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ON A CLASS OF TRANSIENT RANDOM
WALKS IN RANDOM ENVIRONMENT

By Alain-Sol Sznitman

ETH–Zentrum

We introduce in this article a class of transient random walks in a
random environment on �d. When d ≥ 2, these walks are ballistic and we
derive a law of large numbers, a central limit theorem and large-deviation
estimates. In the so-called nestling situation, large deviations in the neigh-
borhood of the segment �0� v�, v being the limiting velocity, are critical.
They are of special interest in view of their close connection with the pres-
ence of traps in the medium, that is, pockets where a certain spectral
parameter takes atypically low values.

0. Introduction. This article is concerned with the investigation of sev-
eral asymptotic properties of a class of transient multidimensional random
walks in a random environment. When the dimension is larger than 1, we
show that these walks exhibit a ballistic behavior; they satisfy a strong law
of large numbers with a nonvanishing limiting velocity and a central limit
theorem. We also obtain various large-deviation estimates on their location at
a large time n. Some of these estimates are intimately related to questions
about slowdowns, which have recently been the object of several works, mostly
in a one-dimensional context; cf. [5], [6], [10] and [11]; see, however, [14] and
[15] for a multidimensional context. These questions are of special interest,
for they highlight the key role of traps in slowdowns of the walk. The present
article improves several results of the author in [15] on these matters.

We now describe the setting in more detail. The random environment is
determined by i.i.d. �2d�-dimensional vectors that govern the transition prob-
ability of the walk at each site. Throughout the article we assume a type of
ellipticity condition, namely, for some κ ∈ �0�1/2d�, which will often be viewed
as a function of µ,

the common law µ of the vectors is supported on �κ the set of

�2d�-vectors �p�e���e�=1� e∈zd� with p�e� ∈ �κ�1� for each(0.1)

e and
∑
�e�=1

p�e� = 1


Specifically, the random environment is an element ω = �ω�x� ·��x∈zd of  =
� zd

κ , which is endowed with the product σ-algebra and the product measure
� = µ⊗z

d
. The canonical Markov chain �Xn�n≥0, on ��d�� with state space �d
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and “quenched” law Px�ω, starting from x ∈ �d, for which

Px�ω�Xn+1 = Xn + e�X0�X1� 
 
 
 �Xn�
Px�ω-a. s.= ω�Xn� e��

for n ≥ 0 and �e� = 1�Px�ω�X0 = x� = 1�
(0.2)

is the random walk in the random environment ω. One also defines the
“annealed” laws on × ��d�N:

Px = �×Px�ω for x ∈ �d
(0.3)

A key feature in the investigation of the asymptotic properties of randomwalks
in a random environment is the presence of traps, that is, “pockets, where the
walk may spend a relatively long time, with relatively high probability.” The
strength of the trap created by the environment ω ∈  in the nonempty subset
U of �d is conveniently described by

λω�U� = lim
n
− 1

n
log �RU

n�ω�∞�∞

= sup
n≥1

− 1
n
log �RU

n�ω�∞�∞ ∈ �0�∞��
(0.4)

where RU
n�ω, for n ≥ 0, ω ∈ , denotes the operator acting on bounded func-

tions f on U:

RU
n�ωf�x� = Ex�ω�f�Xn�� TU > n��(0.5)

and for V ⊆ �d, TV and HV denote the respective exit time and entrance time
of the walk in V:

TV = inf�n ≥ 0� Xn /∈ V�� HV = inf�n ≥ 0� Xn ∈ V�
(0.6)

The existence of the limit and the second equality in (0.4) follow from super-
additivity, and the quantity e−λω�U� is the spectral radius of the operator RU

1�ω.
Intuitively, the smaller λω�U�, the stronger the trap created by ω in U. How-
ever, due to the truly non-self-adjoint nature of random walks in a random
environment, λω�U� only measures an asymptotic rate of decay of �RU

n�ω�∞�∞
and only provides a quantitative lower bound on the probability of survival of
the walk for a long time n in U, when starting from an adequate point of U;
cf. (1.4).

We show in Section 1 that the nature of possible traps in the medium
depends on the law of the local drift:

d�x�ω� = ∑
�e�=1

ω�x� e�e� x ∈ �d�ω ∈ 
(0.7)

We prove in Theorem 1.2 that, depending on whether

�i� 0 /∈ K0 (nonnestling case),

�ii� 0 ∈ ∂K0 (marginal nestling case),

�iii� 0 ∈ Int�K0� (plain nestling case)
(0.8)
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(the preceding terminology comes from Zerner [17] and also [15]), where K0
is the compact convex subset of �d defined via

K0 = convex hull of the support of the law of d�0� ω� under ��(0.9)

the random variables λω�BL� attached to a discrete Euclidean ball of large
radius L remain bounded away from 0 in case (i), can be as small as cL−2, but
no smaller than c′L−2, in case (ii), and can be as small as e−cL, but not smaller
than e−c′L, in case (iii). This reflects the strengthening of trapping effects as
one goes down the list (0.8).

The present work for the most part investigates the class of walks, which
relative to some direction l ∈ Sd−1 and a > 0, satisfy the transience condition
(T). This condition requires in addition to (0.1) that

�T�
�i� P0

[
lim
n

Xn · l = ∞
]
= 1 (transience in the direction l��

�ii� E0

[
exp

{
c sup
0≤n≤τ1

�Xn�
}]

< ∞ for some c > 0�

where �·� denotes the Euclidean norm and τ1 is the P0-a.s. finite variable
constructed in (2.5) (roughly speaking, τ1 is the first time Xn · l goes above
an amount a beyond its previous local maxima and then never backtracks).
As explained in Remark 2.5(ii), (T) holds as soon as Kalikow’s condition is
fulfilled, and, in particular, when, cf. (2.55),

Ɛ��d�0� ω� · l�+� >
1
κ
Ɛ��d�0� ω� · l�−� with κ as in �0
1�
(0.10)

One convenient feature of condition (T) is the transparent nature of the role
of l ∈ Sd−1 and a > 0. Indeed, under (T), cf. (2.9),

P0-a.s.� �Xn� → ∞ and
Xn

�Xn�
→ v̂ ∈ Sd−1

(a deterministic vector),
(0.11)

and it is shown in Theorem 2.2 that (T)(i) and (T)(ii) precisely hold for l ∈
Sd−1 with l · v̂ > 0 and a > 0. No comparable characterization of the role
of l, cf. (2.54), is known in the case of Kalikow’s condition. Further, unlike
Kalikow’s condition, (T) does not implicitly refer to the ballistic behavior of
the walk. In fact, when d = 1, (T) is compatible with a null limiting velocity,
cf. Proposition 2.6. Nevertheless we show in Theorem 3.6 that, under (T), when
d ≥ 2, one has a “ballistic” strong law of large numbers and a central limit
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theorem:

P0-a.s.�
Xn

n
→ v with v �= 0� deterministic�(0.12)

Bn = X�n·�−�n·�v√
n

under P0 converges in law on D��+� �d�

to a d-dimensional Brownian motion with nondegenerate
covariance matrix


(0.13)

These results extend to the situation where (T) holds and d ≥ 2, what is known
to happen under Kalikow’s condition when d ≥ 1, cf. Sznitman and Zerner
[16] and Sznitman [15]. Incidentally, the heart of the argument leading here
to (0.12) is of a different nature from the one in [16].

An important role in the derivation of (0.12) and (0.13) is played by a
renewal structure, which in the one-dimensional case can be found in Kesten
[8] and Kesten, Kozlov and Spitzer [9] and in the multidimensional case in
Sznitman and Zerner [16]. In view of this fact, the heart of the matter (almost)
boils down to deriving tail estimates on the variable τ1. We show here that,
under condition (T) (further assuming that we are in the ballistic case, when
d = 1),

lim sup
n

�log u�−α logP0�τ1 > u� < 0 with α = 1 when d = 1�

α <
2d

d+ 1
when d ≥ 2


(0.14)

When d ≥ 2, we expect condition (T) to be more general than Kalikow’s condi-
tion. A possible prototype of the situation where (T) might hold and Kalikow’s
condition break down is hinted at in Remark 2.5(iii). However, the matter is
left untouched here, as is the question of how typical or untypical (T) is in the
class of “ballistic walks.” Regardless of these issues, one of the innovations of
the present work comes from (0.14), which improves the results of [15], and
from the fashion in which we prove (0.14). As in [15], the key step is to derive
large-deviation estimates on the occurrence of atypical quenched exit mea-
sures of the walk in thick slabs. In the present work we use asymmetric slabs,
Uβ�L = �x ∈ �d� x · l ∈ �−Lβ� L��, with β ∈ �0� 1� and l entering condition
(T). We control the decay for large L of

��P0�ω�XTUβ�L
· l > 0� ≤ exp�−Lβ���(0.15)

cf. Theorem 3.4. Upper bounds on (0.15) are instrumental in proving (0.14)
(see Proposition 3.1), they can also be used to bound the probability of the
occurrence of traps (cf. Proposition 4.7). The strategy we employ to bound
(0.15) rests on Lemmas 3.2 and 3.3. The first lemma involves a renormaliza-
tion step. Remarkably, it applies to situations where (T) need not hold, and
assuming solely (0.1), bootstraps a certain “seed estimate” into essentially the
main control on (0.15). The second lemma assumes condition (T) and provides
the “seed estimate,” when β > 1

2 .
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Let us mention that, under (T), in the plain nestling case,

lim
u

inf �log u�−d log P0�τ1 > u� > −∞�(0.16)

and a major question left open here is whether (0.14) holds with α = d. This
question is closely related to the question of knowing whether for largeL (0.15)
is bounded by exp�−constLdβ�, when β ∈ �0� 1�. Part of the difficulty stems
from the existence of “diffuse traps,” mixing portions of the typical medium
with portions of the atypical medium (a bit like a fountain, which works both
against and with gravity).

We also obtain large-deviation estimates under P0 on the location of Xn at
a large time n. For instance, we show in Theorem 4.1 that, under condition
(T) (further assuming that we in the ballistic case, when d = 1),

lim sup
n

1
n
logP0

[
Xn

n
/∈ �

]
< 0

for � any open neighborhood in �d of �0� v�

(0.17)

The one-dimensional part of this result goes back to Dembo, Peres and Zeitouni
[5]; see also Comets, Gantert and Zeitouni [4] for further results. Moreover,
when one considers the nestling situation (0.8)(ii) or (iii), the segment �0� v�
becomes critical in the sense that

lim inf
n

1
n
log P0

[
Xn

n
∈ �

]
= 0

for � any open set intersecting �0� v�

(0.18)

Large deviations of Xn/n close to the critical region �0� v� are related to slow-
downs of the walk. Traps in the medium offer natural “resting places” where
the walk can slow down. A possible way to analyze whether “traps govern
slowdown” is to investigate whether, for δ ∈ �0� �v��,

�∗� − log P0

[∣∣∣Xn

n

∣∣∣ ≤ �v� − δ

]
� − log Ɛ

[
exp�−nλω�Bn��

]



Here “�” means that the ratios of the two sides remain bounded for large n,
and, for L > 0, BL = �x ∈ �d� �x� < L�. The left-hand side of (∗) measures the
probability of slowdowns whereas the right-hand side reflects the influence of
traps. We show in (4.15) that the right-hand side of (∗), in essence, dominates
the left-hand side (i.e., “one can use traps to slow down the walk”). At present,
(∗) is only known to hold in certain special cases, cf. Remark 4.5. It holds, for
instance, in the nonnestling case, or for walks that are neutral or biased to
the right. It also holds in the one-dimensional plain nestling case. Of course,
(∗) has very much the flavor of what is known to be true in the case of the
long-time survival of Brownian motion among Poissonian traps; cf. Chapter 4
of [13].



A CLASS OF TRANSIENT RWRE 729

As a further application of (0.14), we show in Theorem 4.3 that, under (T)
(additionally assuming that we are in the ballistic case, when d = 1),

lim sup
n

�log n�−α log P0

[
Xn

n
�∈ �

]
< 0

for � a neighborhood of v and α as in �0
14�

(0.19)

We also have a similar bound for the right-hand side of (∗). The proof that
(0.14) holds with α = d would, in particular, be one way of proving that (∗)
holds also when d ≥ 2, in the plain nestling case, under (T).

Let us finally describe the structure of the present article. Section 1 provides
several results concerning traps under the sole assumption (0.1). In particular,
we discuss the influence of the classification (0.7) on the nature of traps.

In Section 2, we begin the investigation of condition (T). We characterize in
Theorem 2.2 the set of l ∈ Sd−1 and a > 0 for which (T)(i), and (T)(ii) hold.
This result is then used recurrently. We further present some examples where
(T) holds, as well as an example for which Kalikow’s condition breaks down
and it is open whether (T) holds.

In Section 3, we derive the key estimate (0.14). An important role is played
by certain large-deviation bounds on the exit probability of large slabs. The
renormalization step provided in Lemma 3.2 is of independent interest and
does not require condition (T).

Section 4 applies the results of the previous sections and [15] to the deriva-
tion of various annealed large- deviation estimates on Xn. We also derive
bounds on the �-probability that λω�BL� takes small values, when L is large.

1. Traps and random walks in a random environment. In this
section we shall first provide some additional notation and definitions, and
then we shall derive several results concerning the structure of traps that
arise for random walks in a random environment. Throughout this section we
tacitly assume (0.1).

We begin with some notation. Throughout this article �·� and �·� respectively
denote the Euclidean and the l1-distance on �d, so that

�w� ≤ �w� ≤
√

d�w� for w ∈ �d
(1.1)

For U a subset of �d, �U� stands for the cardinality of U and ∂U for the
boundary of U:

∂U = �x ∈ �d\U� ∃y ∈ U� �y− x� = 1�
(1.2)

We denote by �	n�n≥0 the canonical filtration of �Xn�n≥0, on ��d�N, and �ϑn�n≥0
the canonical shift on ��d�N. Given a direction l ∈ Sd−1 and a number u ∈ �,
we shall often consider the stopping times:

Tl
u = inf�n ≥ 0� Xn · l ≥ u�� T̃l

u = inf�n ≥ 0� Xn · l ≤ u�
(1.3)

We now turn to the discussion of traps, and recall the definition in (0.4) of the
numbers λω�U�, for U a nonempty subset of �d and ω ∈ , which characterize
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the strength of the trap created by ω in U. The function U → λω�U� is clearly
decreasing and, as a consequence of the second line of (0.4),

sup
x∈U

Px�ω�TU > n� ≥ exp�−nλω�U��� n ≥ 0
(1.4)

Further it follows from (0.1) that

λω�U� ≤ log
1
κ

whenever �U� > 1 and ω ∈ 
(1.5)

The next proposition highlights the fact that traps, that is, pockets U for which
λω�U� is small, give rise to natural lower bounds on the annealed probability
of a slowdown. We refer to (∗) in the Introduction for the definition of BL for
L > 0.

Proposition 1.1. For L > 0� n ≥ 0,

P0� �Xn� < 2L� ≥ P0�TB2L
> n� ≥ 1

�BL�
Ɛ�exp�−nλω�BL���
(1.6)

Proof. The first inequality is immediate, and we only need to prove the
second inequality. To this end, observe that, for L > 0� n ≥ 0,

P0�TB2L
> n� ≥ 1

�BL�
∑

x∈BL

P0�TBL−x > n�

and, using translation invariance,

= 1
�BL�

∑
x∈BL

Px�TBL
> n�

= Ɛ

[
1

�BL�
∑

x∈BL

Px�ω�TBL
> n�

]
�1
4�≥ 1

�BL�
Ɛ�exp�−nλω�BL��� �

thus proving our claim. ✷

We shall now see that the behavior of the random variables λω�BL� for large
L is different in the nonnestling case, in the marginal nestling case and in the
plain nestling case; cf. (0.8). We also refer to Theorem 4.6 and Proposition 4.7,
which provide some further estimates.

Theorem 1.2. There exist positive constants c1�d� µ�, c2�d� µ�, such that,
in the nonnestling case,

�-a.s.� c1 ≤ λω�BL� ≤ c2 for L > 1�(1.7)
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in the marginal nestling case,

�-a.s.�
c1
L2

≤ λω�BL� for L ≥ 1(1.8)

and

�

[
λω�BL� ≤

c2
L2

]
> 0 for L > 1�(1.9)

and in the plain nestling case,

�-a.s.� exp�−c1L� ≤ λω�BL� for L ≥ 1�(1.10)

��λω�BL� ≤ exp�−c2L�� > 0 for large L
(1.11)

Proof. We begin with the nonnestling case. We choose l ∈ Sd−1, such that

for w ∈ K0� w · l ≥ η
def= the Euclidean distance of 0 to K0�(1.12)

and define

η� l = �ω ∈ � ∀x ∈ �d� d�x�ω� · l ≥ η��(1.13)

so that

��η� l� = 1
(1.14)

Observe that, for small enough α1�η� > 0�ω ∈ η� l� x ∈ �d,

Ex�ω�exp�−α1�X1 −X0� · l�� =
∑
�e�=1

ω�x� e� exp�−α1e · l�

≤ 1− α1
∑
�e�=1

ω�x� e�e · l+ α1
η

2

≤ 1− α1
η

2



Thus, defining

α2 = − log
[(
1− α1η

2

)]
�(1.15)

we see that, for ω ∈ η� l and x ∈ �d,

exp�−α1Xn · l+ α2n�� n ≥ 0�(1.16)

is a Px�ω-supermartingale. Thus, from the convergence theorem, Xn · l →
+∞�Px�ω-a.s., and from the stopping theorem, it follows that, for u > 0, with
x · l ≤ u,

Ex�ω�exp�−α1�u+ 1� + α2 Tl
u�� ≤ exp�−α1x · l��

using the notation of (1.3). Choosing u = L, we see that, for ω ∈ η� l,

sup
x∈BL

Ex�ω�exp�α2TBL
�� ≤ exp�α1�1+ 2L�� for L ≥ 1
(1.17)
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From Markov’s inequality and (1.4), we see that

λω�BL� ≥ α2 for L ≥ 1 and ω ∈ η� l
(1.18)

This shows the first inequality of (1.7); the second inequality follows from (1.5).
We now turn to the marginal nestling case. We choose l ∈ Sd−1, such that

K0 ⊆ �w ∈ �d�w · l ≥ 0�, and consider 0� l, in the notation of (1.13), so that

��0� l� = 1
(1.19)

It follows from Lemma 2.2 of [15] that for a suitable c1�d�µ� > 0, for ω ∈ 0� l,

Ex�ω

[
exp

{ c1
L2

TUL

}]
≤ 2 for x ∈ �d�L ≥ 1�(1.20)

with the notation

UL = �y ∈ �d� �y · l� < L�
(1.21)

As a result, we see that, for ω ∈ 0� l,

λω�BL� ≥
c1
L2

for L ≥ 1�(1.22)

thus showing (1.8). Let us prove (1.9); we shall use a variant of the argument
used in Proposition 8 of Zerner [17]. We consider an even integer M = 2N ≥ 2,
and define

DM = �1� 
 
 
 �M− 1�d
(1.23)

We introduce the function FM defined on �d via

FM�x� = fM�x1� · · ·fM�xd� for x = �x1� 
 
 
 � xd��
with fM�u� = sin

(
πu
M

)
for u ∈ �


(1.24)

Note that

FM�x� = 0 for x ∈ ∂DM�0 < FM�x� ≤ 1 for x ∈ DM
(1.25)

We shall now prove that on an event of positive �-probability

FM�Xn∧TDM
� exp

{
3π2

M2
�n ∧TDM

�
}
� n ≥ 0�

is a Px�ω-submartingale, for arbitrary x ∈ �d. In what follows we shall some-
times drop the subscript M for notational simplicity. Then, for ω ∈  and
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x ∈ DM,∑
�e�=1

F�x+e�ω�x�e�−F�x�

=
d∑

i=1
�ω�x�ei��f�xi+1�−f�xi��+ω�x�−ei��f�xi−1�−f�xi���

∏
j �=i

f�xj�

and, using Taylor’s formula with integral remainder,

=
d∑

i=1

[
ω�x�ei�

(
f′�xi�−

π2

M2

∫ 1

0

∫ u

0
f�xi+v�dvdu

)]
+ω�x�−ei�

(
−f′�xi�−

π2

M2

∫ 1

0

∫ u

0
f�xi−v�dvdu

)] ∏
j �=i

f�xj�

=∇F�x�·d�x�ω�− π2

M2

d∑
i=1

∏
j �=i

f�xj�

×
(
ω�x�ei�

∫ 1

0

∫ u

0
f�xi+v�dvdu+ω�x�−ei�

∫ 1

0

∫ u

0
f�xi−v�dvdu

)



(1.26)

Observe that, for 1 ≤ k ≤ M− 1 and −1 ≤ v ≤ 1,

sin
(π�k+ v�

M

)
≤ 2 sin

(πk

M

)
�(1.27)

and, as a result, coming back to the last line of (1.26), for x ∈ DM and ω ∈ ,

∑
�e�=1

ω�x� e�FM�x+ e� −FM�x� ≥ ∇FM�x� · d�x�ω� − π2

M2
FM�x�
(1.28)

We can now introduce the event


M =
{
ω ∈ �∀x ∈ DM� ∇FM�x� · d�x�ω� ≥ − π2

M2
FM�x�

}

(1.29)

Since we are in the nestling situation, in fact, more precisely in the marginal
nestling case (0.8)(ii), and FM�x� > 0, for x ∈ DM,

��
M� > 0 
(1.30)

Therefore, for large M, on 
M, for x ∈ DM,

∑
�e�=1

FM�x+ e�ω�x� e� ≥
(
1− 2π2

M2

)
FM�x� ≥ exp

{
−3π2

M2

}
FM�x�
(1.31)

Thus, for large M, on 
M, for x ∈ �d,

FM�Xn∧TDM
� exp

{
3π2

M2
�n ∧TDM

�
}
� n ≥ 0�(1.32)
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is a Px�ω-submartingale. Choosing x̄ = �N� 
 
 
 �N� ∈ DM (recall 2N = M�,
we find

1 =
d∏

i=1
sin

(
πN

M

)
= FM�x̄�

≤ Ex̄�ω

[
F�Xn∧TDM

� exp
{
3π2

M2
�n ∧TDM

�
}]

�1
25�≤ exp
{
3π2

M2
n

}
Px̄�ω�TDM

> n� for n ≥ 0


(1.33)

Thus, for large M, on 
M,

λω�DM� ≤
3π2

M2
�(1.34)

so that, using the monotonicity of λω�·�, (1.9) follows.
We now come to the plain nestling case, and begin with the proof of (1.10).

We begin with the observation that, for any L ≥ 1 and x ∈ BL, one can find a
nearest neighbor path with �L� + 1 steps starting in x and exiting BL. Thus,
from (0.1), when ω ∈ ,

Px�ω�TBL
≤ L+ 1� ≥ κL+1� for L ≥ 1� x ∈ BL�(1.35)

and, as a result of the Markov property, for n ≥ 0,

sup
BL

Px�ω�TBL
> n� ≤ �1− κL+1��n/�L+1��

≤ 1
1− κ

exp
{
− n

L+ 1
κL+1

}
using

[
n

L+ 1

]
≥ n

L+ 1
− 1� κL+1 ≤ κ and the inequality

1− u ≤ e−u� for u ∈ �� in the last step �

≤ 1
1− κ

exp�−ne−γL� if γ = log
1
κ
+ sup

v≥1

log��v+ 1�/κ�
v




(1.36)

The claim (1.10) follows.
We now turn to the proof of (1.11). From (2.54) of [15], it follows that, for

suitable constants c3�d�µ� ≥ 1� c4�d�µ�� c5�d�µ� > 0, for L ≥ 2�c3+1�, on the
“trapping event”

�L =
{
ω ∈ � ∀x ∈ BL\�0�� d�x�ω� · x

�x� ≤ −c4

}
�(1.37)

inf
x∈∂Bc3

Px�ω�TBL
> HBc3

� ≥ 1− exp�−c5�L− c3 − 1��

≥ 1− exp
{
−c5

2
L
}
�

(1.38)
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and, as a result of the strong Markov property,

P0�ω�TBL
> n� ≥

(
inf
∂Bc3

Px�ω

[
TBL

> HBc3

])n

≥
(
1− exp

{
−c5

2
L
})n

for n ≥ 0

(1.39)

As a result, for large L, on �L,

λω�BL� ≤ − log
(
1− exp

{
−c5

2
L
})
≤ exp

{
−c5

3
L
}

(1.40)

Furthermore, as follows from (2.49) of [15], for a suitable c6�d�µ� > 0,

���L� ≥ exp�−c6�BL���(1.41)

and the claim (1.11) easily follows. ✷

The number λω�U� only measures an asymptotic survival rate of the walk in
U, when evolving in the environment ω. To obtain quantitative upper bounds
on the probability that the walk spends a long time in a region U, it is con-
venient to introduce another quantity, which is close in spirit to the “varia-
tion threshold time” sometimes considered in the context of recurrent Markov
chains, cf. Chapter 4 of Aldous and Fill [1]. Namely, for U a nonempty subset
of �d and ω ∈ , we define

tω�U� = inf
{
n ≥ 0� ��U

n�ω�∞�∞ ≤ 1
2

}
∈ �1� 
 
 
 �∞�
(1.42)

From the inequality

exp�−λω�U�tω�U�� ≤ 1
2 when tω�U� < ∞�

which follows from (1.4), we see that, for ω ∈  and U a nonempty subset
of �d,

λω�U� ≥
log 2
tω�U�

def= λ̄ω�U�
(1.43)

The two quantities λω�U� and λ̄ω�U� are in general very different. For
instance, in the nonnestling case, when ω ∈ η� l, see (1.13), λω�BL� ≥ c1,
for L ≥ 1, whereas λ̄ω�BL� ≤ �log 2��L − 1�−1, since it takes at least �L�
steps to exit BL, when starting in 0. The next lemma however provides some
comparison of the two numbers, when �U� is small compared to tω�U�.

Lemma 1.3. For U ⊆ �d, nonempty finite, and ω ∈ , there exists x0 ∈ U
such that

Px0�ω
�H̃x0

> TU� ≤
2�U�
tω�U�

�(1.44)

where H̃y denotes the hitting time of �y�, for y ∈ �d,

H̃y = inf�n ≥ 1� Xn = y�
(1.45)
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Moreover, one has

exp�−λω�U�� ≥ 1− 2
log 2

λ̄ω�U��U�
(1.46)

Proof. We begin with the proof of (1.44). From the definition (1.42),

sup
x∈U

Px�ω�TU > tω�U� − 1� > 1
2 �

and, therefore, for some x1 ∈ U,

1
2 < Px1�ω

�TU ≥ tω�U��


Thus, using a standard Markov chain calculation,

1
2
tω�U� ≤ Ex1�ω

�TU� =
∑
y∈U

Px1�ω
�Hy < TU�

Py�ω�H̃y > TU�

≤ �U�
/(

inf
y∈U

Py�ω�H̃y > TU�
)
�

(1.47)

and (1.44) follows.
Let us prove (1.46). Observe that, for any y ∈ U and n ≥ 0, from the strong

Markov property

Py�ω�H̃y < TU�n ≤ Py�ω�TU > n� ≤ �RU
n�ω�∞�∞�

taking nth roots and letting n tend to ∞, we find

exp�−λω�U�� ≥ Py�ω�H̃y < TU� for y ∈ U
(1.48)

This and (1.44) yield (1.46). ✷

2. The condition (T). In this section, we begin the investigation of the
condition (T), which was mentioned in the Introduction. Throughout we tacitly
assume that (0.1) holds. We shall first recall the construction of the variable
τ1, cf. [15] and [16], which is the renewal time for a certain renewal structure
attached to some transient random walks in a random environment.

Assume that, for a certain unit vector l ∈ Sd−1, (T)(i) holds, that is,

P0�limXn · l = ∞� = 1


As in Sznitman and Zerner [16], given a number a > 0, we can construct τ1
as follows. We define two sequences of �	n�-stopping times, Sk� k ≥ 0, and
Rk�k ≥ 1, as well as the sequence of successive maxima in the direction
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l�Mk� k ≥ 0, via:

S0 = 0� M0 = l ·X0�

S1 = Tl
M0+a ≤ ∞� R1 = D ◦ θS1

+S1 ≤ ∞
where we use the notation �1
3�� and

D = inf�n ≥ 0� l ·Xn < l ·X0��
M1 = sup�l ·Xn�0 ≤ n ≤ R1� ≤ ∞

and by induction when k≥1� we set

Sk+1 = TMk+a ≤ ∞�

Rk+1 = D ◦ θSk+1 +Sk+1 ≤ ∞�

Mk+1 = DS sup�l ·Xn�0 ≤ n ≤ Rk+1�


(2.1)

With these definitions, we have

0 = S0 ≤ S1 ≤ R1 ≤ S2 ≤ · · · ≤ ∞�

and the preceding inequalities are strict if the left member is finite. We then
introduce

K = inf�k ≥ 1� Sk < ∞� Rk = ∞�
(2.2)

It is shown in Proposition 1.2 of [16] that, as a consequence of (T)(i),

P0�D = ∞� > 0(2.3)

and

P0-a.s.� K < ∞
(2.4)

We can then define

τ1 = SK�(2.5)

and introduce the successive times τk� k ≥ 2 (with the hopefully obvious
notation),

�2
6�
τ2 = τ1�X� + τ1�Xτ1+· −Xτ1

�
�τ2 = +∞�by definition, whenτ1 = ∞��and, fork ≥ 2�

τk+1 = τ1�X� + τk�Xτ1+· −Xτ1
�


It is shown in Theorem 1.4 of [16] that

P0-a.s.� 0 < τ1 < τ2 < · · · < τk < · · · �
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and, moreover,

under P0� ��Xτ1∧·�� τ1�� ��X�τ1+·�∧τ2
−Xτ1

� �τ2 − τ1�� 
 
 
 �
��X�τk+·�∧τk+1 −Xτk

�� τk+1 − τk�� 
 
 
 � are independent variables

and, for k ≥ 1� the ��X�τk+·�∧τk+1 −Xτk
�� τk+1 − τk� are distributed

like ��Xτ1∧·�� τ1� under P0�·�D = ∞�


(2.7)

Incidentally, the second component of the preceding random vectors can be
viewed as a function of the first component. It is convenient to use the notation

X∗
n = sup

0≤k≤n

�Xk� for n ≥ 0
(2.8)

We shall say that (T) holds relative to l ∈ Sd−1 and a > 0, if, in addition to
(0.1), (T)(i) and (T)(ii) hold, where in the previous notation, (T)(ii) means that

E0�exp�cX∗
τ1
�� < ∞ for some c > 0


Lemma 2.1. Assume that (T) holds relative to l ∈ Sd−1 and a > 0. Then,
for some deterministic direction v̂ ∈ Sd−1, such that v̂ · l > 0,

P0-a.s.� �Xn� → ∞ and
Xn

�Xn�
→ v̂ as n →∞
(2.9)

Proof. As a consequence of (2.7), (T)(ii) and the strong law of large
numbers,

P0-a.s.�
Xτk

k
→ E0�Xτ1

�D = ∞��
1
k
sup
n≥0

�X�τk+n�∧τk+1 −Xτk
� → 0 when k →∞


(2.10)

Note that, P0-a.s., Xτ1
· l > 0, so that E0�Xτ1

�D = ∞� �= 0. If we now define

v̂ = E0�Xτ1
�D = ∞�

�E0�Xτ1
�D = ∞�� so that v̂ · l > 0�(2.11)

the claim (2.9) is a straightforward consequence of (2.10). ✷

We now come to the main result of this section.

Theorem 2.2 �d ≥ 1�. Assume that (T) holds relative to some l ∈ Sd−1 and
a > 0. Then the set of �l′� a′� ∈ Sd−1 × �0�∞� relative to which (T) holds
coincides with �l ∈ Sd−1� l · v̂ > 0� × �0�∞�.

Proof. It follows from Lemma 2.1 that if (T) holds relative to l′ ∈ Sd−1

and a′ > 0, l′ · v̂ > 0. Conversely, assume that l′ · v̂ > 0 and a′ > 0. Let us
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denote by τ′1 the random time constructed in an analogous fashion to τ1, with
l′ and a′ in place of l and a, cf. (2.5). As a consequence of (2.9), we see that

P0�lim l′ ·Xn = ∞� = 1�

and the claim will follow once we show that

E0

[
exp

{
cX∗

τ′1

}]
< ∞ for some c > 0
(2.12)

We shall write π�·� for the projection on the orthogonal complement of v̂:

π�w� = w−w · v̂v̂� w ∈ �d
(2.13)

Lemma 2.3. For γ ∈ � 12 �1� and ρ > 0,

lim sup
u→∞

u1−2γ logP0

[
sup

0≤n≤Ll
u

�π�Xn�� ≥ ρuγ

]
< 0

where, for u ≥ 0�Ll
u = sup�n ≥ 0� Xn · l ≤ u�


(2.14)

Proof. The proof is identical to the proof of Corollary 1.5 in [15]. ✷

We now choose a rotation R̂�·� of �d, such that

R̂�e1� = v̂
(2.15)

For ε > 0, we introduce the cylinder in �d:

Cylε = R̂
((
−ε�

1
ε

)
×Bd−1

(
0�

ε

2
�l · v̂��l′ · v̂�

))
�(2.16)

where Bd−1�0� r� denotes the �d − 1�-dimensional Euclidean ball of radius r,
centered at the origin of �d−1, when d ≥ 2, and Cylε = �−ε� 1

ε
�, when d = 1.

For ε > 0 and u > 0, we shall use the notation

Cε�u = �u Cylε� ∩ �d
(2.17)

The next lemma will be very useful in the rest of this article:

Lemma 2.4. For ε > 0,

lim sup
u→∞

u−1 logP0
[
Tv̂

u/ε > TCε�u

]
< 0(2.18)

[with the notation of (1.3)].

Proof. The event that appears in (2.18) decreases with ε, and it thus
suffices to prove (2.18) for small ε. Moreover, for u > 0, P0-a.s.,{

Tv̂
u/ε > TCε�u

} ⊂ {
T̂v̂
−εu < Tv̂

u/ε� sup
n<T̂v̂−εu

�π�Xn�� <
ε

2
u�l · v̂��l′ · v̂�

}
∪

{
TCε�u < T̂v̂

−εu ∧Tv̂
u/ε

}



(2.19)
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We shall bound the probability of the two events on the right-hand side of
(2.19). We begin with the rightmost event. Note that

Cε�u ⊂
{
x ∈ �d� x · l <

(
1
ε
+ ε

2

)
u

}
and, for large u,

P0-a.s.� TCε�u ≤ Ll
�1/ε+ε�u
(2.20)

The application of (2.14)
[
with γ = 1 and ρ = ε

2�l · v̂��l′ · v̂�/
( 1

ε
+ ε

)]
yields

lim sup
u→∞

u−1 logP0�TCε�u < T̃v̂
−εu ∧Tv̂

u/ε�

≤ lim sup
u→∞

u−1 logP0

[
sup

0≤n≤Ll
�1/ε+ε�u

�π�Xn�� ≥
ε

2
u�l · v̂��l′ · v̂�

]
< 0


(2.21)

We now bound the probability of the first event on the right-hand side of (2.19).
When this event occurs,

XT̂v̂−εu
· l = XT̂v̂−εu

· v̂v̂ · l+ π�XT̂v̂−εu
� · l

≤ −εuv̂ · l+ ε

2
u�v̂ · l��v̂ · l′� + 1 ≤ − ε

2
u�v̂ · l� + 1


As a result, for large u the P0-probability of this event is smaller than

P0�T̂l
�−ε/4�u�v̂·l� < ∞� ≤ P0�X∗

τ1
≥ ε

4u�v̂ · l��
≤ exp

{− c0
4 εu�v̂ · l�}E0�exp�c0X∗

τ1
���

(2.22)

where c0 is some constant for which the last expectation is finite, cf. (T)(ii).
This together with (2.21) proves (2.18).

The next step is to obtain an exponential estimate like (2.12), with Xτ′1 · l′
in place of X∗

τ′1
. We consider D′ the stopping time defined analogously to D in

(2.1), with l′ in place of l. Since P0�limXn · l′ = ∞� = 1, it follows as in (2.3)
that

P0�D′ = ∞� > 0
(2.23)

Let us introduce

M′ = sup�Xn · l′� 0 ≤ n ≤ D′� ≤ ∞
(2.24)

The same calculation as in (1.33)–(1.37) of [15], shows that, for c > 0,

E0
[
exp

{
cXτ′1 · l′

}] ≤ exp�c�a′ + 1��P0�D′ = ∞�
× ∑

k≥1
E0

[
exp

{
c�a′ + 1+M′�}� D′ < ∞]k−1



(2.25)

The finiteness for small c > 0 of the left-hand side of (2.25) will follow if we
show that, for small c > 0,

E0�exp�cM′�� D′ < ∞� < 1
(2.26)
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To prove this, we write

E0�exp�cM′�� D′ < ∞�
≤ ∑

m≥0
exp�c2m+1�P0�2m ≤ M′ < 2m+1�D′ < ∞�

+ ecP0�0 ≤ M′ < 1� D′ < ∞�


(2.27)

Let us now consider the generic term of the series on the right-hand side of
(2.27). We choose

ε = v̂ · l′
4

� u = 3
2

2m

l′ · v̂ �

and claim that, for large m,

P0-a.s.� �TCε�u ≤ Tl′
2m� ⊆ �TCε�u < Tv̂

u/ε�
(2.28)

Indeed, P0-a.s., on the event �TCε�u = Tv̂
u/ε�, we have, for large m,

XTCε�u · l′ = XTCε�u · v̂�v̂ · l′� + π�XTCε�u � · l′ ≥
( 3
2 − ε

)
2m > 2m�

and (2.28) follows. Using a rough counting argument, �Cε�u ∩∂�x ∈ �d & x · l′ <
2m�� ≤ �Cε�u� ≤ c7�d� v̂� l′�2md for large m. We see with the help of (2.28),
the strong Markov property at time Tl′

2m and translation invariance, that,
for large m,

P0�2m ≤ M′ < 2m+1� D′ < ∞�
≤ P0

[
TCε�u < Tv̂

u/ε

]+P0�Tl′
2m < TCε�u� 2m ≤ M′ < 2m+1� D′ < ∞�(2.29)

≤ P0�TCε�u < Tv̂
u/ε� + c7 2

md P0�T̃l′
−2m < Tl′

2m�

The first term on the right-hand side of (2.29) decays exponentially in u (or
in 2m), in view of (2.18). As for the second term, keeping ε and u as before,
observe that, for large m,

P0-a.s. T̃l′
−2m ≥ TCε�u�(2.30)

since, for x ∈ Cε�u,

x · l′ = x · v̂�v̂ · l′� + π�x� · l′ ≥ −2εu > −2m


This and (2.28) show that, for large m,

P0-a.s.� �TCε�u = Tv̂
u/ε� ⊆ �Tl′

2m < TCε�u ≤ T̃l′
−2m��(2.31)

and, as a result,

P0�T̃l′
−2m < Tl

2m� ≤ P0�TCε�u < Tv̂
u/ε��

so that, for large m,

P0�2m ≤ M′ < 2m+1� D′ < ∞� ≤ �1+ c72
md�P0�TCε�u < Tv̂

u/ε� 
(2.32)

It now follows from (2.18) and (2.27) that, picking c = c0 small, for some m0
the sum of terms in the first series of the right-hand side of (2.27) with m ≥ m0
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is smaller than 1
4P0�D′ = ∞�. Making c sufficiently small, we can ensure that

the right-hand side of (2.27) is bounded by P0�D′ < ∞� + 3
4P0�D′ = ∞� < 1,

and (2.26) holds. Therefore,

E0
[
exp�cXτ′1 · l′�

]
< ∞ for some c > 0
(2.33)

We now come to the proof of the main claim (2.12). In view of (2.33), it suffices
to show that

�2
34�
E0�exp�cX

∗�w
τ′1
�� < ∞ for some c > 0�

where X∗�w
n = sup�Xk ·w� 0 ≤ k ≤ n� and

w = R̂�±ei�� i = 2� 
 
 
 � d, or w = R̂�−e1�

[cf. (2.15) for the definition of R̂]. For w as before, c > 0�A > 0, we write

E0
[
exp�cX∗�w

τ′1
�] ≤ E0

[
exp

{
4c
A

Xτ′1 ·l′
}]

+E0

[
exp�cX∗�w

τ′1
��Xτ′1 ·l′<

A

4
X
∗�w
τ′1

]
≤ E0

[
exp

{
4c
A

Xτ′1 ·l′
}]
+ec+ ∑

m≥0
exp�c2m+1�P0��m��

(2.35)

provided �m stands for the event

�m =
{
2m ≤ X

∗�w
τ′1

< 2m+1� Xτ′1 · l′ <
A

4
X
∗�w
τ′1

}

(2.36)

The next step is to show that, with the choices of ε� u�A in (2.38)–(2.40), for
large m,

P0-a.s.� �m ⊆ �TCε�u < Tv̂
u/ε��(2.37)

so that, with the help of (2.18), we can bound P0��m�. We choose ε > 0 small
enough so that,

v̂ · l′
ε

− ε > 1
(2.38)

Then we define u and A via

u =
{
ε

(
1+ �w · v̂�

v̂ · l′
)}−1

2m−1(2.39)

and

A =
{

v̂ · l′
2�v̂ ·w�

}
∧
{
ε

(
1+ �w · v̂�

v̂ · l′
)}−1


(2.40)

We begin with the observation that, for large m,

P0-a.s.� �m ⊆ �TCε�u ≤ τ′1�
(2.41)
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Indeed, P0-a.s., on �m,

Xτ′1 · l′ ≤ A2m−1 and for some 0 ≤ n0 ≤ τ′1� Xn0
·w ≥ 2m�(2.42)

so that, for large m P0-a.s., on �m ∩ �τ′1 < TCε�u�,
2m ≤ Xn0

·w ≤ Xn0
· v̂�w · v̂� + εu for some 0 ≤ n0 ≤ τ′1


Now, if Xn0
· v̂ < 0, then the rightmost expression above is strictly smaller

than 2εu ≤ 2m; if Xn0
· v̂ ≥ 0 and w · v̂ ≤ 0, then it is smaller than εu < 2m;

and if Xn0
· v̂ > 0�w · v̂ > 0, then it equals

�Xn0
· v̂v̂ · l′ − εu� v̂ ·w

v̂ · l′ +
(
1+ v̂ ·w

v̂ · l′
)
εu ≤ �Xn0

· l′�+
v̂ ·w
v̂ · l′ + 2m−1

�2
42�≤
(
A

v̂ ·w
v̂ · l′ + 1

)
2m−1 < 2m�

from which (2.41) follows. Then observe that, for large m, P0-a.s., on �m ∩
�TCε�u = Tv̂

u/ε�,

XTv̂
u/ε
· l′ ≥ XTv̂

u/ε
· v̂�v̂ · l′� − εu ≥ u

ε
�v̂ · l′� − εu

�2
38�
> u ≥ A2m−1�

but in view of (2.41), and (2.42), on the previous event,

XTv̂
u/ε
· l′ = XTCε�u · l′ ≤ Xτ′1 · l′ ≤ A2m−1�

from which we deduce that, for large m, (2.37) holds. As an application of
(2.18) and (2.33), we see that for small c the left-hand side of (2.35) is finite.
This completes the proof of Theorem 2.2. ✷

We shall now provide some examples where condition (T) holds and discuss
its relation with the so-called Kalikow condition.

Remark 2.5. (i) In the one-dimensional situation, the next proposition clar-
ifies the nature of condition (T).

Proposition 2.6 [d = 1, under (0.1)]. For l = ±1,
�T� holds with respect to l and a > 0⇐⇒ P0�limXn · l = ∞� = 1
(2.43)

Let us also mention that, as a consequence of the work of Solomon [12],
under (0.1),

P0�limXn · l = ∞� = 1⇐⇒ lƐ�log ρ�0�� < 0

provided ρ�x�ω� = ω�x�−1�
ω�x�1� � for x ∈ �� ω ∈ 


(2.44)
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Proof of Proposition 2.6. In view of the preceding discussion, the claim
(2.43) will follow once we show that

when Ɛ�log ρ� < 0� then, for l = 1� a > 0

and small c > 0� E0�exp�cX∗
τ1
�� < ∞


(2.45)

We first prove a similar statement with Xτ1
in place of X∗

τ1
. Using the same

argument as in (2.26) and (2.27), it suffices to show that, for some c′ > 0 and
large m,

P0�2m ≤ M < 2m+1� D < ∞� ≤ exp�−c′2m��(2.46)

with hopefully obvious notation. Using the one-dimensional situation, we find

P0�2m ≤ M < 2m+1� D < ∞� ≤ P0�T̃−2m < T2m�

(dropping the superscript l = 1 from the notation). Further, as follows from
Chung ([3], Chapter 1, Section 12), for x < 0 < y,

P0�ω�T̃x < Ty� =
exp�∑x�0� + · · · + exp�∑x�y−1�

1+ exp�∑x� x+1� + · · · + exp�∑x�y−1�
�(2.47)

with the notation
∑

z� z′ =
∑

z<m≤z′ log ρ�m�ω� for z ≤ z′ in �. If we choose

γ ∈ �0�−Ɛ�log ρ���(2.48)

then, for a suitable c > 0 and large m,

P0�T̃−2m < T2m�

≤ exp�−γ2m� + 2m sup
0≤k<2m

�

[
exp

{ ∑
−2m�k

}
>

exp�−γ2m�
2m

]

= exp�−γ2m� + 2m sup
0≤k<2m

�

[ ∑
−2m�k

> −γ2m −m log 2
]
≤ exp

{−c2m
}
�

(2.49)

using standard Cramér-type estimates in the last step. This proves (2.46). To
derive (2.45), it suffices, just as in (2.35), to show that, for a suitable c > 0
and large m,

P0�2m ≤ X∗
τ1

< 2m+1� X∗
τ1

> Xτ1
� ≤ exp�−c2m�
(2.50)

However, the left-hand side of the preceding inequality is smaller than
P0�T̃−2m < T2m+1�, so that (2.50) follows from similar bounds as in (2.49).
This completes the proof of Proposition 2.6. ✷
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In the one-dimensional situation, under assumptions more general than
(0.1), Solomon [12] has shown the following strong law of large numbers:

P0-a.s.�
Xn

n
→ v�

where in case (i) Ɛ�ρ� < 1� v = 1− Ɛ�ρ�
1+ Ɛ�ρ� �>0��

�ii� Ɛ
[ 1
ρ

]
< 1� v = Ɛ�1/ρ� − 1

1+ Ɛ�1/ρ� �<0��

�iii� 1
Ɛ�1/ρ� ≤ 1 ≤ Ɛ�ρ�� v = 0


(2.51)

In the remainder of this article, we shall refer to cases (i) and (ii) as the
“ballistic situation.” Proposition 2.6 shows, in particular, that, when d = 1, (T)
may be fulfilled and yet v = 0. We shall see in the next section that this does
not occur when d ≥ 2.

(ii) As we now shall explain, Kalikow’s condition implies condition (T). Let
us first recall what Kalikow’s condition is. For any U connected strict subset
of �d, containing 0, we consider the auxiliary Markov chain with state space
U ∪ ∂U and transition probability:

P̂U�x� x+ e� = Ɛ

[
E0�ω

[
TU∑
0

1�Xn = x�
]
ω�x� e�

]/
Ɛ

[
E0�ω

[
TU∑
0

1�Xn = x�
]]

for x ∈ U� �e� = 1�(2.52)

P̂U�x� x� = 1� when x ∈ ∂U


The associated auxiliary local drift is

d̂U�x� = Êx�U�X1 −X0�� x ∈ U ∪ ∂U
(2.53)

Kalikow’s condition relative to l ∈ Sd−1 holds precisely when (cf. Kalikow [7],
Sznitman and Zerner [16] and Sznitman [15])

ε�l� µ� def= inf
U�x∈U

d̂U�x� · l > 0�(2.54)

where U runs over the class of connected strict subsets of �d containing 0. A
sufficient condition for (2.54) is, for instance, that

Ɛ
[�d�0�ω� · l�+] > κ−1Ɛ

[�d�0�ω� · l�−](2.55)

(this follows immediately from the sufficient condition given by Kalikow in
[7], pages 759–760; see also (2.36) of [16]). Further, Theorem 2.3 of [16] and
Proposition 1.4 of [15] ensure that, under (0.1),

Kalikow’s condition relative to l implies condition (T)
relative to l and arbitrary a > 0
(2.56)
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As a matter of fact, Kalikow’s condition in arbitrary dimension implies the
following “ballistic” strong law of large numbers:

P0-a.s.�
Xn

n
→ v where v is a deterministic

vector with v · l > 0
(2.57)

(cf. Theorem 2.3 of [16]). Moreover, when d = 1, (2.54) relative to l = 1 is
equivalent to (2.51)(i) [and, of course, (2.54) relative to l = −1 is equivalent
to (2.51)(ii)]. Thus, unlike condition (T), Kalikow’s condition implies a ballistic
behavior in all dimensions and characterizes such a behavior in dimension 1.

In contrast to condition (T), Kalikow’s condition almost explicitly refers to
the ballistic behavior of the walk (indeed, after a simple manipulation, cf.
Lemma 2.2 of [16], (2.54) is seen to imply that E0�XTU

· l� ≥ εE0�TU�, for any
finite connected subset U containing 0). Also, there is so far no analogue of
Theorem 2.2 providing a description of the set of directions with respect to
which (2.54) holds.

(iii) We provide here a simple example of a random walk in a random envi-
ronment for which Kalikow’s condition (2.54) fails for every l ∈ Sd−1 and for
which it is an open problem to determine, when d ≥ 2, whether condition (T)
holds. We pick 0 < η < η1 < 1/4d = κ, and, for �e� = 1, denote by pe�·� the
element of �κ such that

for e �= e1� pe�e� =
1
2d

+ η� pe�−e� = 1
2d

− η�

pe�e′� =
1
2d

� when �e′� = 1 and e′ · e = 0�

for e = e1� pe�e1� =
1
2d

+ η1� pe�−e1� =
1
2d

− η1�

pe�e′� =
1
2d

� when �e′� = 1 and e′ · e1 = 0


(2.58)

We let µ stand for the probability on �κ, which puts equal mass 1/2d on each
pe�·�� �e� = 1. Observe that

Ɛ�d�0�ω�� = 1
d
�η1 − η�e1
(2.59)

Thus, choosing U = �0� in (2.54), we see that if Kalikow’s condition relative
to l ∈ Sd−1 holds, necessarily l · e1 > 0. Consider such an l = ∑d

1 αiei, with
α1 > 0. Choose now U = �−e1�0�. We have

E0�ω

[
TU∑
0

1�Xn = 0�
]
= �1−ω�0�−e1�ω�−e1� e1��−1�(2.60)

and, therefore,

Ɛ

[
d�0�ω� · lE0�ω

[
TU∑
0

1�Xn = 0�
]]

=
d∑
1

αiβi�(2.61)
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where

βi = Ɛ

[
d�0�ω� · ei

1−ω�0�−e1�ω�−e1� e1�
]

for 1 ≤ i ≤ d
(2.62)

Using independence, we see that, for i > 1,

βi =
∫
�κ

dµ�p̃�
∫
�κ

dµ�p� p�ei�−p�−ei�
1−p̃�e1�p�−e1�

=0�

whereasβ1 =
∫
�κ

dµ�p̃� 1
2d

[
2η1

1−p̃�e1��1/2d−η1�
− 2η
1−p̃�e1��1/2d+η�

]

= 1
d

∫
�κ

dµ�p̃� �η1−η�(1−p̃�e1�/2d
)−2η1ηp̃�e1�

�1−p̃�e1��1/2d−η1����1−p̃�e1��1/2d+η��(2.63)

≤ 1
d

[
�η1−η�

(
1− κ

2d

)
−2η1ηκ

]
×
∫
�κ

dµ�p̃�
[(

1−p̃�e1�
(

1
2d

−η1

))(
1−p̃�e1�

(
1
2d

+η

))]−1



Therefore, when η1 > η is close enough to η so that

�η1 − η�
(
1− κ

2d

)
< 2κη2

(
recall κ is chosen equal to

1
4d

)
�(2.64)

β1 is negative. Comparing with (2.54), with U = �−e1�0�, we thus see that,
for 0 < η < η1 < 1/4d,

when (2.64) holds, Kalikow’s condition fails for every l ∈ Sd−1
(2.65)

When one picks η1 = η small in (2.58), one obtains an isotropic distribution µ,
for which the results of Bricmont and Kupiainen [2] hold, when d ≥ 3. It is an
open problem whether the preceding example, when η1 > η is close to η and
d ≥ 2, the corresponding walk has a ballistic behavior. As we shall see in the
next section, condition (T), if it holds in the present situation, implies both a
strong law of large numbers with a nondegenerate velocity and a central limit
theorem.

3. More on condition (T) when d ≥2. In this section, we shall see that,
in contrast to the one-dimensional case, condition (T) in the multidimensional
case implies a strong law of large numbers with a nondegenerate velocity and
a central limit theorem. Just as in our previous work [15], the heart of the
matter is the control of the tail of the variable τ1. This, in turn, relies on the
derivation of certain large-deviation-type estimates on the exit distribution of
the walk from certain asymmetric large slabs. Throughout this section, we
assume, unless otherwise specified, that d ≥ 2 and condition (T) holds with
respect to l ∈ Sd−1 and a > 0. For β ∈ �0�1� and L > 0, we denote by Uβ�L

the set

Uβ�L = �x ∈ �d� x · l ∈ �−Lβ�L��
(3.1)
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The next proposition highlights the role of large-deviation estimates on the
exit distribution of �Xn� out of Uβ�L under P0�ω.

Proposition 3.1 �d ≥ 2�. Assume that (T) holds with respect to l and a. If
β ∈ �0�1� is such that, for any c > 0,

lim sup
L→∞

1
L
log�

[
P0�ω

[
XTUβ�L

· l > 0
]
≤ exp�−cLβ�

]
< 0(3.2)

then

lim sup
L→∞

�log u�1/β logP0�τ1 > u� < 0
(3.3)

Proof. We let R denote a rotation of �d, such that

R�e1� = l
(3.4)

We write, for L > 0,

CL = R

((
−L

2
�
L

2

)d)
∩ �d�(3.5)

and, for u > 1, integer

A�u� = 1

7
√

d

log u

log�1/κ� � L�u� = A�u�1/β
(3.6)

It follows from condition (T) that, for a suitable c0 and large u,

P0�τ1 > u� ≤ P0�τ1 > u�TCL�u� ≤ τ1� +P0�TCL�u� > u�
≤ exp�−c0L�u�� +P0�TCL�u� > u�


(3.7)

Our claim will thus follow from

lim sup
u

�log u�−1/β logP0�TCL�u� > u� < 0
(3.8)

Using the notation of (1.42), denote by � the event

� =
{
ω ∈ � tω�CL�u�� >

u

�log u�1/β
}

(3.9)

It follows from (1.44) and the Markov property that

P0�TCL�u� > u�

≤ Ɛ�� c�P0�ω�TCL�u� > u�� + ��� � ≤
(
1
2

)��log u�1/β�

+��for some x2 ∈ CL�u��Px2�ω
�H̃x2

> TCL�u� �

≤ 2�log u�1/β
u

�CL�u���


(3.10)



A CLASS OF TRANSIENT RWRE 749

On the event that appears in the rightmost term of (3.10), for all x �= x2 with

�x− x2� ≤
1
3

log u

log�1/κ� �

using a nearest neighbor self-avoiding path on �d to join x2 and x, we find

u−1/3Px�ω�TCL�u� < Hx2
�

≤ Px2�ω
�TCL�u� < H̃x2

� ≤ 2�log u�1/β
u

�CL�u��

(3.11)

Thus, when u is large, we let x denote some closest point in �d to x2+2A�u�l,
so that

0 < �x− x2�
�1
1�≤

√
d�2A�u� +

√
d� ≤ 1

3
log u

log�1/κ�
and, in view of (3.11), x belongs to CL�u�. It then follows that

Px�ω�XTx+Uβ�L�u�
> x · l� ≤ Px�ω�Hx2

> TCL�u� �
�3
11�≤ 1√

u

= exp�−c8�d�µ�L�u�β�

Using translation invariance and (3.10), we find

P0�TCL�u� > u� ≤ ( 1
2

)��log u�1/β�

+�CL�u����P0�ω�XTUβ�L�u�
· l > 0� ≤ exp�−c8L�u�β���

and (3.8) follows from (3.2). This completes the proof of Proposition 3.1. ✷

We shall now derive upper bounds like (3.2). To this end, we first need some
notation and auxiliary quantities. For β > 0 and L > 0, we consider the lattice

β�L = L�× �2d+ 1�Lβ�d−1�(3.12)

and, for w ∈ �d, we introduce the blocks

B1� β�L�w� = R̂�w+ �0�L� × �0�Lβ�d−1� ∩ �d�

B2� β�L�w� = R̂�w+ �−dLβ�L� × �−dLβ� �d+ 1�Lβ�d−1� ∩ �d�
(3.13)

where R̂ is the rotation introduced in (2.15). We shall also consider the follow-
ing subset of the boundary of B2� β�L�w�, which is a subset of the “top part” of
the box,

∂+B2� β�L�w� = ∂B2� β�L�w� ∩B1� β�L�w+Le1�� w ∈ �d�(3.14)
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as well as the random variables

Xβ�L�w� = − log inf
x∈B1� β�L�w�

Px�ω

[
XTB2� β�L�w�

∈ ∂+B2� β�L�w�
]

(3.15)

The next lemma is a type of renormalization step to control the tail of the
random variables Xβ�L�w�. Note that we need not assume condition (T), in

which case R̂ in (3.13) is just an arbitrary rotation of �d.

Lemma 3.2 [Renormalization step, d ≥ 2, under (0.1)]. Assume that β0 ∈
�0�1� and f0 is a positive function defined on �β0�1�, such that

f0�β� ≥ f0�β0� + β− β0 for β ∈ �β0�1��(3.16)

and, for β ∈ �β0�1�, ζ < f0�β�,
lim
β′↑β

lim sup
L→∞

L−ζ sup
w∈�d

log��Xβ0�L
�w� ≥ Lβ′ � < 0
(3.17)

Denote by f�·� the linear interpolation on �β0�1� of the value f0�β0� at β0 and
the value d at 1. Then, for β ∈ �β0�1� and ζ < f�β�,

lim
β′↑β

lim sup
L→∞

L−ζ sup
w∈�d

log��Xβ�L�w� ≥ Lβ′ � < 0
(3.18)

Proof. We only need consider β ∈ �β0�1�. We define χ ∈ �0�1� via
β = χβ0 + 1− χ
(3.19)

We shall now consider “columns of boxes” B1� β0�L
χ�w′�, made by piling up

�L1−χ� such boxes on top of each other. Each such column will provide a line of
escape of the walk out of a box B2� β�L�w� through ∂+B2� β�L�w�. More precisely,
the set of labels of the columns will be

Col =
{
z ∈ β0�L

χ� z · e1 = 0� z · ei ∈
[
1
4
Lβ�

3
4
Lβ

]
for i = 2� 
 
 
 � d

}
�(3.20)

and the number of boxes in each column will be J+ 1, where

J = �L1−χ�
(3.21)

Pick w ∈ �d and consider the boxes

B1� β0�L
χ�w+ z+ jLχe1� ⊆ B2� β0�L

χ�w+ z+ jLχe1�� z ∈ Col� j ∈ �0�J�

For large L, when the walk starts in B1� β�L�w�, one way to exit B2� β�L�w�
through ∂+B2� β�L under Px�ω consists in first moving without exiting
B2� β�L�w� to some point of some B1� β0�L

χ�w + z + jLχe1�, z ∈ Col, 0 ≤ j ≤
J, and then move upward repeatedly and exit B2� β0�L

χ�w + z + j′Lχe1� via
∂+B2� β0�L

χ�w+ z+ j′Lχe1� for each j′ ∈ �j�J�.
Observe that, when L is large, for arbitrary w ∈ �d� x ∈ B1� β�L�w�� z ∈

Col� x can be linked by a nearest neighbor path in B2� β�L�w� of length at
most dLβ to some point of a box of the form B1� β0�L

χ�w + z + jLχe1�, where
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0 ≤ j ≤ J. Using (0.1) and the strong Markov property, we see that, for large
L, arbitrary w ∈ �d� x ∈ B1� β�L�w�,

Px�ω�XTB2� β�L�w�
∈ ∂+B2� β�L�w��

≥ κdLβ

exp
{
−

J∑
j=0

Xβ0�L
χ�w+ z+ jLχe1�

}
for all z ∈ Col


(3.22)

If we define

c9�d�µ� = d log
1
κ
�(3.23)

then, for large L and any w ∈ �d,

�Xβ�L�w� ≥ 3c9L
β� ⊆ min

z∈Col

{ J∑
j=0

Xβ0�L
χ�w+ z+ jLχe1� ≥ 2c9L

β

}



Observe also that the variables
∑J

j=0 Xβ0�L
χ�w+ z+ jLχe1� are independent

as z varies over the set Col. Moreover, for large L, for w ∈ �d� z ∈ Col, the
variables Xβ0�L

χ�w + z + jLχe1� are independent when j is restricted to the
set of even or the set of odd integers. Further, for given w and z as before, if
Y�Y′ stand for the respective sums of these variables with j even or j odd
in �0�J�, it follows from the Cauchy–Schwarz inequality that, for λ > 0, since
Y�Y′ are nonnegative,

Ɛ

[
exp

{
λ

2
�Y+Y′�

}]
≤ �Ɛ�exp�λY��Ɛ�exp�λY′���1/2

≤ Ɛ�exp�λY��Ɛ�exp�λ′Y��

Therefore, for large L and any w ∈ �d, choosing λ > 0 and using Chebyshev’s
inequality in the second inequality,

��Xβ�L�w�≥3c9L
β�

≤ ∏
z∈Col

�

[ J∑
j=0

Xβ0�L
χ�w+z+jLχe1�≥2cgL

β

]

≤ ∏
z∈Col

{
exp�−λc9L

β�
J∏

j=0
Ɛ�exp�λXβ0�L

χ�w+z+jLχe1���
}

(3.24)

≤ ∏
z∈Col

{
exp�−λc9L

β�

×
(
exp

{
λcg

2
Lχβ0

}
+
∫ ∞
�c9/2�Lχβ0

λeλu sup
w′∈�d

��Xβ0�L
χ�w′�≥u�du

)J+1}
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We shall now study the behavior of the integral that appears in the rightmost
term of (3.24), when we specify λ through

λ = Lα� with α = χf0�β0� − χβ0 − ε and 0 < ε < χf0�β0�
(3.25)

Choose an integer N such that

N >
1
ε

(3.26)

and define, for i ≥ 0,

βi = β0 + i
�1− β0�

N

(3.27)

Note that, for any w�w′ in �d, the collection � �w�w′� of closed unit cubes
z+�0�1�d, z ∈ �d, intersecting the segment �w�w′� = �uw+�1−u�w�0 ≤ u ≤ 1�
is a connected subset of �d. It is then an easy matter to see that, for a suitable
c10�d� > 0, any x� x′ in � �w�w′� can be joined by a nearest neighbor path in
� �w�w′� of at most c10�d���x − x′� ∨ 1� steps. From this and (0.1), it readily
follows that, for large L,

sup
w

��Xβ0�L
χ�w� > c11�d�µ�Lχ� = 0�(3.28)

with c11�d�µ� = 2
√

d�log 1
κ
�c10. So, defining

c12 =
c9
2
∨ c11�(3.29)

we find for large L by discretizing the integral at the points �c9/2�Lχβi�0 ≤
i < N, ∫ ∞

�c9/2�Lχβ0
λeλusup

w′
��Xβ0�L

χ > u�du

≤ c11L
χλ sup

{
exp�c12λLχβi+1��w′�

× sup
w′

�

[
Xβ0�L

χ > �w′�c9
2

Lχβi

]
� i < N

}(3.30)

However,

α+ χβi+1 = χf0�β0� − χβ0 − ε+ χ

(
β0 +

�i+ 1�
N

�1− β0�
)

�3
26�
< χ�f0�β0� + βi − β0�

�3
16�≤ χf0�βi��
and, as a result of (3.17), we see that the left-hand side of (3.30) tends to 0
when L → ∞. Coming back to (3.24), using the fact that λLχβ0 tends to ∞
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with L, cf. (3.25), we find that, for large L,

sup
w

��Xβ�L�w� ≥ 3c9L
β� ≤ exp

{
�Col�

(
−λc9L

β + �1+J�2
3
c9λLχβ0

)}
≤ exp

{
−λ

6
c9L

β�Col�
}



Since �Col� ∼ constL�d−1��β−χβ0�, as L →∞, we find that, for small ε > 0,

lim sup
L→∞

L−�χf0�β0�+d�1−χ�−ε� sup
w

log��Xβ�L�w� ≥ 3c9L
β� < 0
(3.31)

Finally, observe that, when β1 ∈ �β0� β�, for large L, �0�L� × �0�Lβ�d−1 can
be covered by at most Ld−1 boxes w+ �0�L� × �0�Lβ1�d−1, included in �0�L� ×
�0�Lβ�d−1, from which it follows that

�
[
Xβ�L�w� ≥ L�β+β1�/2] ≤ �

[
Xβ�L�w� ≥ 3c9L

β1
]

≤ Ld−1 sup
w

��Xβ1�L
�w� ≥ 3c9L

β1�

�3
31�≤ exp�−L�f�β1�−ε�� for any small ε > 0,

when L is large 


The claim (3.18) easily follows. ✷

The next lemma will show that, when d ≥ 2, under condition (T), the func-
tion f0�β� = β+β0−1� β ∈ �β0�1�, fulfills the assumption of Lemma 3.2 when
β0 ∈ � 12 �1� [one uses an argument as above to check (3.17) when β = β0].

Lemma 3.3 [Seed estimate d ≥ 2, under condition (T)]. Assume that β0 ∈( 1
2 �1

)
. Then, for ρ > 0 and β ∈ �β0�1�,

lim sup
L→∞

L−�β+β0−1� sup
w∈�d

log��Xβ0�L
�w� ≥ ρLβ� < 0
(3.32)

Proof. Choose η ∈ �0�1� small and then introduce

χ = β0 + 1− β ∈ �β0�1��(3.33)

and, for large L and w ∈ �d the boxes B̃1�w� ⊆ B̃2�w�, defined analogously as
in (3.13), with �0�L�×�0�Lβ�d−1 and �dLβ�L�×�−dLβ� �d+1�Lβ�d−1, replaced
by �0�L0�× �0�Lβ0�d−1 and �−dLβ0�L0�×�−ηLβ0� �1+η�Lβ0�d−1 respectively,
with the notation

L0 =
L− ηLβ0

�L1−χ� 
(3.34)

Define also

Top B̃2�w� = ∂B̃2�w� ∩ �x & x · v̂ > w · v̂+L0�
(3.35)
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We shall say that w is good when

Px�ω

[
XT

B̃2�ω�
∈ Top B̃2�w�

]
≥ 1

2

for all x ∈ B̃1�w�, and bad otherwise

(3.36)

Observe that

lim sup
L→∞

L−�2β0−χ� sup
w∈�d

log� [w is bad] < 0
(3.37)

Indeed, for large L and any w,

�[w is bad]

≤ 2dL0L
�d−1�β0

(
P0

[
sup

0≤n≤Tv̂
L0

�π�Xn�� ≥ ηLβ0

]
+P0�T̃v̂

−dL
β
0
< ∞�

)
�

but, in view of (2.14),

lim sup
L→∞

L−�2β0−χ� logP0

[
sup

0≤n≤Tv̂
L0

�π�Xn�� ≥ ηLβ0

]
< 0 �

and, using (T)(ii) relative to the direction v̂ and some â > 0,

P0�T̃v̂
−dLβ0 < ∞� ≤ P0�X∗

τ1
> dLβ0� ≤ exp�−c0dLβ0�E0�exp�c0X∗

τ1
���

for a suitable c0, ensuring finiteness of the rightmost expectation. The claim
(3.37) now follows.

Consider now for w ∈ �d the boxes B̃1�w + jL0e1��0 ≤ j ≤ �L1−χ�. From
the discussion before (3.28), we see that, for suitable c13�d�� c14�d� > 0, when
L is large, for any w+ jL0e1�w ∈ �d�0 ≤ j < �L1−χ�, an arbitrary point x in
Top B̃2�w+jL0e1� can be joined by a nearest neighbor path in B2� β0�L

�w�, cf.
(3.13), of length at most c13�d�ηLβ0 to a point in B̃1�w+�j+1�L0�; moreover,
for any point y in Top B̃2�w+�L1−χ�L0e1� or B̃1�w+�L1−χ�L0e1�∩B1� β0�L

�w�,
one can find a nearest neighbor path starting in y of length at most c14ηLβ0

which first exits B2� β0�L
�w� in ∂+B2� β0�L

�w�.
When starting in B1� β0�L

�w�∩ B̃1�w+j0L0e1��1 ≤ j0 ≤ �L1−χ�, one way for
the walk to exit B2� β0�L

�w� through ∂+B2� β0�L
�w� is to successively exit the

boxes B̃2�w+jL0e1�� j0 ≤ j < �L1−χ�, through Top B̃2�w+jL0e1�, and follow
one of the previously mentioned paths to reach B̃1�w + �j + 1�L0e1�, until
landing into Top B̃2�w+�L1−χ�L0e1�∪ �B̃1�w+�L1−χ�L0e1�∩B1� β0�L

�w��, and
use one of the aforementioned paths to exit B2� β0�L

�w� through ∂+B2� β0�L
�w�.

As a result of the strong Markov property, we see that, for large L, when
w ∈ �d and all w+jL0e1�0 ≤ j < �L1−χ�, are good, then, for all x ∈ B1� β0�L

�w�,

Px�ω

[
XTB2� β0�L�w�

∈ ∂+B2� β0�L
�w�

]
≥

(
1
2
κc13ηLβ0

)L1−χ

κc14ηLβ0
> exp�−ρLβ��
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provided η > 0 is chosen small enough so that η�c13+ c14� log 1
κ

< ρ
2 and ρ > 0

is as in (3.32). Therefore, for large L,

sup
w∈�d

��Xβ0�L
�w� ≥ ρLβ� ≤ L1−χ sup

w
��w is bad��

and the claim (3.32) follows from (3.37) together with the identity 2β0 − χ =
β0 + β− 1. ✷

We are now ready to state the key estimates of this section.

Theorem 3.4 �d ≥ 2�. Assume that (T) holds with respect to l and a. Then,
for β ∈ � 12 �1�,

lim sup
L→∞

L−ζ log��P0�ω
[
XTUβ�L

· l > 0
]
exp�−Lβ�� ≤ < 0

for ζ < d�2β− 1�
(3.38)

and

lim
u→∞�log u�−α logP0�τ1 > u� < 0 for α < 1+ d− 1

d+ 1

(3.39)

Proof. We begin with the proof of (3.38). We consider β ∈ � 12 �1�� ζ ∈
�0� d�2β − 1��, and choose β0 close to 1

2 , as well as β′ ∈ �β0� β� close to β,
so that, in the notation of Lemma 3.2, f�β′� > ζ. We can now consider the
boxes B1� β′�L�jLe1��B2� β′�L�jLe1�, with 0 ≤ j ≤ N, where N is chosen as the
smallest integer such that

Nl · v̂ > 1
(3.40)

We see from the strong Markov property that, for large L,

P0�ω
[
XTUβ�L

·l>0
] ≥ exp

{
−

N∑
j=0

Xβ′�L�jLe1�
}

so that

�
[
P0�ω

[
XTUβ�L

·l>0
] ≤ exp�−Lβ�

]
≤�N+1�sup

w
�

[
Xβ′�L�w�≥

Lβ

N

]
�

(3.41)

and the claim (3.38) follows from (3.18) applied with f0�·� = β0+·−1, in view
of Lemma 3.3. Let us now prove (3.39). For α ∈ �1�2d/�d+1��, define β = α−1.
Then, for any c > 0,

lim sup
L→∞

L−1 log�
[
P0�ω

[
XTUβ�L

· l > 0
]
≤ exp�−cLβ�

]
< 0�

as follows from (3.38) applied to β′ ∈ � 12 � β�, such that d�2β′ − 1� > 1. The
claim now follows from Proposition 3.1. ✷



756 A.-S. SZNITMAN

Remark 3.5. (i) In the case β = 1, Proposition 3.1 of [15] remains valid
when Kalikow’s condition is replaced by condition (T), and shows that (3.38)
holds with ζ = d. As explained in Remark 3.4 of [15], this is reasonably sharp
for small c > 0, in the plain nestling situation. It is an open problem whether,
in the setting of Theorem 3.4, (3.38) matter of factly holds with ζ = dβ and,
consequently, (3.39) holds with α = d.

(ii) It was shown in Theorem 3.5 of [15] that, under Kalikow’s condition,
(3.39) holds with α < 1+ �d− 1�/3d. In fact, with the help of Proposition 3.1,
the argument of [15] can be improved to a proof of (3.39) with α < 1 + �d −
1�/�2d+ 1�. The argument we have presented in this section does better. The
renormalization step in Lemma 3.2 also has an independent interest.

We can now draw some first consequences of the estimate (3.39). We pro-
vide both a strong law of large numbers spelling out the ballistic nature of
the walks fulfilling condition (T), when d ≥ 2, and a central limit theorem
complementing this result.

Theorem 3.6 [d ≥ 2, under condition (T)].

P0-a.s.�
Xn

n
→ v = E0�Xτ1

�D = ∞�
E0�τ1�D = ∞� �= 0�(3.42)

where τ1 and D are defined with respect to an arbitrary choice l ∈ Sd−1 with
l · v̂ > 0, and a > 0 [cf. �2
1�, and �2
5�; of course, v̂ = v

�v� ]. Further, if one
considers the random element of the Skorohod space D��+��d�:

Bn
· =

1√
n
�X�·n� − �·n�v�(3.43)

then

Bn
· converges in law under P0 to a nondegenerate

d-dimensional Brownian motion with covariance matrix:
(3.44)

A = E0��Xτ1
− τ1v�t�Xτ1

− τ1v��D = ∞�/E0�τ1�D = ∞�
(3.45)

Proof. The strong law of large numbers follows from Proposition 2.1 of
Sznitman and Zerner [16] and the estimate E0�τ1�D = ∞� < ∞. On the other
hand, the central limit theorem follows from the estimate E0�τ21�D = ∞� < ∞
and the proof of Theorem 4.1 of [15]. ✷

Remark 3.7. When d = 1, as noticed below (2.51), condition (T) does not
ensure a ballistic behavior like (3.42). Moreover, even when the limiting veloc-
ity does not vanish, the central limit theorem (3.44) may fail; cf. Kesten, Kozlov
and Spitzer [9].
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4. Large-deviation and slowdown estimates. The object of this
section is to apply the results of the previous sections and of [15] to the deriva-
tion of several large-deviation estimates on the location of the walk at a large
time and on the occurrence of small eigenvalues (i.e., traps) in a large box.
Throughout the section, we implicitly assume that either d ≥ 2 and condi-
tion (T) is satisfied or d = 1 and we are in the ballistic situation, cf. (2.51)(i)
and (ii) [with (0.1) implicitly assumed]. As we shall shortly see, the segment
�0� v� = �λv�0 ≤ λ ≤ 1� ⊆ �d plays a special role in the analysis of large
deviations of Xn/n under P0.

Theorem 4.1. Under the assumptions of the beginning of this section, if �
is an open neighborhood of �0� v� in �d,

lim sup
n

1
n
logP0

[
Xn

n
/∈ �

]
< 0
(4.1)

Moreover, in the nonnestling case, cf. �0
8�, �4
1� holds when � is an open
neighborhood of v. In the nestling case, �0� v� is critical in the sense that, for
� any open set intersecting �0� v�,

lim inf
n

1
n
logP0

[
Xn

n
∈ �

]
= 0
(4.2)

Proof. We begin with (4.1). Choose l = l′ = v̂ in the definition of Cylε [cf.
(2.16)]. Then, for small ε > 0,

P0

[
Xn

n
/∈ �

]
≤ P0

[
Tv̂
��v�+ε�n ≤ n

]
+P0

[
Tv̂

n/ε > TCε�n

]
�(4.3)

so that, in view of Lemma 2.4, the claim (4.1) will follow once we show that

lim sup
n

1
n
logP0

[
Tv̂
��v�+ε�n ≤ n

]
< 0
(4.4)

To prove this point, we use the estimate (5.2) of [15] [which is a direct conse-
quence of (T)(ii) and a Cramér-type estimate]:

lim sup
u→∞

1
u
logP0

[∣∣∣∣Nu

u
− 1

E0�Xτ1
· v̂�D = ∞�

∣∣∣∣ ≥ ρ

]
< 0 for ρ > 0�(4.5)

with τ1 and D defined relative to v̂ and some â > 0 and in the notation of
(2.6):

Nu = inf�k ≥ 0� Xτk
· v̂ ≥ u�
(4.6)

As a result, we see that, for large n,

P0

[
Tv̂
��v�+ε�n≤n

]
≤P0

[
τN��v�+ε�n−1≤n

] �4
5�≤ P0�τMn
≤n�+exp�−constn��(4.7)
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where

Mn =
[ ��v� + ε/2�n
E0�Xτ1

· v̂�D = ∞�
]

�3
42�=
[(

E0�τ1�D = ∞�−1 + ε

2
E0�Xτ1

· v̂�D = ∞�−1
)
n
]



(4.8)

Under P0, τMn
is distributed as the sum τ̃1+ τ̃2+· · ·+ τ̃Mn

, where under some
suitable probability P the τ̃i� i ≥ 1, are independent, τ̃1 has the distribution of
τ1 under P0 and τ̃i� i ≥ 2, are distributed like τ1 under P0�·�D = ∞�, cf. (2.7).
Using a Cramér-type argument, we see that

P0�τMn
≤ n� ≤ P�τ̃2 + · · · + τ̃Mn

≤ n�
≤ exp�λn+Mn logE0�exp�−λτ1��D = ∞��
≤ exp�−constn�� for large n�

provided λ > 0 is chosen small enough. The claim (4.1) follows.
In the nonnestling case, it further follows from (5.4) and (5.20) of [15] that

(4.1), in fact, holds for � any open set containing v.
As for (4.2), the argument is analogous to the proof of (5.21) in [15]. The

proof works, in fact, in the nestling case assuming (0.1) and the strong law
of large numbers with nondegenerate velocity v. Namely, if γ0 ∈ �0�1� is such
that v�1− γ0� ∈ � and γ1 < γ0 < γ2 are close to c0, observe that, for arbitrary
η > 0, we can find L > 0 and x0 with x0 · v̂ > L, such that

lim inf
n

1
n
logP0�TBL

> γ1n� Tv̂
v̂·x0

= Hx0
∈ �γ1n� γ2n�� > −η
(4.9)

Indeed, we choose M = 2N an even integer large enough so that 3π2/M2 <
η�L = √

dN and x0 some point of �d, with x0 · v̂ > L. We can join any point of
BL to x0 by a nearest neighbor path which remains in �x ∈ �d� x · v̂ < x0 · v̂�,
except for its terminal point x0. We denote by c the maximal number of steps of
these paths. Letting the walk stay in �−N�N�d ⊂ BL up to time �γ1n�+1, and
then using the previously mentioned paths to reach x0, it follows from (1.33)
and (1.29) together with the Markov property, (0.1) and translation invariance
that, for large n,

P0

[
TBL

>γ1n�Tv̂
v̂·x0

=Hx0
∈�γ1n�γ2n�

]
≥��
M�exp

{
−3π2

M2
��γ1n�+1�

}
κc


The claim (4.9) now follows. Further, from the strong law of large numbers
and the fact that �Xk+1 −Xk� = 1, P0-a.s., for all k,

sup
0≤k≤n

∣∣∣∣Xk

n
− k

n
v

∣∣∣∣→ 0� P0�·�D = ∞�-a.s., as n →∞�
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where D is defined relative to v̂. Then, for γ1� γ2 close to γ0, small ρ > 0 and
large n,

P0

[
Xn

n
∈ �

]
≥ P0

[
Tv̂

v̂·x0
= Hx0

∈ �γ1n� γ2n�� D ◦ θHx0
= ∞�

sup
0≤k≤n

�Xk+Hx0
− x0 − kv� ≤ ρn

]
�

(4.10)

for which we deduce that

lim inf
n

1
n
logP0

[
Xn

n
∈ �

]
> −η


Letting η tend to 0, (4.2) follows. ✷

Remark 4.2. In the one-dimensional case, Theorem 4.1 is essentially con-
tained in Dembo, Peres and Zeitouni [5], and further results can be found in
Comets, Gantert and Zeitouni [4]. In the multidimensional situation, Zerner
[17] proves a large-deviation principle for Xn/n under the quenched measure
P0�ω, for �-a.e. ω, in the nestling situation. When d ≥ 2 and condition (T) is
further satisfied, it is not hard to see with the help of Theorem 4.1 that the
null set of the rate function I�·� of [17] coincides with the segment �0� v�; see
also Proposition 5.10 of [15].

We now turn to large-deviation estimates of Xn/n in the critical region
�0� v�. Such deviations are intimately related to slowdowns of the walk.

Theorem 4.3. Under the assumptions of the beginning of this section, for
� any open neighborhood of v,

lim sup
n

�log n�−α logP0

[
Xn

n
/∈ �

]
< 0�(4.11)

where α = 1, when d = 1, and α < 2d/�d+ 1�, when d ≥ 2.
Further, in the plain nestling situation, for any� open set intersecting �0� v�,

lim inf
n

�log n�−d logP0

[
Xn

n
∈ �

]
> −∞
(4.12)

Proof. When d = 1, both (4.11) and (4.12) are proven in [5]. When d ≥ 2,
(4.11) follows from Theorem 4.1 together with the estimate

lim sup
n

�log n�−α logP0

[
Xn · v̂

n
< ρ

]
< 0

for ρ < �v� and α as in (4.11)�
(4.13)
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which follows from Theorem 3.4 of the previous section and (5.19) of [15]. As
for (4.12), it follows from (4.1) and the estimate

lim inf
n

�log n�−d logP0

[
Xn · v̂

n
∈ �ρ1� ρ2�

]
> −∞

for 0 < ρ1 < ρ2 < �v��
(4.14)

which is proven as in (5.21) of [15], with a qualitatively similar reasoning as
in (4.9) and (4.10). ✷

There is a profound influence of the presence of traps [i.e., pockets U in
the medium where λω�U� is atypically small] on slowdowns of the walk. This
feature was emphasized in the Introduction. The next proposition offers a
quantitative illustration of these ideas.

Proposition 4.4. Under the assumptions of the beginning of this section,

P0

[∣∣∣∣Xn

n

∣∣∣∣ ≤ �v� − δ

]
≥ 1
�Bn�

Ɛ
[
exp

{−nλω

(
B��v�−δ��n/2�

)}]
for 0 ≤ δ < �v�� n ≥ 1�

(4.15)

lim sup
n

�log n�−α log Ɛ�exp�−nλω�Bn��� < 0

with α = 1� when d = 1� α <
2d

d+ 1
� when d ≥ 2


(4.16)

Further, in the plain nestling case,

lim inf
n

�log n�−d log Ɛ�exp�−nλω�Bn��� > −∞
(4.17)

Proof. The claim (4.15) is an immediate consequence of Proposition 1.1.
We now turn to the proof of (4.16), and begin with the case d ≥ 2. Without loss
of generality, we assume that α ∈ �1�2d/�d + 1��. It now follows from (4.11)
and (4.15) that, for large m,

exp�−�logm�α� ≥ P0

[∣∣∣∣Xm

m

∣∣∣∣ ≤ �v�
2

]
≥ 1
�Bm�

Ɛ�exp�−mλω�B�v�/4m���

(4.18)

Then, for large n, choose m the smallest integer such that ��v�/4�m ≥ n. It
follows from Jensen’s inequality that

Ɛ�exp�−nλω�Bn���m/n ≤ Ɛ�exp�−mλω�Bn���
≤ Ɛ�exp�−mλω�B��v�/4�m���

�4
18�≤ �Bm� exp�−�logm�α��
(4.19)

and the claim (4.16) follows.
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We now turn to the case d = 1. Without loss of generality, we assume v > 0.
Observe that, for m ≥ 1,

Ɛ�exp�−mλω�B��v�/4�m���
�1
4�≤ Ɛ

[
sup

x∈B��v�/4�m
Px�ω

[
TB��v�/4�m > m

]]
≤ Ɛ

[
sup

x∈B��v�/4�m
Px�ω

[
T��v�/4�m > m

]]
�

(4.20)

with Tu = Tl=1
u , in the notation of (1.3). Inside the last expectation appears a

nonincreasing function of x. Hence, for large m,

Ɛ�exp�−mλω�B �v�
4 m��� ≤ P−

[
�v�
4 m

][T �v�
4 m > m

]
≤ P0

[
T 3�v�

4 m > m
]

�4
11�≤ exp�−const logm�

(4.21)

The proof then proceeds as below (4.18), with (4.18) replaced by (4.21).
This finishes the proof of (4.16). As for (4.17), it is an immediate consequence

of (1.40) and (1.41), provided one chooses L = �3/c5� log n, so that, for large n,

e−1���L� ≤ Ɛ��L� exp�−nλω�BL��� ≤ Ɛ�exp�−nλω�Bn���
(4.22)

This finishes the proof of Proposition 4.4. ✷

Remark 4.5. A basic question is whether “traps govern slowdowns of bal-
listic random walks in a random environment.” A quantitative version of this
question is to determine whether the asymptotic relation (∗) of the Introduc-
tion holds, for instance, under the assumptions of the beginning of this section.
So far (∗) is known to hold in the nonnestling situation �d ≥ 1, in this case
both members of (∗) have a linear growth; cf. Theorems 1.2 and 4.1] or for
walks that are “neutral or biased to the right,” cf. [14] and [15], i.e., such that,
for a suitable ν > 0 and δ > 0,

�

[
ω�0� e� = 1

2d
for all �e� = 1

]
= e−ν(4.23)

[a neutral site is a site where ω�x� e� = 1/2d, for all �e� = 1], and

d�0�ω� · e1 ≥ δ� �-a.s.� on the event �0 is not neutral�
(4.24)

Indeed, for such walks, it follows from Theorem 4.1 and Theorem 5.8 and
(5.36) of [15] that, when d ≥ 1,

lim sup
n

n−d/�d+2� logP0

[
Xn

n
/∈ �

]
< 0(4.25)

and

lim inf
n

n−d/�d+2� logP0

[
Xn

n
∈ �

]
> −∞(4.26)

for � and � open sets respectively containing v and intersecting �0� v� (in the
one-dimensional case, much more is known; cf. Pisztora, Povel and Zeitouni
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[11]). As a result, the left-hand side of (∗) grows like nd/�d+2�. As for the right-
hand side, using a similar argument as in (4.18) and (4.19), together with the
fact that by creating a neutral pocket of radius L, essentially from the bound
(1.34),

��λω�BL� ≤ c15�d�L−2� ≥ exp�−c16�d�νdLd� for large L�

one sees that the right-hand side of (∗) grows like nd/�d+2� as well. This pro-
vides an example in the marginal nestling case, where (∗) holds. As for the
plain nestling case, (∗) is presently only known when d = 1; cf. Theorem 4.3
and Proposition 4.4.

It is also an important question whether creating an atypically low principal
eigenvalue smaller than exp�−cL′� in a “not too large” box of size L has at
least a “cost” of volume order L′d. For if this is the case, in the plain nestling
situation there is nothing truly more efficient to produce traps than using
naive traps as in (1.37)–(1.41). We present two partial results below. The first
result in (4.28) provides a general bound when L ≤ const ecL′ �=consta−1L in
the notation of (4.28)]. The second result (4.34) obtains bounds where costs
get closer to volume order when restricting L to polynomial growth in L′.

Theorem 4.6. Under the assumptions of the beginning of this section, if
L → aL is a positive function tending to 0 at ∞, such that

lim sup
L→∞

LaL < ∞�(4.27)

then

lim sup
L→∞

(
log

1
aL

)−α

log��λω�BL� ≤ aL� < 0

for α = 1, when d = 1� α <
2d

d+ 1
, when d ≥ 2.

(4.28)

Further, in the plain nestling case, if aL tends to 0 as L → ∞ and in the
notation of (1.40),

lim sup
L→∞

1
L
log

1
aL

<
c5
3

�(4.29)

then

lim inf
L→∞

�log aL�−d log��λω�BL� ≤ aL� > −∞
(4.30)

Proof. The estimate (4.30) is an easy consequence of (1.40) and (1.41),
with L replaced by 3/c5 log�1/aL�. Let us then prove (4.28). Choosing α as
indicated in (4.28), it follows from (4.16) that, for some c17�d�µ� [when d ≥ 2,
we can pick c17�d�µ� = 1] and large n,

Ɛ�exp�−nλω�Bn��� ≤ exp�−2c17�log n�α�
(4.31)
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Define the integer-valued function nL tending to ∞:

nL = the largest integer n such that c17
�log n�α

n
≥ aL�(4.32)

so that

log nL ∼ log
(

1
aL

)
as L →∞
(4.33)

Then, for large L,

L
�4
27�≤ consta−1L ≤ const c−117

nL

�log nL�α
≤ nL�

and, therefore, using Chebyshev’s inequality,

��λω�BL� ≤ aL� ≤ �

[
λω�BnL

� ≤ c17
�log nL�α

nL

]
≤ exp�c17�log nL�α�Ɛ�exp�−nLλω�BnL

���
�4
31�≤ exp�−c17�log nL�α��

which together with (4.33) proves (4.28). ✷

We now turn to the second result, where, in terms of the discussion above
Theorem 4.6, we now assume L = �L′�1/β, with β ∈ �0�1�. The proof of (4.34)
illustrates once more the importance of controls on (0.15).

Proposition 4.7 [d ≥ 2, under condition (T)]. When β ∈ �0�1�� c > 0,

lim sup
L→∞

L−α log��λω�BL� ≤ exp�−cLβ�� < 0

for α < d

[
�2β− 1� ∨ 2β

d+ 1

]



(4.34)

Proof. In view of (4.28), we only need to consider the situation where
2β− 1 > 2β/�d+ 1�. Pick β′ ∈ �0� β�, such that α < d�2β′ − 1�. We find

��λω�BL� ≤ exp�−cLβ�� �1
43�≤ ��λ̄ω�BL� ≤ exp�−cLβ��
�1
44�≤ �

[
for some x1 ∈ BL�Px1�ω

�H̃x1
> TBL

�

≤ 2 exp�−cLβ�
log 2

�BL�
]



On the event that appears in the rightmost term, for x �= x1, with

�x− x1� ≤
1
3

cLβ

log�1/κ� �
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just as in (3.11),

exp
{
−cLβ

3

}
Px�ω�TBL

< Hx1
� ≤ Px1�ω

�TBL
< H̃x1

�

≤ 2 exp�−cLβ�
log 2 �BL�


(4.35)

Thus, provided L is large, for x a closest point in �d to

x1 +
1

4
√

d

cLβ

log�1/κ� v̂�

so that

0 < �x− x1� ≤
1
3

cLβ

log�1/κ�
and x ∈ BL in view of (4.35),

Px�ω

[
XTx+Uβ′ �2L

> x · v̂] ≤ Px�ω�Hx1
> TBL

� �4
35�≤ exp
{
−cLβ

2

}
�

where Uβ′�2L is defined as in (3.1), with l = v̂. Then, using translation invari-
ance, we find that, for large L,

��λω�BL� ≤ exp�−cLβ�� ≤ �BL��
[
P0�ω�XTUβ′ �2L

· v̂ > 0� ≤ exp
{
− c

2
Lβ

}]



The claim (4.34) now follows from (3.38). ✷

Remark 4.8. When β = 1, a variation of the argument of the proof of
Proposition 3.1 of [15] shows that, when d ≥ 2 and (T) holds with respect to
l ∈ Sd−1 and a > 0, then, for b� c > 0,

lim sup
L→∞

L−d log��P0�ω�Tl
L < T̃l

−bL� ≤ e−cL� < 0


As a result, the proof of Proposition 4.7 implies that

lim sup
L→∞

L−d log��λω�BL� ≤ e−cL� < 0 for all c > 0
(4.36)
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