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DOMINOS AND THE GAUSSIAN FREE FIELD

By Richard Kenyon

Université Paris-Sud

We define a scaling limit of the height function on the domino tiling
model (dimer model) on simply connected regions in �2 and show that it is
the “massless free field,” a Gaussian process with independent coefficients
when expanded in the eigenbasis of the Laplacian.

1. Introduction. A domino tiling of a polyomino P in �2 is a tiling of P
with 2 × 1 and 1 × 2 rectangles. For a polyomino P let µ = µ�P� denote the
uniform measure on the set of all domino tilings of P.

Let U ⊂ �2 be a Jordan domain with smooth boundary. We study uniform
random domino tilings of polyominos Pε in ε�2 which approximate U (and
using dominos which are 2ε× ε and ε× 2ε rectangles).

A domino tiling of a polyomino Pε in ε�2 can be thought of as a random
map from ε�2 ∩ Pε to � in the following way. Let Vε = ε�2 ∩ Pε be the set
of lattice points in the polyomino Pε. Let h:Vε → � be a function which has
the property that around every lattice square of Pε the four values of h are
four consecutive integers h0� h0 + 1� h0 + 2� h0 + 3, with the values on any two
adjacent boundary vertices of Pε differing by 1. The set of such functions h
(up to additive constants and a global sign change) is in bijection with the set
of domino tilings of Pε: dominos cross exactly those edges whose h-difference
is 3. The function h associated to a tiling is called its height function [16]. See
Figure 1. Note that the height function takes values in �, not in ε�.

Our aim is to prove that in the limit as ε → 0 the height function on
a random tiling of Pε tends to a random (generalized) function which has a
succinct description in terms of the eigenbasis of the Laplacian operator on U.

Theorem 1.1. Let U be a Jordan domain with smooth boundary in �2. For
each ε > 0 sufficiently small let Pε be a Temperleyan polyomino approximating
U as described below. Let hε be the height of a random domino tiling of Pε and
h̄ε be its mean value. Then as ε tends to 0, hε− h̄ε tends weakly in distribution
to 4/

√
π times the “massless free field” F on U, in the sense that for any smooth

function φ on U, the random variable ε2 ∑
x∈Vε

φ�x��hε�x� − hε�x�� tends in

distribution to 4√
π

∫
U φFdxdy.

For the definition of Temperleyan polyominos see below. The massless free
field F on U is a random variable taking values in the space of distributions
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Fig. 1. Height function of a domino tiling.

(henceforth we will refer to these objects as “generalized functions” to avoid
confusion) which are continuous linear functionals on the space of C1 functions
on U (with a C1-norm). For background on the massless free field see [13]. It
can be defined as follows: let fi�i≥1 be an L2-orthonormal eigenbasis for the
Laplacian � = ∂2

∂x2 + ∂2

∂y2 on U with Dirichlet boundary conditions (that is,
fi ≡ 0 on ∂U). Let λi be the eigenvalue of fi. Then

F = ∑
i≥1

cifi

�−λi�1/2
�(1)

where the ci are i.i.d. Gaussian random variables of mean 0 and variance 1.
Here this expression is interpreted as the generalized function F satisfying,
for any C1 function φ,

∫
U
φFdxdy = ∑

i≥1

ci
�−λi�1/2

∫
U
φfi dxdy�

series which converges almost surely. The expression (1) does not define a
function since the series diverges almost everywhere.

Remarks.

1. The above theorem describes the limiting value of hε − h̄ε. The limit-
ing average value h̄ = lim h̄ε was computed in [5]: it is a harmonic function
whose boundary values are given by 2

π
times the angle of turning of the bound-

ary tangent counterclockwise from a fixed basepoint. (Regarding the choice of
basepoint, see the definition of “Temperleyan” polyomino below.)
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2. Theorem 1.1 has a well-known one-dimensional analog: let X be the
sets of random maps h from 0� 1

n
� 2
n
� � � � �1 to � satisfying h�0� = h�1� = 0

and �h� i+1
n
� − h� i

n
�� = 1. A random element of X, when divided by

√
n, con-

verges to a random function known as the “Brownian bridge” [8]. In the eigen-
basis of the one-dimensional Laplacian ∂2

∂x2 the coefficients of the Brownian
bridge are again independent Gaussians. One difference between the one-
dimensional case and Theorem 1.1, however, is that the height function h of
Theorem 1.1 is unnormalized. It is therefore all the more surprising that the
integer-valued function h of Theorem 1.1 converges to a continuous-valued
object.

3. Theorem 1.1 was known (nonrigorously) to physicists: see for example
papers of Nienhuis [9, 10]. A related model where a similar result is shown
rigorously is [11].

4. An open problem is to compute the distribution of the height function on
a nonsimply connected domain, even an annulus. In particular for an annulus
the distribution of the height difference between the two boundary components
(in the limit ε → 0) is unknown although it was shown in [5] to depend only
on the conformal modulus of the annulus.

5. Temperley [14] gave a bijection between the uniform spanning tree
process on subgraphs of �2 and domino tilings. The function h of Theorem 1.1
corresponds under this bijection to the “winding number” of the branches of a
spanning tree [5], as first conjectured by I. Benjamini. As it is an open ques-
tion to show that a scaling limit exists for the uniform spanning tree process
[1, 12], one might hope that the reconstruction of the tree from its winding
numbers, which is possible for ε > 0, also works in the limit ε = 0. So far this
remains an open problem.

6. The result of Theorem 1.1 depends strongly on the choice of boundary
conditions for the approximating polyominos Pε. For even slight generaliza-
tions of these boundary conditions our methods will not work; see [5] for a
discussion of this issue.

7. When the region U is a rectangle U = �0� a� × �0� b�, the orthonormal
eigenvectors of � with Dirichlet boundary conditions are 4

ab
sin πjx

a
sin πky

b
,

where j� k are positive integers. So in this case the massless free field has
independent Fourier coefficients.

8. Most of the work to prove Theorem 1.1 was done in [5], where we proved
Proposition 2.2, below.

If we consider the massless free field F to be a continuous linear functional
on the space of smooth 2-forms on U (rather than on the space of smooth
functions on U) then F is conformally invariant, in the following sense.

Proposition 1.2. Let ω be a smooth 2-form on U and let f:V → U be
a conformal bijection. Let FU�FV be the massless free fields on U and V,
respectively. Let X = ∫

UFU�z�ω�z� and Y = ∫
VFV�z�f∗ω�z�� where f∗ω

is the pullback of ω to V. Then the random variables X and Y are equal
in distribution.
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For the proof see Section 4.

2. Background and preliminaries.

2.1. Temperleyan polyominos and approximation. Define the �i� j�-lattice
square in �2 to be the lattice square whose lower left corner is �i� j�. A lattice
square is said to be even if the coordinates of its lower left corner are even.
A polyomino is a union of lattice squares which is bounded by a simple closed
lattice curve. A polyomino is even if all of its corner squares are even, where
by corner squares we mean those lattice squares adjacent to the corners and
containing the interior angle bisector at the corner. In particular note that an
edge of an even polyomino P′ has odd length if its two extremities are both
concave or both convex corners; if the extremities consist of one concave and
one convex corner the edge length is even. Let P be a polyomino obtained
from an even polyomino P′ by removing one lattice square b adjacent to its
boundary, where b is of the same parity as the corners of P′. Such a polyomino
is called Temperleyan, and the removed square b is called its root. In Figure 1,
the polyomino is Temperleyan with root the lower left (removed) square.

All Temperleyan polyominos have domino tilings ([5], Section 7). The term
Temperleyan comes from the bijection due to Temperley between the set of
spanning trees of a rectangle in �2 and the set of domino tilings of a rectan-
gular region with a corner removed [14]. This bijection was generalized in [3]
and further in [7].

Let U be a smooth Jordan domain with a marked point b ∈ ∂U. For each
ε > 0 let Pε be a Temperleyan polyomino in ε�2 approximating U as follows.

1. The boundary of Pε lies within O�ε� of ∂U, and the counterclockwise bound-
ary path of Pε points locally into the same half-space as the (directed)
tangent to ∂U which it is near.

2. The root bε of Pε is within O�ε� of b.
3. Somewhere on the boundary of Pε there must be a segment of length δ on

which the boundary of Pε is straight (exactly vertical or exactly horizontal),
where δ tends to zero sufficiently slowly: in such a way that δ/ε → ∞.

This last requirement is a technical one necessary to make the proof of [5],
Theorem 13, upon which Proposition 2.2 below relies, work.

2.2. The Green’s function. Let U be a Jordan domain with basepoint
b ∈ ∂U. The Green’s function with Dirichlet boundary conditions, or simply
Green’s function, g�z1� z2�, is defined as follows. For fixed z1 in the interior
of U, g�z1� z2� is the unique real-valued function of z2 satisfying �g�z1� z2� =
δz1

�z2� (the Dirac delta), and which is zero when z2 ∈ ∂U (the Laplacian is
with respect to z2). This function is well defined and when z2 is near z1 has
the form g�z1� z2� = 1

2π log �z2 − z1� +O�1�.
The Green’s function has the following simple expression in the basis of

eigenfunctions of the Laplacian on U.
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Lemma 2.1.

g�z1� z2� =
∑
i≥1

fi�z1�fi�z2�
λi

�

Proof. Since the eigenbasis fi� of � is an orthonormal basis for L2�U�,
it suffices to show that for each i, �fi�z2�� g�z1� z2�� = fi�z1�

λi
. But

�fix�z2�� g�z1� z2�� =
1
λi

�λifi�z2�� g�z1� z2��

= 1
λi

��fi�z2�� g�z1� z2��

= 1
λi

�fi�z2�� �g�z1� z2��

= 1
λi

�fi�z2�� δz1
�z2��

= 1
λi
fi�z1�� ✷

Let ĝ�z1� z2� be the harmonic conjugate (with respect to the second vari-
able) of g�z1� z2�. This function is only defined up to an additive constant and
is moreover multiply valued, increasing by 1 when z2 turns counterclockwise
around z1. We define the additive constant so that ĝ�z1� b� is locally indepen-
dent of z1 [since b is on the boundary g�z1� b� is single-valued as z1 varies].
The function g̃�z1� z2� �= g�z1� z2� + iĝ�z1� z2� is analytic in z2 except at z1,
and is the analytic Green’s function. It is also multiply valued.

As examples of these functions, on the upper half-plane � with b = ∞ we
have

g�z1� z2� =
1

2π
log

∣∣∣∣z2 − z1

z2 − z̄1

∣∣∣∣(2)

and

g̃�z1� z2� =
1

2π
log

(
z2 − z1

z2 − z̄1

)
�(3)

For a more general Jordan domain V, let f be a Riemann map from V to
the upper half-plane sending b (the base point of V) to ∞. Then the analytic
Green’s function on V satisfies g̃V�z1� z2� = g̃��f�z1�� f�z2��.

2.3. Moment formula. For a region U with basepoint b ∈ ∂U and analytic
Green’s function g̃, define the functions F+�z1� z2� and F−�z1� z2� by

− 4dg̃�z1� z2� = F+�z1� z2�dz1 +F−�z1� z2�dz1�(4)

where d is exterior differentiation with respect to the first variable. These
functions F± are single-valued and zero at z2 = b. The function F+�z1� z2� is
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analytic in both variables (or rather, meromorphic with a pole at z2 = z1), and
F−�z1� z2� is analytic in z2 and antianalytic in z1 (and F− has no poles).

Let h0�x� = h�x� − h�x�. The following proposition appeared in [5] in a
more general form. In that paper we were interested in computing height
moments of points lying on different boundary components of a nonsimply
connected domain. In particular in [5] there are extra hypotheses put on the
structure of these boundary components (and are similar to the third condition
on approximation discussed in Section 2.1). These hypotheses are unnecessary
in the present case where the points at which we are evaluating the height
h0 lie in the interior of the domain. Indeed the proof can be simplified in this
case.

Proposition 2.2 [5]. Under the hypotheses of Theorem 1.1, let z1� � � � � zk be
distinct points of U, and γ1� � � � � γk disjoint paths running from the boundary
of U to z1� � � � � zk, respectively. Let h�z1� denote the height of a point of Pε lying
within O�ε� of z1. Then

lim
ε→0

Ɛ�h0�z1�···h0�zk��

=�−i�k ∑
ε1�����εk∈±1�

ε1 ···εk
∫
γ1

···
∫
γk

det
i�j∈�1�k�

(
Fεi�εj

�zi�zj�
)
dz

�ε1�
1 ···dz�εk�k �

(5)

where z
�1�
j = zj and z

�−1�
j = zj, and

Fεi� εj
�zi� zj� =




0� if i = j�

F+�zi� zj�� if �εi� εj� = �1�1��
F−�zi� zj�� if �εi� εj� = �−1�1��
F−�zi� zj�� if �εi� εj� = �1�−1��
F+�zi� zj�� if �εi� εj� = �−1�−1��

Note that Fεi�εj
�zi� zj� is a meromorphic function of z�εi�i and z

�εj�
j .

3. Proof of Theorem 1.1. When U is the upper half-plane with basepoint
at ∞, the derivative of the analytic Green’s function (3) is

dg̃�z1� z2� =
dz1

2π�z1 − z2�
− dz1

2π�z1 − z2�
�

Thus from (4) we have F+�z1� z2� = 2
π�z2−z1� and F−�z1� z2� = − 2

π�z2−z1� . In (5),
the matrix has ij entry

Fεi�εj
�zi� zj� =

2εiεj

π�z�εj�j − z
�εi�
i �

�
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Factoring a εi out of the ith row and ith column for each i, the matrix has
the same determinant as the matrix with ij entry

2

π�z�εj�j − z
�εi�
i �

�

Such a matrix has a simple determinant.

Lemma 3.1. Let M be the k × k matrix M = �mij� with mii = 0 and

mij = 1
xj−xi when i �= j. Then for k odd detM = 0; for k even we have

det�M� = ∑ 1
�xσ�1� − xσ�2��2�xσ�3� − xσ�4��2 · · · �xσ�k−1� − xσ�k��2

�(6)

where the sum is over all �k − 1�!! possible pairings σ�1�� σ�2��� � � � �
σ�k− 1�� σ�k��� of 1� � � � � k�.

This lemma also appears in [4].

Proof. Since M is antisymmetric, detM = 0 when k is odd. We may
therefore assume k is even. The proof is by induction on k. The formula clearly
holds when k = 2. For k > 2 and even, the determinant is a rational function
of x1 with a double pole at x1 = x2; we can write

det�M� = c−2

�x1 − x2�2
+ c−1

�x1 − x2�
+ c0 +O�x1 − x2��

The coefficient c−1 is zero since the determinant is even under the exchange
of x1 and x2 (exchange the first two rows and exchange the first two columns).
The coefficient c−2 is the determinant of M12, the matrix obtained from M by
deleting the first two rows and columns. Therefore the right- and left-hand
sides of (6) both represent rational functions (in each variable) with the same
poles and residues; hence they differ by a constant. This constant is zero
by homogeneity: replacing xi with λxi for each i multiplies the determinant
by λ−k. ✷

Let p�q ∈ U. From Proposition 2.2 we have limε→0 Ɛ�h0�p�h0�q�� equal to

−
∫
γ1�γ2

∣∣∣∣ 0 F+�z1�z2�
F+�z2�z1� 0

∣∣∣∣dz1dz2+
∫
γ1�γ2

∣∣∣∣ 0 F−�z1�z2�
F−�z2�z1� 0

∣∣∣∣dz1dz2

+
∫
γ1�γ2

∣∣∣∣ 0 F−�z1�z2�
F−�z2�z1� 0

∣∣∣∣dz1dz2

−
∫
γ1�γ2

∣∣∣∣ 0 F+�z1�z2�
F+�z2�z1� 0

∣∣∣∣dz1dz2�
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Plugging in for F± gives

limε→0Ɛ�h0�p�h0�q�� = − 4
π2

∫
γ1

∫
γ2

1
�z2−z1�2

dz1dz2

+ 4
π2

∫
γ1

∫
γ2

1
�z2−z1�2

dz1dz2

+ 4
π2

∫
γ1

∫
γ2

1
�z2−z1�2

dz1dz2

− 4
π2

∫
γ1

∫
γ2

1
�z2−z1�2

dz1dz2=
8
π2

Re log
(
p̄−q

p−q

)
�

(7)

Note that this is − 16
π
g�p�q� where g is the Green’s function on U [see (2)].

Let p1� � � � � pk be distinct points in the upper half-plane U. Combining the
lemma with Proposition 2.2 gives the following.

Proposition 3.2. Let U be a Jordan domain with smooth boundary. Let
p1� � � � � pk ∈ U be distinct points. If k is odd we have limε→0 Ɛ�h0�p1� · · ·
h0�pk�� = 0. If k is even we have

lim
ε→0

Ɛ�h0�p1� · · ·h0�pk��

=
(
−16

π

)k/2 ∑
pairings σ

g�pσ�1�� pσ�2�� · · ·g�pσ�k−1�� pσ�k���

Proof. When U is the upper half plane this follows by combining
Proposition 2.2 with Lemma 3.1 and the calculation (7), in an easy but nota-
tionally cumbersome computation which we leave to the reader (one simply
inverts the order of the summations over the εi and the pairings σ). For arbi-
trary U, equation (7) shows that Ɛ�h0�p1�h0�p2�� = − 16

π
gU�p1� p2� (where gU

is the Green’s function on U) by conformal invariance of the height moments
and of g. This completes the proof. ✷

The proof of Theorem 1.1 is completed as follows. Let fn1
� � � � � fnk

be (not
necessarily distinct) eigenvectors of � with Dirichlet boundary conditions. Let
C

�ε�
nj

be the real-valued random variable C
�ε�
nj

= ε2 ∑
x∈Vε

h0�x�fnj
�x�, where

the sum is over the vertices Vε of Pε, and fnj
�x� is fnj

evaluated at the
vertex x. We have

lim
ε→0

Ɛ�C�ε�
n1 ···C�ε�

nk
� = lim

ε→0
Ɛ

( ∑
x1∈Vε

ε2h0�x1�fn1
�x1�···

∑
xk∈Vε

ε2h0�xk�fnk
�xk�

)

= lim
ε→0

∑
x1∈Vε

··· ∑
xk∈Vε

ε2fn1
�x1�···ε2fnk

�xk�Ɛ�h0�x1�···h0�xk��



1136 R. KENYON

=
(
−16

π

)k/2∫
U
···

∫
U
fn1

�x1�···fnk
�xk�

×∑
σ

g�xσ�1��xσ�2��···g�xσ�k−1��xσ�k��

=
(
−16

π

)k/2∑
σ

∫
U
···

∫
U
fn1

�x1�···fnk
�xk�

× ∑
m1�����mk/2

fm1
�xσ�1��fm1

�xσ�2��
λm1

···
fmk/2

�xσ�k−1��fmk/2
�xσ�k��

λmk/2

=
(

16
π

)k/2∑
σ

δnσ�1��nσ�2�

�−λnσ�1� �
···

δnσ�k−1��nσ�k�

�−λnσ�k−1� �
�

By Wick’s theorem (see, e.g., [13]), these are exactly the moments for a set of
independent Gaussians of mean zero and variances − 16

πλi
. Now to conclude we

invoke the following standard probability lemma.

Lemma 3.3 [2]. A sequence of �multidimensional� random variables whose
moments converge to the moments of a Gaussian, converges itself to a Gaussian.

This completes the proof. ✷

4. Proof of Proposition 1.2. Since X and Y are Gaussians (each being
the sum of Gaussians), and have mean 0, it suffices to compute their vari-
ances. But

Ɛ�X2� =
∫
U

∫
U
ω�z1�ω�z2�Ɛ�F�z1�F�z2��

=
∫
U

∫
U
ω�z1�ω�z2�gU�z1� z2�

=
∫
V

∫
V
f∗ω�y1�f∗ω�y2�gU�f�y1�� f�y2��

=
∫
V

∫
V
f∗ω�y1�f∗ω�y2�gV�y1� y2�

= Ɛ�Y2��
where we used the conformal invariance of the Green’s function, gU�f�y1��
f�y2�� = gV�y1� y2�. This completes the proof. ✷
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