t

0
Ɛµ�Mε

α�f	 s�ξεα�Af	 s��ds

= 2
∫ t

0
Ɛµ

[
Mε

α�f	 s�
(
ξεα�Af	 s� − ξεα�Af	0�)]ds(5.24)

= 2
∫ t

0
Ɛµ

[(
ξεα�f	 s� − ξεα�f	0�)(ξεα�Af	 s� − ξεα�Af	0�)]ds

= 4
∫ t

0

(
Ɛµ

[
ξεα�f	0�ξεα�Af	0�] − Ɛµ

[
ξεα�f	 s�ξεα�Af	0�])ds	

and we can compute now the limit of each term of the right-hand side,

lim
ε→0

Ɛµ
[(
ξεα�f	 t� − ξεα�f	0�)2] = 2

∫
k2
αf̂�k�2 1 − e−�k	 qk�t

k · qk dk	(5.25)

lim
ε→0

Ɛµ
[
Mε

α�f	 t�2] = 2t
∫
k2
αf̂�k�2 dk	(5.26)
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lim
ε→0

Ɛµ

[(∫ t

0
ξεα�Af	 s�ds

)2]

= 2
∫
k2
α�k · qk�f̂�k�2

∫ t
0 ds2

∫ s2
0 ds1e

−�k	 qk��s2−s1�

k · qk dk(5.27)

= 2
∫
k2
αf̂�k�2

(
t− 1 − e−�k	 qk�t

k · qk
)
dk	

lim
ε→0

4
∫ t

0

(
Ɛµ

[
ξεα�f	0�ξεα�Af	0�] − Ɛµ

[
ξεα�f	 s�ξεα�Af	0�])ds

= −4
∫ t

0
ds

∫
k2
α �k · qk� f̂�k�2 1 − e−�k	qk�s

k · qk dk(5.28)

= −4
∫
k2
α f̂�k�2

(
t− 1 − e−�k	 qk�t

k · qk
)
dk

Putting everything together, the sum in (5.23) vanishes. ✷

5.3. Tightness. We will look at the process ξεα on a fixed time interval
�0	T�, as a continuos process on the Hilbert space 
−κ, of which we recall the
definition. Let 
κ be the Sobolev space associated to the scalar product

�φ	ψ�κ =
∫
�d
φ�r��	r	2 − ��κψ�r�dr(5.29)

and let 
−κ be its dual space (with respect to the L2 scalar product).

Lemma 5.4. For every κ > 1 + d and every T ≥ 0, the family of measures
�	ε�ε>0 is relatively compact on C��0	T��
−κ�.

Lemma 5.4 is, by standard arguments, an immediate consequence of the
following lemma.

Lemma 5.5. For κ > 1 + d and for any T > 0 we have that:

(i) The sequence of random 
−κ-valued processes �ξεα�ε∈�0	1� is equibounded
in L2�	µ�,

sup
ε∈�0	1�

Ɛµ

(
sup
t∈�0	T�

∥∥ξεα�t�∥∥2
−κ

)
< ∞�(5.30)

(ii) The sequence �ξεα�ε∈�0	1� is equicontinuous in L2�	µ�;

lim
δ↘0

sup
ε∈�0	1�

Ɛµ

(
sup

t	 s∈�0	T��	t−s	≤δ

∥∥ξεα�t� − ξεα�s�
∥∥2

−κ

)
= 0�(5.31)
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We will use the following equilibrium estimate on the drift of ξε, defined
in (5.18).

Lemma 5.6. There exists c > 0 such that

sup
ε∈�0	1�

〈�γεα�2〉 ≤ c
∫
�d

��f�x��2 dx�(5.32)

Proof. By Proposition (3.1), explicit computations and summation by parts
we obtain 〈�γεα�2〉 = ∑

x∈�d

〈
∂γεα�x	η�[� −1∂γεα

]�x	η�〉
= εd

∑
x∈�d

〈
pε	α�x	η�(∇α�

−1∇∗
αpε	α

)�x	η�〉	(5.33)

where pε	α� �d × χ → � is defined as

pε	α�x	η� = V′′�ηx	α�gε�x�(5.34)

with

gε�x� =
d∑

β=1

∇ε
α

∗∇ε
βfε�x�	 x ∈ �d�(5.35)

Let us set Ĉ = �g� �d × χ → �� there exists R > 1 such that g�x	 ·� ≡ 0 for
	x	 ≥ R and g�x	 ·� ∈ C∞

b �χ��. By using the variational expression for the last
term in (5.33), together with the lower bound in (2.2) we obtain the following
chain of inequalities:〈�γεα�2

〉 = sup
g∈Ĉ

[
2
∑
x∈�d

�g�x	η�∇∗
αpε	α�x	η��− ∑

x∈�d
�g�x	η��� g��x	η��

]

≤ sup
g∈Ĉ

[
2
∑
x∈�d

�g�x	η�∇∗
αpε	α�x	η��−C−

∑
x∈�d

d∑
β=1

〈[�∇βg��x	η�]2〉]

≤
〈
sup
g∈Ĉ

[
2
∑
x∈�d

g�x	η�∇∗
αpε	α�x	η�−C−

∑
x∈�d

d∑
β=1

��∇βg��x	η��2
]〉

≤ 1
C−

εd
∑
x∈�d

�pε	α�x	η��∇α

(−�1�−1∇∗
αpε	α

)�x	η�〉

≤ 1
C−

εd
∑
x∈�d

〈(
V′′
α�ηx	α�

)2〉
gε�x�2 ≤C+

2

C−
εd

∑
x∈�d

gε�x�2�

(5.36)

In the last inequality above we have used the fact that −∇∗
α�

−1
1 ∇α in Fourier

space is multiplication by

2�1 − cos kα�
(

2
d∑

β=1

�1 − cos kβ�
)−1

≤ 1�(5.37)
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By recalling the definition of gε, again by Fourier decomposition, we verify
that there exists c1, independent of ε, such that

εd
∑
x∈�d

�gε�x��2 ≤ c1

∫
�d

��f�x��2 dx(5.38)

and the proof of Lemma 5.6 is complete. ✷

Proof of Lemma 5.5. First of all we give a more convenient representa-
tion of the �·�κ. Let us introduce hn, the (normalized) Hermite polynomial
of order n ∈ �+ and let us set λn = 2n + 1. For n ∈ ��+�d let us set also
hn�q� = ∏d

i=1 hni�qi� and λn = ∑d
i=1 λni . Since the normalized Hermite poly-

nomials form a base of L2��d� which diagonalizes the operator q2 −� we have
that

�ξεα�t��2
−κ = ∑

n∈�d

λ−κ
n ξεα�hn	 t�2(5.39)

and an analogous expression for ξεα�t� − ξεα�s�. We now use the following gen-
eral result, valid for reversible Markov processes. For any T > 0 and any
G ∈ � �L�,

Ɛµ

(
sup

0≤t≤T
	G�η�t��	2

)
≤ 3�	G�η�	2� + 72T� �G	G��(5.40)

This inequality (inspired by [19]) can be proved observing that (using Doob’s
inequality)

Ɛµ

[
sup

0≤t≤T
	G�η�t��	2

]

≤ 3�	G�η�	2� + 3Ɛµ

(
sup

0≤t≤T

∣∣∣ ∫ t

0
LG�η�s��ds

∣∣∣2) + 24T� �G	G�
(5.41)

then using Proposition 3.4 of [17],

Ɛµ

(
sup

0≤t≤T

∣∣∣ ∫ t

0
LG�η�s��ds

∣∣∣2) ≤ 16T�LG L−1LG� = 16T� �G	G�(5.42)

(which is valid for any Markov process).
Now we claim that

Ɛµ

(
sup

0≤t≤T
	ξεα�f	 t�	2

)
≤ c1�f�2

2 + c2T�∂f�2
2	(5.43)

where the constants c1 and c2 are independent of f	 ε, and T. This is because

�ξεα�f�ε−2Lξεα�f�� = εd
∑
x∈�d

[
ε−1∇∗

αfε�x�]2 ≤ c�∇f�2
2	(5.44)
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where c is a constant independent of f and ε. Moreover, by the Brascamp–Lieb
inequality [cf. [3]; it can also be obtained directly from (5.2)],

�	ξεα�f�	2� ≤ 1
C−

εd
∑
x∈�d

∑
y∈�d

∇∗
αfε�x�ε−2�−�1�−1�x	y�∇∗

αfε�y�

= 1
C−

ε2d ∑
x∈�d

∑
y∈�d

∇∗
αfε�x��−�1�−1�εx	 εy�∇∗

αfε�y�

≤ 2
C−

∫
�d
f2�r�dr	

(5.45)

where �−�1�−1�x	y� is the matrix element of �−1
1 and we have used again

(5.37). Therefore, by (5.44), (5.45) and (5.40), the claim (5.43) is proved. The
proof of the first part of Lemma 5.5 is then a consequence of (5.43) and (5.39),

Ɛ

(
sup

0≤t≤T
�ξεα�t��2

−κ

)
≤ Ɛ

(
sup

0≤t≤T

∑
n∈�+d

λ−κ
n ξεα�hn	 t�2

)

≤ C
∑
n∈�d

λ−κ
n �1 + λn�	

(5.46)

which is finite if κ > d+ 1 and therefore (5.30) is proved.
We are left with the proof of (5.31). We start by observing that

Ɛµ

(
sup

t	 s∈�0	T�� 	t−s	≤δ

∥∥ξεα�t� − ξεα�s�
∥∥2

−κ

)

≤ ∑
n∈�d

λ−κ
n Ɛµ

{
sup

t	 s∈�0	T�� 	t−s	≤δ

[
ξεα�hn	 t� − ξεα�hn	 s�

]2}(5.47)

and that for every R ≥ 1,

∑
n∈�d� 	n	≥R

λ−κ
n Ɛµ

{
sup

t	 s∈�0	T�� 	t−s	≤δ

[
ξεα�hn	 t� − ξεα�hn	 s�

]2}

≤ 4
∑

n∈�d� 	n	≥R
λ−κ
n Ɛµ

{
sup
t∈�0	T�

[
ξεα�hn	 t�

]2}
�

(5.48)

Therefore, by the same computation as in (5.46), we obtain that for every
δ > 0,

lim
R→∞

∑
n∈�d� 	n	≥R

λ−κ
n Ɛµ

{
sup

t	 s∈�0	T�� 	t−s	≤δ

[
ξεα�hn	 t� − ξεα�hn	 s�

]2} = 0�(5.49)

Thanks to (5.49), we have reduced the proof of (5.47) to showing that for
every n,

lim
δ→0

Ɛµ

{
sup

t	 s∈�0	T�� 	t−s	≤δ

[
ξεα�hn	 t� − ξεα�hn	 s�

]2} = 0	(5.50)
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which is a consequence of the following argument. Going back to the definition
of ξεα we write

ξεα�hn	 t� − ξεα�hn	 s� =
∫ t

s
γεα�η�ε−2s′��ds′ + [

Mε
α�hn	 t� −Mε

α�hn	 s�
]

= Iε1�t	 s� + Iε2�t	 s�	
(5.51)

where the dependence on hn in the right-hand side is kept implicit. By
Cauchy–Schwarz, stationarity and Lemma 5.6,

Ɛµ

{
sup

t	 s∈�0	T�� 	t−s	≤δ

[
Iε1�t	 s�

]2} ≤ δ
∫ T

0
Ɛµ

[(
γεα�η�ε−2s��)2]ds ≤ cδT	(5.52)

for some c = c�n� independent of ε and δ. For what concerns Iε2�t	 s� we simply
observe that Mε�t� is equal in law to cεBt�0�	 cε = εd

∑
x∈ε�d��∇ε

αhnε��x��2.
Therefore, by standard results on the Brownian motion, there exists c = c�n�
such that for every ε and δ,

Ɛµ

{
sup

t	 s∈�0	T�� 	t−s	≤δ

[
Iε2�t	 s�

]2} ≤ cδT	(5.53)

and also (5.31) is proved. ✷

5.4. Identification of the limit.

Completion of the Proof of Theorem 2.1. The first part of this proof
follows the standard line of [23] Section 2.10, but instead of identifying the ini-
tial condition, we use directly the fact that the process is stationary. By using
Lemma 5.3 one shows that any limit process ξ solves a martingale problem
which has a unique solution and coincides (in law) with a process, still denoted
by ξ, which solves, for every f ∈ 
κ, the linear stochastic equation

dξα�f	 t� = −ξα�Af	 t�dt+
√

2d�W�·	 t�	 ∂αf�	(5.54)

whereA = −∂·q∂ andW is Gaussian space–time white noise, that is, standard
cylindrical Wiener process. The solution of (5.54) can be rewritten in integral
form as

ξα�f	 t� = ξα�e−Atf	0� +
√

2
∫ t

0
d�W	e−�t−s�A∂αf��(5.55)

By (5.1) and the lower bound on the matrix q [cf. (2.13)],

Ɛ0[(ξα(e−Atf	0
))2] ≤ 1

2C−

∫
�d
e−2tC−	k	2 ∣∣f̂�k�∣∣2 dk	(5.56)

and therefore there exists a sequence �ti�i∈�+	 limi→∞ ti = ∞, such that

lim
i→∞

ξα�e−Atif	0� = 0 	0-a.s.(5.57)

Hence it follows that any stationary distribution for (5.54) has to be Gaussian
and, again from (5.56), we can read off that the only stationary field for (5.54)
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is the centered Gaussian field defined with covariance specified by (2.15) and
we are done. This ends the proof of Theorem 2.1. ✷

APPENDIX A

The diffusion matrix q and the surface tension. We recall that
the limit static fluctuations have the covariance operator �−∂ · q∂�−1

(Corollary 2.2). We would like to equate q with the surface tension (1.5). Here
we establish only a corresponding finite volume identity.

From the DLR equations (2.4) we observe that the measure µu for the
potential V is identical to the measure µ0 with potential V�· + uα� for bonds
directed along eα. This latter choice we adopt for a torus � of sidelength N.
The finite volume surface tension is then defined by

σ��u� = − 1
	�	 log

∫
exp

[
− ∑

x∈�

d∑
α=1

V�ηx	α + uα�
]
dη�	(A.1)

where dη� is the uniform measure on χ�, that is, the Lebesgue measure
constrained to η configurations of zero curl (cf. [13]). Then

∂

∂uα

∂

∂uβ
σ��u� = δαβ

1
	�	

∑
x∈�

�V′′�ηx	α + uα��

− 1
	�	

[〈(∑
x∈�

V′�ηx	α + uα�
)(∑

y∈�
V′�ηy	β + uβ�

)〉

−
〈∑
x∈�

V′�ηx	α + uα�
〉〈∑
y∈�

V′�ηy	β + uβ�
〉]
	

(A.2)

where �·� is the expectation with respect to µ�, the Gibbs measure on χ�.
Let ηb�t�	 b ∈ �∗, be the stationary diffusion process governed by (2.8) with
invariant measure µ� and let x�t� be the random walk on � with symmetric
jump rates V′′�ηx	α�t� + uα� through the bond �x	 x + eα�. The joint process
�x�t�	 η�t�� has the invariant measure �	�	−1 ∑

x∈� δx� ⊗ µ� on � × χ�. We
lift the stationary x�t� on � to Xt on �d by periodic extension. Then εXε−2t

converges to a �d-Brownian motion as ε → 0 (see, e.g., [7]) with diffusion
matrix

q�αβ = 2δαβ
1

	�	
∑
x∈�

�V′′�ηx	α + uα��

− 2
∫ ∞

0
dtE

[
jα�x�0�	 η�0�� jβ�x�t�	 η�t���	

(A.3)

where

jα�x	η� = ∇∗
αV

′′�ηx	α + uα��(A.4)
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Here E denotes the expectation with respect to the stationary �x�t�	 η�t��-
process. We note that

∂x
∑
y∈�

V′�ηy	α + uα� = jα�x	η�	(A.5)

with the definition of ∂x as in (3.1). Therefore by the same argument leading
to (3.6), simplified by the fact that we are in finite volume, we have

	�	
∫ ∞

0
E�jα�x�0�	 η�0�� jβ�x�t�	 η�t���dt

=
〈(∑

x∈�
V′�ηx	α + uα�

)(∑
y∈�

V′�ηy	β + uβ�
)〉

−
〈∑
x∈�

V′�ηx	α + uα�
〉〈∑
y∈�

V′�ηy	β + uβ�
〉(A.6)

and we conclude that

q�αβ = ∂

∂uα

∂

∂uβ
σ��u��(A.7)

We did not succeed in proving that q� → q nor that the Hessian of σ� tends
to the Hessian of σ as � ↗ �d.

There is a however a pay-off. Since the bounds in (4.13) can be easily repro-
duced here (in particular the lower bound), we obtain that q� ≥ 2C−�; that
is, σ� is strictly convex, uniformly in �. Therefore the surface tension σ is
strictly convex (see [8], Section 3.4, for an alternative proof).

APPENDIX B

Nash–Aronson estimates. Let X ≡ �X�t��t≥0 be the random walk on
�d	 d ∈ �1	2	 � � ��, which, starting from X�0� = y ∈ �d, performs nearest
neighbor jumps with time dependent Poisson rates at site x, time t, in the
direction ei, the unit vector in the i direction, i ∈ �±1	 � � � 	±d�, given by
ax	i�t�. We assume that ax	i�·� ∈ C0��+� for every x and i and that the jump
rates are symmetric:

ax	 i�·� = ax+ei	−i�·� for all x ∈ �d	 i ∈ �±1	 � � � 	±d��(B.1)

Moreover, the jump rates are nondegenerate and bounded:

0 < c−
a ≤ ax	 i�t� ≤ c+

a < ∞ for all x	 i and t ≥ 0�(B.2)

The Markov semigroup on L2��d� associated to the stochastic process X will
be denoted by Ps	 t	0 ≤ s ≤ t < ∞. One can easily show that, if we set
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ft = Ps	 tf for f ∈ L2��d� and t ≥ s	 ft�x� is differentiable in t ∈ �s	∞� for
every x ∈ �d, and

d

dt
�g	ft� = −�t�g	ft�	 g ∈ L2��d�	(B.3)

in which we have introduced

�t�g	f� = ∑
x∈�d

d∑
i=1

ax	 i�t�∇if�x�∇ig�x�(B.4)

and ∇ is the discrete gradient as before:

∇f�x� = �∇1f�x�	 � � � 	∇df�x��	 ∇if�x� = f�x+ ei� − f�x��

The adjoint of ∇ with respect to the L2 scalar product will be denoted by ∇∗.
The purpose of this Appendix is to establish some estimates on the transi-

tion kernel p� �+ × �d × �+ × �d → �0	1�, defined as

p�s	 y� t	 x� = Ps	 t1x�y��

When needed, we will stress the dependence of p on the rates a by writing pa.
These estimates go under the name of Aronson bounds and Nash continuity
estimate (see Proposition B.3, Proposition B.4 and Proposition B.6 below) and
they are already available in the literature for diffusion processes on �d with
time dependent coefficients [1, 10]. In the discrete set up, that is, for random
walks on �d, the results in [5, 24] cover the case of time independent jump
rates. We will now extend these results to cover our (time dependent) case.
We will rely very heavily on [10], [5] and [24].

Diagonal estimates and Nash inequality. We start off by giving the Nash
inequality for our semigroup. This is a step which is crucial for the whole
Appendix. We will then derive an integral bound on the semigroup which
follows rather directly from the Nash inequality.

Lemma B.1 (Nash inequality). There exists c1, depending only on d, such
that for all f ∈ L1��d�,

�f�2+4/d
2 ≤ c1�∇f�2

2�f�4/d
1 �(B.5)

Moreover,

inf
t≥0

�t�f	f� ≥ c−
a

c1

�f�2+4/d
2

�f�4/d
1

�(B.6)
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Proof (See [24], Lemma 1.7). Note that (B.6) follows immediately from
(B.5) and (B.2). The left-hand side of (B.5) is a priori well defined since �f�2 ≤
�f�1 (this is also the key observation to extend the original proof in �d by
Nash to �d). ✷

Let us now set ft = P0	 tf, for f ∈ L1��d�. By (B.4) and (B.2) we obtain

d

dt
�ft�2

2 ≤ −2c−
a �∇ft�2

2�

Let us now assume that f is nonnegative. Therefore, �ft�1 = �f�1 and, if we
set u�t� = �ft�2

2, by (B.5) we obtain

u′�t� ≤ −Ku�t�1+2/d	 K = 2c−
a

C�f�4/d
1

	

which directly implies

�ft�2
2 ≤ c2�f�2

1t
−d/2	(B.7)

with c2 depending only on d and c−
a . Since P0	 t is positivity preserving, we

extend immediately (B.7) to every f ∈ L1��d� and the result can be restated
as

�P0	 t�1→2 ≤ √
c2t

−d/4�(B.8)

Moreover, by duality, we have that

�P0	 tf�∞ = sup
g� �g�1=1

(
P∗

0	 tg	 f

)
= �P∗

0	 t�1→2�f�2	

where P∗
0	 t is the adjoint of P0	 t. It is, however, immediate to verify that P∗

0	 t
is the semigroup associated to the random walk process in which ax	 i�·� is
replaced by ax	 i�t − ·�. Therefore (B.8) holds also for P∗

0	 t, since the bound
depends only on (B.2). Putting everything together and observing that (B.8)
holds obviously also for PT	T+t, for any T ≥ 0, we obtain that

�P0	 t�1→∞ = �Pt/2	 t ◦P0	 t/2�1→∞ ≤ �Pt/2	 t�2→∞�P0	 t/2�1→2 ≤ c3�d	 c−
a �t−d/2	

and from this we arrive at the following result.

Proposition B.2 (Estimate on the diagonal). There exists c, depending
only on d and c−

a , such that

�f	Ps	 tf� = ∑
x	y∈�d

p�s	 y� t	 x�f�x�f�y� ≤ c
�f�2

1

�t− s�d/2 	(B.9)

for every f ∈ L1��d� and every t	 s ∈ �+, with t ≥ s.
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Off-diagonal estimates: upper bound. By taking advantage of some of the
results proved in [5] and [24], which deal with the time independent setting,
we will now establish the following Aronson bound.

Proposition B.3 (Upper bound on the kernel). There exists C ∈ �1	∞�,
depending only on d	 c−

a and c+
a , such that

p�s	 y� t	 x� ≤ C

1 ∨ �t− s�d/2 exp
{
− 	x− y	

1 ∨ �t− s�1/2

}
	(B.10)

for every x	y ∈ �d and every t ≥ s.

Proof. We follow the method by Davis and look for integral estimates
for the evolution semigroup e−ψPs	 te

ψ, where ψ is a bounded function from
�d to �. It is sufficient to prove the result for s = 0, since pa�s	 y� t	 x� =
pã�0	 y� t − s	 x�, where ã�·� = a�s + ·�. We therefore set for f ∈ L2��d�,
f ≥ 0,

ft�x� = exp�−ψ�x�� ∑
y∈�d

p�0	 y� t	 x�f�y� exp �ψ�x��(B.11)

and we have

∂t�ft�2p
2p = −2p�t

(
eψft	 e

−ψf2p−1
t

)
�(B.12)

We apply Theorem 3.9 of [5] to obtain that for every f ∈ L∞��d�∩L1��d�	 f ≥
0, and every t ≥ 0,

�t
(
eψf	 e−ψf

) ≥ �t�f	f� − J�ψ�2�f�2
2	(B.13)

as well as

�t
(
eψf	 e−ψf2p−1) ≥ p−1�t�fp	fp� − 9pJ�ψ�2�f�2p

2p	(B.14)

for all p ∈ �1	∞�, where

J�ψ�2 = c+
a

∥∥∥∥ d∑
i=1

[
exp�	∇iψ	� − 1

]2∥∥∥∥
∞
�(B.15)

We keep the power 2 in J�ψ�2 for uniformity with [5]. By (B.12), (B.13) and
the fact that the semigroup is positivity preserving, we easily obtain that

�ft�2 ≤ exp
{
J�ψ�2t

}�f�2	(B.16)

for every f ∈ L2��d�. From (B.12), (B.14) and the Nash inequality (B.6) we
obtain that for p ∈ �2	∞� and f ∈ L1��d� ∩L∞��d�	 f ≥ 0	

d

dt
�ft�2p = − c−

a

pc1

�ft�1+4p/d
2p

�ft�4p/d
p

+ 9pJ�ψ�2�ft�2p�(B.17)
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By [5], Theorem 3.25, (B.16) and (B.17) imply that there exists c = c�d	 c−
a 	 c

+
a �

such that for every t ≥ 0 and every x	y ∈ �d,

pa�0	 y� t	 x� ≤ c

td/2
exp

{−D�2t�x	y�}	(B.18)

where

D�s�x	y� ≡ sup
ψ∈L∞��d�

[	ψ�y� − ψ�x�	 − sJ�ψ�2]	 s ≥ 0�(B.19)

Note that for x = y the statement follows directly from (B.18) (or from Lemma
B.2). Let us then assume x *= y. Choose ψ�x� = �ξ · x�1�	ξ·x	≤R� + R1�	ξ·x	>R�,
with ξ = �y− x�/	x− y	√t and R > 	x	 ∧ 	y	, to obtain

D�2t�x	y� ≥ 	ξ · �y− x�	 − 2tc+
a

d∑
i=1

(
e	ξi	 − 1

)2
	

and if t ≥ 1	 supi 	xi	 ≤ 1, therefore e	ξi	 − 1 ≤ 2ξi, and we conclude that

D�2t�x	y� ≥ 	x− y	√
t

− 8dc+
a �

We are therefore left with the case t ∈ �0	1�. In this case the L2-estimate
(B.16) suffices, since, observing that �g�2 ≥ �g�∞, it implies that

e−ψ�y�P0	 te
ψ�y�1x�y� ≤ eJ�ψ�2t for every x	y ∈ �d�

By choosing ψ as above, but with ξ = �y − x�/	y − x	 we conclude the
proof. ✷

Off-diagonal estimates: lower bound. We will content ourselves with
the so-called estimates near the diagonal, that is, in the case in which
	x − y	/�1 ∨ √

t� ≤ const. We do this by adapting the proof of (1.16) in [24]
to our set-up. We therefore try to stick as close as possible to the notation in
[24].

We now consider a random walk on �dα ≡ α�d	 α ∈ �0	1�. We use the nota-
tions

�f�α	p ≡
(
αd

∑
x∈�d

	f�αx�	p
)1/p

	 p ≥ 1

and

�f	g�α = αd
∑
x∈�d

f�αx�g�αx�	

for f and g from �dα to �. The semigroup, on L2��dα�, will be denoted by Pα
s	t

and it is specified by

d

dt

(
g	Pα

s	 tf
)
α

= −� α
t

(
g	Pα

s	 tf
)
	(B.20)
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for f	g ∈ L2��dα�, with

� α
t �f	g� = αd

∑
x∈�d

d∑
i=1

ax	 i�α−2t�∇α
i f�αx�∇α

i g�αx�	(B.21)

and ∇α
i f�αx� = �f�α�x+ei��−f�αx��/α. Finally the kernel pα� �+ ×�dα ×�+ ×

�dα → �0	 α−d� is defined by

pα�s	 αy� t	 αx� = α−dPα
s	 t1x�y��(B.22)

Proposition B.4 [Lower bound near the diagonal (partial Aronson lower
bound)]. There exists δ > 0, depending only on d	 c−

a and c+
a such that

pα�s	 αy� t	 αx� ≥ δ

�α ∨ �t− s�d/2� 	(B.23)

for every α ∈ �0	1�, every t > s ≥ 0 and every x	y ∈ �d such that 	x − y	 ≤√
t/α2.

Proof. We start by observing that it is sufficient to take s = 0, as well as
y = 0, and that the kernel pα enjoys a scaling property, namely that for every
α	β > 0,

βdpαβ�0	 αβy�β2t	 αβx� = pα�0	 αy� t	 αx�	(B.24)

for every x	y ∈ �d and every t ≥ 0. The proof of (B.24) goes as follows:
associate to f ∈ L2��dα� the function fβ ∈ L2��dαβ� defined as fβ�αβx� = f�αx�,
and set ut�αx� = P

αβ

0	 β2tfβ�αβx�. By (B.20) and (B.21),

d

dt
�g	ut�αx��α = −β−d d

dt

(
gβ	P

αβ

0	 β2tfβ

)
αβ

= −β2−d� αβ

β2t

(
gβ	P

αβ

0	 β2tfβ

)
= −� α

t �g	ut�	
(B.25)

for every t ≥ 0. By uniqueness of the semigroup we therefore obtain that
ut = Pα

0	 tf and (B.24) is proved.
By using the scaling we can reduce the proof of (B.23) to an estimate at

t = 1. In fact, (B.23) is immediate if t < α2: since we are assuming that y = 0,
we have that x = 0 and pα�0	0� t	0� ≥ α−d exp �−c+

a �, by definition of pα and
elementary properties of Poisson processes. By (B.24) we obtain that

pα�0	0� t	 αx� = t−d/2pα/
√
t�0	0� 1	 αx/√t�	

and we have reduced the problem to the existence of a δ = δ�d	 c−
a 	 c

+
a � > 0

such that

pα/
√
t�0	0� 1	 αx/√t� ≥ δ	(B.26)
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for every α and t such that α/
√
t ∈ �0	1� and every x ∈ �d such that 	αx/√t	 ≤

1. By substituting α/
√
t with α we see that we are left with finding δ such

that

pα�0	0� 1	 αx� ≥ δ for α ∈ �0	1� and 	αx	 ≤ 1�(B.27)

The following result is taken from [24]. Choose U ∈ C∞����+� such that∫
�
e−2U�r� dr = 1 and U�r� = 	r	 for 	r	 ≥ 1�(B.28)

Define the probability density gα� �d → �0	1� as

gα�x� = α−d
d∏
i=1

∫ α�xi+1�

αxi

e−2U�ri� dri	(B.29)

and notice that αd
∑

x∈�d gα�x� = 1. We define also the average with respect
to gα as

�f�gα = αd
∑
x∈�d

f�αx�gα�x�	 f ∈ L∞��dα��(B.30)

Lemma B.5 ([24], Lemma 1.19: Poincaré inequality for �·�gα ). There exists
c > 0 such that

c�f− �f�gα�2
α	2 ≤ αd

∑
x∈�d

gα�x�
d∑
i=1

�∇α
i f�αx��2�

The reason we introduced gα is the following: the Chapman–Kolmogorov
equation, the fact that gα ≤ 1 and Jensen’s inequality imply that

logpα�0	0� 1	 αx� ≥ αd
∑
y∈�d

gα�y� logpα�0	0� 1/2	 αy�

+αd
∑
y∈�d

gα�y� logpα�1/2	 αy� 1	 αx��
(B.31)

Since by the symmetry of the transition rates one can easily show that

pαa�1/2	 αy� 1	 αx� = pαã�0	 αx� 1/2	 αy�	(B.32)

where ãx	 i�·� = ax	 i�1−·� and recalling once again that the only restriction on
the jump rates is (B.2), the proof of (B.27) is reduced to finding M, depending
only on d	 c−

a and c+
a such that

αd
∑
x∈�d

gα�x� log pα�0	 αy� 1/2	 αx� ≥ −M

for α ∈ �0	1� and y s.t. 	αy	 ≤ 1�
(B.33)

The proof of (B.33) is also very close to the proof of the analogous statement,
Lemma 1.24, in [24]. We sketch it briefly: define for t ∈ �0	1/2�,

G�t� = αd
∑
x∈�d

gα�x� log ut�x�	(B.34)
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where ut�x� = logpα�0	 αy� t	 αx�. By taking the time derivative and repeating
the elementary steps at the beginning of the proof of Lemma 1.24 in [24]
we obtain that there exists L = L�d	 c−

a 	 c
+
a � ∈ �1	∞� such that for every

α ∈ �0	1�	

G′�t� ≥ 1
L
αd

∑
x∈�d

d∑
i=1

gα�x�(∇α
i log ut�x�)2 −L�

Now we apply Lemma B.5 to get

G′�t� ≥ c

L
αd

∑
x∈�d

gα�x�(log ut�x� −G�t�)2 −L�(B.35)

Observe that from the upper bound on the transition kernel we can extract a
weak lower bound, which is useful here. We can in fact prove that there exists
r > 0 such that

αd
∑

	αx	≤r
pα�0	 αy� t	 αx� ≥ 3/4	(B.36)

for every α ∈ �0	1�, every t ∈ �0	1� and 	αx	 ≤ 1. This follows directly
(Chebyshev inequality) from the following: there exists c = c�d	 c−

a 	 c
+
a � such

that

αd
∑
x∈�d

	αx− αy	2pα�0	 αy� t	 αx� ≤ ct	(B.37)

for α ∈ �0	1� and t ≥ 0. By (B.24), it is sufficient to consider the case α = 1. If
t ≥ 1, (B.37) follows from the upper bound on the kernel (B.10). If t ∈ �0	1�,
it is a direct consequence of elementary properties of Poisson processes.

By the second part of the proof of Lemma 1.24 in [24], (B.35), combined
with (B.36), implies (B.33) and the proof of Proposition B.4 is complete. ✷

The Nash continuity estimate. In [10], in the �d context, it is shown how
the Harnack inequality and its consequences can be extracted from the
Aronson estimates. In [24] it is shown how Propositions B.3 and B.4 imply
the parabolic Harnack inequality [24], Lemma 1.30. The parabolic Harnack
inequality implies directly the Nash continuity estimate ([24], Theorem 1.31).
This latter result is of interest for us: we state it here and we refer to [24] for
a proof.

Proposition B.6 (Nash continuity estimate). There exists A > 0 and c >
0, depending only on d	 c−

a and c+
a , such that for every α ∈ �0	1� and f ∈

L∞�α�d�,
∣∣Pα

0	 tf�αx� −Pα
0	 sf�αy�∣∣ ≤ c�f�α	∞

( 	t− s	1/2 ∨ 	αx− αy	
�t ∧ s�1/2

)A
	(B.38)

for t	 s ≥ 0 and x	y ∈ �d.
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