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NO MORE THAN THREE FAVORITE SITES FOR
SIMPLE RANDOM WALK1

By Bálint Tóth

Technical University Budapest

We prove that, with probability 1, eventually there are no more than
three favorite (i.e., most visited) sites of simple symmetric random walks.
This partially answers a relatively longstanding question of Erdös and
Révész.

1. Introduction and main result. Let S�t�� t ∈ �+� be a simple sym-
metric random walk on � with initial state S�0� = 0. Its upcrossings, down-
crossings and (site) local time are defined for t ∈ � and x ∈ � as follows:

U�t� x� �= #
{
0 < s ≤ t � S�s� = x� S�s− 1� = x− 1

}
�(1.1)

D�t� x� �= #
{
0 < s ≤ t � S�s� = x� S�s− 1� = x+ 1

}
�(1.2)

L�t� x� �= #
{
0 < s ≤ t � S�s� = x

} = U�t� x� +D�t� x�
(1.3)

The following identities are straightforward:

U�t� x� −D�t� x− 1� = �	0<x≤S�t�
 − �	S�t�<x≤0
�(1.4)

D�t� x� −U�t� x+ 1� = �	S�t�≤x<0
 − �	0≤x<S�t�

(1.5)

And from these it follows that

L�t� x� = D�t� x� +D�t� x− 1� + �	0<x≤S�t�
 − �	S�t�<x≤0


= U�t� x� +U�t� x+ 1� + �	S�t�≤x<0
 − �	0≤x<S�t�


(1.6)

The set of favorite (or most visited) sites of the random walk at time t ∈ � are
those sites where the local time attains its maximum value:

� �t� �=
{
y ∈ � � L�t� y� = max

z∈�
L�t� z�

}

(1.7)

It is clear that the number of favorite sites changes in time as follows:

#� �t+ 1� =


#� �t�� if S�t+ 1� /∈ � �t+ 1�,
#� �t� + 1� if � �t+ 1� = � �t� ∪ 	S�t+ 1�
,
1� if � �t+ 1� = 	S�t+ 1�
 ⊂ � �t�.

(1.8)

In plain words, one of the following three possibilities can occur at each step
of the walk: Either the currently occupied site is not favorite and � remains
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unchanged. Or the currently occupied site becomes a new favorite besides the
favorites of the previous stage, and thus the number of favorites increases by
one. Or, finally, a favorite site is revisited and so this site becomes now the
only new favorite. There are no other possibilities.

Clearly, #� �t� ≥ 1 for all t ≥ 1, and it is easy to verify that for infinitely
many times, t ≥ 1, there are at least two favorite sites: #� �t� ≥ 2. Erdös and
Révész formulated and repeatedly raised the following

Question. Does it happen that #� �t� ≥ r infinitely often (i.e., almost
surely for infinitely many times t ≥ 1) for r = 3�4� 
 
 
?

See, for example, Erdös [6], Erdös and Révész [7]–[9] or Révész [14] for an
extended list of related questions and problems.

Questions related to the asymptotic behavior of the favorite (or most visited)
sites of a random walk have been considered by many authors since the mid-
1980s. We quote here a few relevant results, with no claim of exhaustiveness.

• Bass and Griffin [2] prove that almost surely the set of favorites is transient.
More exactly, they prove that the distance of the set of favorite sites from
the origin increases faster than

√
n/�log n�11 but slower than

√
n/�log n�.

• Csáki and Shi [4] prove that the distance between the edge of the range of
the random walk and the set of favorite sites increases as fast as√
n/�log log n�3/2.

• Csáki, Révész and Shi [3] prove that the position of a favorite site can have
jumps as large as

√
2n log log n, that is, comparable with the diameter of

the full range of the random walk. They also extend a much earlier result of
Kesten [10], identifying the set of joint limit points of the set of favorite sites
and the favorite values (i.e., maximum values of local time), both rescaled
by

√
2n log log n.

• There are many papers dealing with similar questions in the context of
symmetric stable processes rather than random walks (or Brownian motion).
See, for example, Eisenbaum [5] and Bass, Eisenbaum and Shi [1] and the
papers cited therein.

In the present paper we answer in the negative the question of Erdös and
Révész quoted above, for r ≥ 4: we prove that with probability 1, there are at
most finitely many times t ≥ 1 when there are four or more favorite sites of the
random walk S�t�. In [17] a similar result was proved for the set of favorite
edges rather than favorite sites. The present paper deals with the original
question of Erdös and Révész. The starting general ideas of the present paper
(see Sections 1–3) are very close to those of Tóth and Werner [17]. However,
the details of the proof require more refined estimates and arguments. On the
technical level (see Sections 4–6) this proof is rather different.
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For r ≥ 1 denote by f�r� the (possibly infinite) number of steps, when the
currently occupied site is one of the r actual favorites:

f�r� �= #
{
t ≥ 1 � S�t� ∈ � �t�� #� �t� = r

}

(1.9)

From (1.8) it follows that, for any r ≥ 1, f�r + 1� ≤ f�r�. (Both sides of the
inequality could be infinite.)

The main result of this paper is the following.

Theorem 1.

E
(
f�4�) < ∞
(1.10)

Remarks. 1. From this theorem the negative answer to the question of
Erdös and Révész clearly follows, for the cases r ≥ 4.

2. The case r = 3 remains open. From the proof of the above theorem, it
becomes clear that E�f�3�� = ∞. Nevertheless we conjecture that f�3� < ∞,
almost surely.

We, now give a brief overview of the main arguments of the proof: first, we
decompose the random variable f�4� in a very natural way, as a doubly infinite
sum of indicator variables, indicating when #� �t� increased from 3 to 4 [see
the second alternative in (1.8)] and which sites were the actual positions of
the random walker at these moments of increase of #� . Inverting the order
of summation in this doubly infinite sum, we get an expression of E�f�4�� in
terms of the local time process of the random walk, stopped at inverse local
times. Next, using the Ray–Knight representation of the local time process
stopped at inverse local times, we rewrite these expressions in terms of crit-
ical Galton–Watson processes. Eventually, the proof of Theorem 1 will rely
on controlling the probability distribution of the number of global maxima of
given height of these critical Galton–Watson processes. On the technical level
this means controlling various probabilities and expectations arising naturally
with the critical Galton–Watson process. As typical examples we mention here
a large deviation estimate on the size of the largest jump before hitting level
h � 1 or extinction (Lemma 1), or precise control on the probability that a
critical Galton–Watson process hits exactly a given level h before extinction
(Lemma 2). Other estimates of similar flavor are also involved.

The paper is organized as follows: In Section 2 we perform some straight-
forward manipulations (essentially rearrangements of sums). In Section 3
we recall the Ray–Knight theorems for the local times of simple random
walks. In Section 4 first we express our relevant probabilities and expecta-
tions (found in Section 2) in terms of the Galton–Watson processes arising
with the Ray–Knight representation. Then we formulate Proposition 1, stat-
ing some upper bounds on these probabilities and expectations, and using
these bounds we prove Theorem 1. The proof of Proposition 1 is postponed
to the end of Section 5. In Section 5 four lemmas and, as their consequence,
Proposition 1 are proved. Throughout the technical parts of the proofs, smaller,
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quite plausible statements are invoked. These are called Side-lemmas (1 to 4).
Their proofs are postponed to Section 6.

Throughout the paper, in various upper bounds, multiplicative constants,
respectively, constants in exponential rates, will be denoted generically by C,
respectively, by γ. The values of these constants may vary even within one
proof, but we hope there is no danger of confusion.

2. Preparations. In the following transformations the inverse local times,
defined below for k ∈ � and x ∈ �, will play an essential role:

TU�k� x� �= inf	t ≥ 1 � U�t� x� = k
�(2.1)

TD�k� x� �= inf	t ≥ 1 � D�t� x� = k

(2.2)

It turns out that questions related to the local time are easier to handle if the
random walk is observed at the random stopping times TU�k� x� and TD�k� x�
rather than at deterministic times t ≥ 1. This “combinatorial trick” has its
origin in Knight [11] and has been successfully applied in various contexts.
See, for example, [12], [15] and [16] and the references cited therein.

We express f�4� with the help of some straightforward rearrangements of
summations:

f�4� = ∑
x∈�

(
u�x� + d�x�)�(2.3)

where

u�x� �=
∞∑
t=1

�	S�t�=x�S�t−1�=x−1� x∈� �t��#� �t�=4


=
∞∑
t=1

∞∑
k=1

�	TU�k� x�=t� x∈� �t��#� �t�=4


=
∞∑
k=1

�	x∈� �TU�k� x���#� �TU�k� x��=4


(2.4)

and

d�x� �=
∞∑
t=1

�	S�t�=x�S�t−1�=x+1� x∈� �t�� #� �t�=4


=
∞∑
t=1

∞∑
k=1

�	TD�k� x�=t� x∈� �t��#� �t�=4


=
∞∑
k=1

�	x∈� �TD�k� x���#� �TD�k� x��=4



(2.5)

Clearly,

u�x� law= d�−x�(2.6)
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and, consequently,

E
(
f�4�) = 2

∞∑
x=1

E
(
u�x�)+ 2

∞∑
x=0

E
(
d�x�)�(2.7)

with

E
(
u�x�) = ∞∑

k=1

P
(
x ∈ � �TU�k� x��� #� �TU�k� x�� = 4

)
�(2.8)

E
(
d�x�) = ∞∑

k=1

P
(
x ∈ � �TD�k� x��� #� �TD�k� x�� = 4

)

(2.9)

We shall show in detail that
∞∑
x=1

E
(
u�x�) = ∞∑

x=1

∞∑
k=1

P
(
x ∈ � �TU�k� x��� #� �TU�k� x�� = 4

)
< ∞
(2.10)

The similar statement
∞∑
x=0

E
(
d�x�) = ∞∑

x=0

∞∑
k=1

P
(
x ∈ � �TD�k� x��� #� �TD�k� x�� = 4

)
< ∞(2.11)

can be proved in an identical way.

3. Ray–Knight representation. Throughout this paper we denote by
Yt a critical branching process with geometric offspring distribution (Galton–
Watson process) and by Zt a critical branching process with geometric off-
spring distribution and one intruder at each generation.Yt andZt are Markov
chains with state space �+ and transition probabilities:

P
(
Yt+1 = j

∣∣Yt = i
) = π�i� j�

�=

δ0� j� if i = 0,

2−i−j �i+ j− 1�!
�i− 1�!j!

� if i > 0,

(3.1)

P
(
Zt+1 = j

∣∣Zt = i
) = ρ�i� j� �= 2−i−j−1 �i+ j�!

i!j!

(3.2)

Let k ≥ 0 and x ≥ 1 be fixed integers and define the following three processes:

(i) Zt, 0 ≤ t ≤ x−1, is a Markov chain with transition probabilities ρ�i� j�
and initial state Z0 = k;

(ii) Yt, −1 ≤ t < ∞, is a Markov chain with transition probabilities π�i� j�
and initial state Y−1 = k;

(iii) Finally, Y′
t, 0 ≤ t < ∞, is another Markov chain with the same transi-

tion probabilities π�i� j� and initial state Y′
0 = Zx−1.
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The three chains are independent, except for the fact that Y′ starts from the
terminal state of Z. Using these three chains, we patch together the process

 x�k�y� �=

Zx−y−1� if 0 ≤ y ≤ x− 1�
Yy−x� if x− 1 ≤ y ≤ ∞�
Y′

−y� if −∞ ≤ y ≤ 0

(3.3)

We also define

!x�k�y� �=  x�k�y� +  x�k�y− 1� + �	0<y≤x

(3.4)

From the by now classical Ray–Knight theorems on the local time process of
simple symmetric random walks on � (cf. [11] and [13]), it follows that, for
any integers x ≥ 1 and k ≥ 0,(

D�TU�k+ 1� x�� y�� y ∈ �
) law= (

 x�k�y�� y ∈ �
)

(3.5)

Usually the first, respectively, second, Ray–Knight theorem is stated sepa-
rately as(

D�TU�1� x�� x− 1 − y�� 0 ≤ y ≤ x− 1
) law= (

Zy� 0 ≤ y ≤ x− 1
)
�(3.6)

respectively, (
D�TU�k�0�� y�� −1 ≤ y

) law= (
Yy� −1 ≤ y

)

(3.7)

These statements directly imply the joint formulation (3.5). See, for example,
[17], Proposition 2.1, where it is stated exactly in this present form (with
slightly different notation), or [15], Section 2, where it is proved in the more
general context of self-interacting random walks.

Using (1.6) and (3.4), from (3.5) we get(
L�TU�k+ 1� x�� y�� y ∈ �

) law= (
!x�k�y�� y ∈ �

)

(3.8)

4. Proof of Theorem 1. Given the Markov chains Yt, Zt and Y′
t, we

define

Z̃t �= Zt +Zt−1 + 1� Ỹt �= Yt +Yt−1� Ỹ′
t �= Y′

t +Y′
t−1
(4.1)

For h ∈ � the following stopping times are introduced:

σh �= inf	t ≥ 0 � Yt ≥ h
�(4.2)

σ ′
h �= inf	t ≥ 0 � Y′

t ≥ h
�(4.3)

ω �= inf	t ≥ 0 � Yt = 0
�(4.4)

ω′ �= inf	t ≥ 0 � Y′
t = 0
�(4.5)

τh �= inf	t ≥ 0 � Zt ≥ h
�(4.6)

σ̃h�0 �= 0� σ̃h� i+1 �= inf	t > σ̃h�i � Ỹt ≥ h
� σ̃h �= σ̃h�1�(4.7)

σ̃ ′
h�0 �= 0� σ̃ ′

h� i+1 �= inf	t > σ̃ ′
h�i � Ỹ′

t ≥ h
� σ̃ ′
h �= σ̃ ′

h�1�(4.8)

τ̃h�0 �= 0� τ̃h� i+1 �= inf	t > τ̃h�i � Z̃t ≥ h
� τ̃h �= τ̃h�1
(4.9)
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In plain words, σh, σ
′
h and τh are the first hitting times of the interval �h� ∞�

by the processes Yt, Y′
t, respectively, Zt, with the convention that σh = ∞

(resp. σ ′
h = ∞) if the process Yt (resp. Y′

t) never hits this interval. Further on
ω, respectively, ω′, are the extinction times of the processes Yt, respectively,
Y′
t. Finally, σ̃h� i, σ̃

′
h� i and τ̃h� i denote the ith hitting times of the interval

�h�∞� by the processes Ỹt, Ỹ′
t, respectively, Z̃t.

For h ≥ 1, p ≥ 0 and x ≥ 1 fixed integers we also define the following
events:

Ah�p �=
{

max
1≤t<∞

Ỹt ≤ h� #	1 ≤ t < ∞ � Ỹt = h
 = p

}
= {

σ̃h�p < ∞ = σ̃h�p+1� Ỹσ̃h�1
= · · · = Ỹσ̃h�p

= h
}
�

(4.10)

A′
h�p �=

{
max
1≤t<∞

Ỹ′
t ≤ h� #	1 ≤ t < ∞ � Ỹ′

t = h
 = p

}
= {

σ̃ ′
h�p < ∞ = σ̃ ′

h�p+1� Ỹ
′
σ̃h�1

= · · · = Ỹ′
σ̃h�p

= h
}
�

(4.11)

Bx�h�p �=
{

max
1≤t<x

Z̃t ≤ h� #	1 ≤ t < x � Z̃t = h
 = p

}
= {

τ̃h�p < x ≤ τ̃h�p+1� Z̃τ̃h�1
= · · · = Z̃τ̃h�p

= h
}



(4.12)

In plain words, Ah�0 (resp. A′
h�0) is the event that the process Ỹt (resp. Ỹ′

t)
never hits �h� ∞�; Ah�p (resp. A′

h�p), p ≥ 1, is the event that the process

Ỹt (resp. Ỹ′
t), before extinction, hits exactly p times its maximum level h;

Bx�h�0 is the event that the process Z̃t does not hit �h�∞� in the time interval
1 ≤ t < x; finally,Bx�h�p, p ≥ 1, is the event that in the time interval 1 ≤ t < x,

the process Z̃t hits exactly p times its maximum level h.
With the help of the Ray–Knight representation and the events introduced

above, we get the expression:

E
(
u�x�) = ∑

p+q+r=3

∞∑
h=1

∞∑
k=0

∞∑
l=0

P
(
Ah�p

∣∣Y0 = h− k− 1
)

× π�k� h− k− 1�

× P
(
Bx�h� q ∩ 	Zx−1 = l
 ∣∣Z0 = k

)
× P

(
A′
h� r

∣∣Y′
0 = l

)
�

(4.13)
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which leads directly to
∞∑
x=1

E
(
u�x�) ≤ ∑

p+q+r=3

∞∑
h=1

∞∑
k=0

P
(
Ah�p

∣∣Y0 = h− k− 1
)

× π�k�h− k− 1�

×
( ∞∑
x=1

P
(
Bx�h�q

∣∣Z0 = k
))

×
(

sup
l≥0

P
(
A′
h�r

∣∣Y′
0 = l

))



(4.14)

The proof of Theorem 1 will follow directly from the bounds provided by the
following result.

Proposition 1. For any ε > 0 there exists a finite constant C < ∞ such
that for any 0 ≤ k ≤ h:

(i) without any restriction on k or p,
∞∑
x=1

P
(
Bx�h�p

∣∣Z0 = k
) ≤ Ch�(4.15)

(ii) if either k ∈ ��h− h1/2+ε�/2� �h+ h1/2+ε�/2� or p ≥ 1 holds, then

P
(
Ah�p

∣∣Y0 = k
) ≤ (

Ch−1/2+ε)p+1
�(4.16)

∞∑
x=1

P
(
Bx�h�p

∣∣Z0 = k
) ≤ (

Ch−1/2+ε)p+1
h
(4.17)

Remark. For k ≥ h the left-hand sides of (4.15), (4.16) and (4.17), of course,
vanish.

We postpone the proof of this proposition to the end of the next section and
proceed with the proof of Theorem 1. Using the bounds (4.15)–(4.17), we prove
(2.10). As we already mentioned, (2.11) is proved in a completely identical way.
Theorem 1 follows from (2.10), (2.11) via (2.7).

In the forthcoming argument · · · will stand as an abbreviation of the sum-
mand on the right-hand side of (4.14). On the right-hand side of (4.14) keep
p� q� r and h fixed and decompose the sum over k ≥ 0 as follows:∑

k

· · · = ∑
k � �h−2k�≤h1/2+ε

· · · + ∑
k � �h−2k�>h1/2+ε

· · · 
(4.18)

Similar decompositions will be applied a few more times throughout the paper.
According to Side-lemma 1(i) (see Section 6),∑

k � �h−2k�>h1/2+ε
π�k�h− 1 − k� < C exp�−γh2ε��(4.19*)
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with some properly chosen constants C = C�ε� < ∞ and γ = γ�ε� > 0. (The *
next to the equation number indicates the fact that this inequality follows
from a side-lemma stated and proved in Section 6.)

Using (4.15)–(4.19), we bound the sum over k on the right-hand side of
(4.14) as follows:

If r = 0 and p+ q = 3,∑
k

· · · ≤ (
Ch−1/2+ε)p+q+2

h+ (
Ch

)(
C exp�−γh2ε�)

≤ C′h−3/2+5ε�

(4.20)

with some properly chosen C′ < ∞.
If r > 0 and p+ q+ r = 3,∑

k

· · · ≤ (
Ch−1/2+ε)p+q+r+3

h+ (
Ch

)(
C exp�−γh2ε�)

≤ C′h−2+6ε�

(4.21)

with some properly chosen C′ < ∞.
In both cases the upper bound is summable over h ≥ 1, if we choose ε <

1/10. Hence (2.10) and the statement of Theorem 1. ✷

5. Technical lemmas. The present section is divided into five subsec-
tions. In Sections 5.1–5.4 we state and prove some lemmas of a more technical
nature, needed in the proof of Proposition 1, which is presented in Section 5.5.
Within the proofs of the forthcoming lemmas we use the bounds proved in
Side-lemmas 1–4 of Section 6. The equation numbers where these “subrou-
tines” are called are indicated by an asterisk. These are (5.6*), (5.10*), (5.17*),
(5.22*), (5.30*) and (5.31*). Throughout this section ε > 0 is fixed.

5.1. The maximal jump. We prove that the largest jump of the Markov
chains Yt and Zt, before reaching level h, is less than h1/2+ε, with overwhelm-
ing probability. Define the maximal jumps of Yt, respectively, Zt, as follows:

Mh �= sup
{�Yt −Yt−1� � 1 ≤ t ≤ σh

}
= sup

{�Yt −Yt−1� � 1 ≤ t ≤ σh ∧ω}�(5.1)

Nh �= sup
{�Zt −Zt−1� � 1 ≤ t ≤ τh

}

(5.2)

By definition, Mh = 0 if Y0 ≥ h and Nh = 0 if Z0 ≥ h.

Lemma 1. There exist two constants, C < ∞ and γ > 0, such that for any
0 ≤ k ≤ h the following bounds hold:

P
(
Mh > h1/2+ε ∣∣Y0 = k

)
< C exp�−γh2ε��(5.3)

P
(
Nh > h1/2+ε ∣∣Z0 = k

)
< C exp�−γh2ε�
(5.4)
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Proof. We prove here (5.3) in detail. The proof of (5.4) is essentially the
same and it is left for the reader. For the moment let γ be an arbitrary positive
number (its value will be fixed at the end of this proof)

P
(
Mh > h1/2+ε ∣∣Y0 = k

)
≤ P

(	Mh > h1/2+ε
 ∩ 	σh ∧ ω ≤ h2 exp�γh2ε�
 ∣∣Y0 = k
)

(5.5)

+ P
(
σh ∧ ω > h2 exp�γh2ε� ∣∣Y0 = k

)



Side-lemma 3 (see Section 6) states that

E
(
σh ∧ ω

∣∣Y0 = k
) ≤ Ch2�(5.6*)

with some finite constant C. Using now Markov’s inequality, we get the fol-
lowing upper bound on the second term of the right-hand side of (5.5):

P
(
σh ∧ ω > h2 exp�γh2ε� ∣∣Y0 = k

) ≤ C exp�−γh2ε�
(5.7)

To bound the first term on the right-hand side of (5.5), we use the following
representation of the Markov chain Yt: let

(
ξt� i

)
t≥1�i≥1 be i.i.d. random vari-

ables with common geometric distribution P
(
ξt� i = k

) = 2−k−1. The process
Yt is realized as follows: fix Y0 and put

Yt+1 =
Yt∑
j=1

ξt+1� j
(5.8)

Using this representation, we note that

P
(	Mh > h1/2+ε
 ∩ 	σh ∧ ω ≤ h2 exp�γh2ε�
 ∣∣Y0 = k

)
≤ P

(
max

{
max
1≤j≤h

∣∣∣∣ j∑
i=1

(
ξt� i − 1

)∣∣∣∣ � 1 ≤ t ≤ h2 exp�γh2ε�
}
> h1/2+ε

)
(5.9)

= 1 −
(

1 − P
(

max
1≤j≤h

∣∣∣∣ j∑
i=1

(
ξ1� i − 1

)∣∣∣∣ > h1/2+ε
))h2 exp�γh2ε�




From Side-lemma 2 (see Section 6) it follows that

P
(

max
1≤j≤h

∣∣∣∣ j∑
i=1

(
ξi − 1

)∣∣∣∣ > h1/2+ε
)

≤ 2 exp�−h2ε/8�
(5.10*)

Using this bound, we get

P
(	Mh > h1/2+ε
 ∩ 	σh ∧ ω ≤ h2 exp�γh2ε�
 ∣∣Y0 = k

)
≤ 1 − (

1 − 2 exp�−h2ε/8�)h2 exp�γh2ε�(5.11)

≤ 2h2 exp
(�γ − 8−1�h2ε)
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In the last inequality we use the fact that, for 0 < α < 1 < β, 1 − αβ <
�1−α�β. We choose γ < 16−1. From (5.5), (5.7) and (5.11) we get (5.3), with an
appropriately chosen constant C < ∞. ✷

5.2. Hitting exactly h. We give an upper bound on the probability of the
event that the critical Galton–Watson process hits the interval �h� ∞� exactly
at level h.

Lemma 2. There exists a constant C < ∞ such that, for any 0 ≤ k ≤ h,

P
(
	σ̃h < ∞
 ∩ 	Ỹσ̃h

= h
 ∣∣Y0 = k
)
< Ch−1/2+ε�(5.12)

P
(
Z̃τ̃h

= h
∣∣Z0 = k

)
< Ch−1/2+ε
(5.13)

Proof. Again, we give the details of the proof of (5.12), leaving the iden-
tical details of (5.13) for the reader:

P
(	σ̃h < ∞
 ∩ 	Ỹσ̃h

= h
 ∣∣Y0 = k
)

=
∞∑
l=0

P
(	σ̃h < ∞
 ∩ 	Yσ̃h−1 = l
 ∩ 	Yσ̃h

= h− l
 ∣∣Y0 = k
)



(5.14)

We divide the sum into two parts, as in (4.18):∑
l � �h−2l�>h1/2+ε

P
(	σ̃h < ∞
 ∩ 	Yσ̃h−1 = l
 ∩ 	Yσ̃h

= h− l
 ∣∣Y0 = k
)

≤ P
(
Mh > h1/2+ε ∣∣Y0 = k

)
< C exp�−γh2ε�

(5.15)

by Lemma 1. On the other hand,∑
l � �h−2l�≤h1/2+ε

P
(	σ̃h < ∞
 ∩ 	Yσ̃h−1 = l
 ∩ 	Yσ̃h

= h− l
 ∣∣Y0 = k
)

= ∑
l � �h−2l�≤h1/2+ε

P
(	σ̃h < ∞
 ∩ 	Yσ̃h−1 = l
 ∣∣Y0 = k

)
× π�l� h− l�∑

m≥h−l π�l�m� 


(5.16)

From Side-lemma 1(ii) (see Section 6) we know that, as long as �2l − h� ≤
h1/2+ε�

π�l� h− l�∑
m≥h−l π�l� m� < Ch−1/2+ε�(5.17*)

with some finite constant C. From (5.16) and (5.17) we get∑
l � �h−2l�≤h1/2+ε

P
(	σ̃h < ∞
 ∩ 	Yσ̃h−1 = l
 ∩ 	Yσ̃h

= h− l
 ∣∣Y0 = k
)

≤ Ch−1/2+ε

(5.18)

Finally, (5.15) and (5.18) yield (5.13). ✷
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5.3. Ỹt does not hit level ≥ h. We give an upper bound on the probability
that Ỹt = Yt−1 +Yt stays below level h before extinction, provided that Y0 is
close to h/2.

Lemma 3. There exists a constant C < ∞ such that, for any h ≥ 1 and
k ∈ ��h− h1/2+ε�/2� �h+ h1/2+ε�/2�,

P
(
σ̃h = ∞ ∣∣Y0 = k

)
< Ch−1/2+ε
(5.19)

Proof.

P
(
σ̃h = ∞ ∣∣Y0 = k

) ≤ P
(	σ̃h = ∞
 ∩ 	Mh ≤ h1/2+ε
 ∣∣Y0 = k

)
+ P

(
Mh > h1/2+ε ∣∣Y0 = k

)



(5.20)

To bound the first term on the right-hand side, note that

	σ̃h = ∞
 ∩ 	Mh ≤ h1/2+ε
 ⊂ 	σ�h+h1/2+ε�/2 = ∞

(5.21)

According to Side-lemma 3 (see Section 6), there exists a finite constant C
such that

P
(
σh = ∞ ∣∣Y0 = k

)
<
h− k

h
+Ch−1/2
(5.22*)

Thus

P
(	σ̃h = ∞
 ∩ 	Mh ≤ h1/2+ε
 ∣∣Y0 = k

)
≤ P

(
σ�h+h1/2+ε�/2 = ∞ ∣∣Y0 = k

) ≤ Ch−1/2+ε(5.23)

for k ∈ ��h − h1/2+ε�/2� �h + h1/2+ε�/2�. This bound, together with (5.20) and
(5.3), yields (5.19). ✷

5.4. Expectation of τ̃h. We give upper bounds on the expectation of the
hitting times τ̃h.

Lemma 4. There exists a constant C < ∞ such that for any 0 ≤ k ≤ h the
following bounds hold:

(i) without any further restriction on k,

E
(
τ̃h
∣∣Z0 = k

)
< Ch�(5.24)

(ii) for k ∈ ��h− h1/2+ε�/2� �h+ h1/2+ε�/2��
E
(
τ̃h
∣∣Z0 = k

)
< Ch1/2+ε
(5.25)

Proof.

E
(
τ̃h
∣∣Z0 = k

)
= E

(
τ̃h�	Nh≤h1/2+ε


∣∣Z0 = k
)+ E

(
τ̃h�	Nh>h

1/2+ε

∣∣Z0 = k

)



(5.26)
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We bound the first, respectively, the second, term on the right-hand side, by
noting

τ̃h�	Nh≤h1/2+ε
 ≤ τ�h+h1/2+ε�/2�(5.27)

respectively,

τ̃h ≤ τh
(5.28)

Thus we get

E
(
τ̃h
∣∣Z0 = k

) ≤ E
(
τ�h+h1/2+ε�/2

∣∣Z0 = k
)

+
√

E
(
τ2
h

∣∣Z0 = k
)√

P
(
Nh > h1/2+ε ∣∣Z0 = k

)



(5.29)

Side-lemma 4 (see Section 6) provides the required upper bounds:

E
(
τh
∣∣Z0 = k

)
< �h− k�+ +Ch1/2�(5.30*)

E
(
τ2
h

∣∣Z0 = k
)
< Ch2
(5.31*)

Putting together (5.29), (5.30) and (5.31), we get (5.24) and (5.25). ✷

5.5. Proof of Proposition 1. First, note that

P
(
Ah�0

∣∣Y0 = k
) = P

(
σ̃h = ∞ ∣∣Y0 = k

)
�(5.32)

∞∑
x=1

P
(
Bx�h�0

∣∣Z0 = k
) = ∞∑

x=1

P
(
τ̃h ≥ x

∣∣Z0 = k
) = E

(
τ̃h
∣∣Z0 = k

)
�(5.33)

and for p ≥ 1, using the strong Markov property of Yt, respectively, Zt,

P
(
Ah�p

∣∣Y0 = k
) = ∞∑

l=0

P
(	σ̃h < ∞
 ∩ 	Yσ̃h−1 = h− l


∩ 	Yσ̃h
= l
 ∣∣Y0 = k

)
× P

(
Ah�p−1

∣∣Y0 = l
)
�

(5.34)

∞∑
x=1

P
(
Bx�h�p

∣∣Z0 = k
) = ∞∑

l=0

P
(	Zτ̃h−1 = h− l
 ∩ 	Zσ̃h

= l
 ∣∣Z0 = k
)

×
( ∞∑
x=1

P
(
Bx�h�p−1

∣∣Z0 = l
))



(5.35)

We prove the bounds of Proposition 1 by induction on p.
According to (5.32), (5.33), for p = 0, (4.15), (4.16) and (4.17) are just restate-

ments of (5.24), (5.19) and (5.25), respectively. (See Lemmas 3 and 4.)
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Next we consider the case p = 1. Again, we divide the sum over l in (5.34)
and (5.35) into two parts, as it was done in (4.18). From (5.12) (Lemma 2) and
(5.19) (Lemma 3),∑

l � �h−2l�≤h1/2+ε
P
(	σ̃h < ∞
 ∩ 	Yσ̃h−1 = h− l
 ∩ 	Yσ̃h

= l
 ∣∣Y0 = k
)

× P
(
Ah�0

∣∣Y0 = l
)

≤ (
Ch−1/2+ε)�Ch−1/2+ε�


(5.36)

From (5.3) (Lemma 1)∑
l � �h−2l�>h1/2+ε

P
(	σ̃h < ∞
 ∩ 	Yσ̃h−1 = h− l
 ∩ 	Yσ̃h

= l
 ∣∣Y0 = k
)

× P
(
Ah�0

∣∣Y0 = l
)

≤ P
(
Mh > h1/2+ε ∣∣Y0 = k

)
< C exp�−γh2ε�


(5.37)

From (5.36) and (5.37) we get (4.16) for p = 1.
Applying the same ideas to (5.35): from (5.13) (Lemma 2) and (5.25)

(Lemma 4) ∑
l � �h−2l�≤h1/2+ε

P
(	Zτ̃h−1 = h− l
 ∩ 	Zσ̃h

= l
 ∣∣Z0 = k
)

×
∞∑
x=1

P
(
Bx�h�0

∣∣Z0 = l
)

≤ (
Ch−1/2+ε)(Ch1/2+ε)


(5.38)

From (5.4) (Lemma 1) and (5.24) (Lemma 4)∑
l��h−2l�>h1/2+ε

P
(	Zσ̃h−1=h−l
∩	Zσ̃h

=l
∣∣Z0=k
) ∞∑
x=1

P
(
Bx�h�0

∣∣Z0=l
)

≤P
(
Nh>h

1/2+ε ∣∣Z0=k
)(

sup
l≥0

∞∑
x=1

P
(
Bx�h�0

∣∣Z0=l
))

(5.39)

<
(
Cexp�−γh2ε�)�Ch�


Equations (5.38) and (5.39) yield (4.17) for p = 1.
For p ≥ 2 the induction follows from the same reasoning, only one does not

have to split the sum over l as in (5.36), (5.37). After the previous arguments
we may ignore these completely straightforward details. ✷

6. Side-lemmas.

Side-lemma 1. For any ε > 0 there exist constants C < ∞ and γ > 0 such
that, for any h ≥ 1�

(i) ∑
k � �h−2k�>h1/2+ε

π�k�h− 1 − k� < C exp�−γh2ε�
(6.1)
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(ii) h ≥ 1 and l ∈ ��h− h1/2+ε�/2� �h+ h1/2+ε�/2��

max
l � �h−2l�≤h1/2+ε

π�l� h− l�∑
m≥h−l π�l�m� < Ch−1/2+ε
(6.2)

Proof. (i) Assume that h ≥ 2 and denote h − 2 =� n, k − 1 =� l. Then,
using the explicit form (3.1) of π�i� j�, the right-hand side of (6.1) becomes∑

k � �h−2k�>h1/2+ε
π�k�h− 1 − k� = 1

2P
(∣∣2Bn − n

∣∣ > �n+ 2�1/2+ε)�(6.3)

where Bn is binomially distributed: P�Bn = l� = (
n
l

)
2−n. Using the fact that,

for any γ < 1/2�

sup
n

E
(
exp	γ�2Bn − n�2/n
) = Cγ < ∞�(6.4)

by Markov’s inequality we get (6.1).

(ii) Note first that, for i ≥ 1 and j ≥ 0�

π�i� j+ 1�
π�i� j� = i+ j

2�1 + j� 
(6.5)

From this it follows that the distribution j �→ π�i� j� is unimodular and for
i ≥ 2 fixed

π�i� j� < π�i� j+ 1� for 0 ≤ j ≤ i− 3�

π�i� i− 2� = π�i� i− 1��(6.6)

π�i� j� > π�i� j+ 1� for i− 1 ≤ j < ∞


We treat separately the cases l ∈ �h/2� �h+ h1/2+ε�/2� and l ∈ ��h− h1/2+ε�/2,
h/2�: for l ∈ �h/2� �h+ h1/2+ε�/2� the following two facts imply (6.2):

1. By (6.6),

π�l� h− l� ≤ π�l� l− 1�

= 1
2

(
2�l− 1�
l− 1

)
2−2�l−1� ≤ 1

2

(
2��h/2� − 1�
�h/2� − 1

)
2−2��h/2�−1�

≤ Ch−1/2


(6.7)

2. By the central limit theorem, liml→∞
∑

m≥l π�l�m� = 1
2 and thus there

exists a constant c > 0 such that, for any 0 < h/2 ≤ l,∑
m≥h−l

π�l�m� ≥ ∑
m≥l

π�l�m� ≥ c
(6.8)
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Let now l ∈ ��h− h1/2+ε�/2� h/2� and k �= �h− l+ h1/2−ε� Then

π�l� h− l�∑
m≥h−l π�l�m� ≤ �k− h+ l+ 1�−1π�l� h− l�

π�l� k�

≤ �k− h+ l+ 1�−1
(
π�l� k− 1�
π�l� k�

)k−h+l
= �k− h+ l+ 1�−1

(
2k

l+ k− 1

)k−h+l
(6.9)

≤ h−1/2+ε
(

2�h− l+ h1/2−ε�
h+ h1/2−ε − 1

)h1/2−ε

≤ h−1/2+ε
( �h+ h1/2+ε + 2h1/2−ε�

h+ h1/2−ε − 1

)h1/2−ε

≤ h−1/2+ε(1 + 3h−�1/2−ε�)h1/2−ε

≤ e3h−1/2+ε


In the first inequality we used (6.6). In the second one we exploited the fact
that, according to (6.5), for any i ≥ 1 fixed π�i� j�/π�i� j+ 1� is an increasing
function of j ≥ 0. In the next equality (6.5) was explicitly used. In the third
inequality we inserted the value of k = �h−l+h1/2−ε�. In the fourth inequality
l =  �h − h1/2+ε�/2! was inserted to maximize the expression. In the next to
the last inequality we used 1 ≤ h1/2−ε ≤ h1/2+ε. Finally, in the last inequality
we used the fact that supα≥1�1 + 3α−1�α ≤ e3
 ✷

Side-lemma 2. Let ξi be i.i.d. random variables with the common geometric
distribution P

(
ξi = k

) = 2−k−1. Then there is a constant θ0 > 0 such that, for
any λ > 0 and n ∈ � satisfying λ/�4n� < θ0,

P
(

max
1≤j≤n

∣∣∣∣ j∑
i=1

(
ξi − 1

)∣∣∣∣ > λ

)
≤ 2 exp

(−λ2/�8n�)
(6.10)

Proof. The exponential Kolmogorov inequality stated below follows
directly from Doob’s maximal inequality. For its proof see, for example, page 139
of [18].

Exponential Kolmogorov inequality. Let ξ̃j, j ≥ 1, be i.i.d. random
variables with E�exp	θ�ξ̃j�
� < ∞ for some θ > 0 and E

(
ξ̃j
) = 0. Then, for

any λ ∈ �0�∞� and n ∈ �,

P
(

max
1≤j≤n

∣∣∣∣ j∑
i=1

ξ̃i

∣∣∣∣ > λ

)
≤ exp�−λθ�{E(exp�θξ̃i�

)n + E
(
exp�−θξ̃i�

)n}

(6.11)
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We apply the exponential Kolmogorov inequality to ξ̃i = ξi − 1, with
P
(
ξi = k

) = 2−k−1, k ≥ 0. There exists a constantθ0 > 0 such that for 0 ≤ θ < θ0
we get

E
(
exp�θ�ξj − 1��) = exp�−θ�(2 − exp�θ�)−1

= 1 + θ2 + �
(
θ3
)
< exp�2θ2��

(6.12)

E
(
exp�−θ�ξj − 1��) = exp�2θ�(2 exp�θ� − 1

)−1

= 1 + θ2 + �
(
θ3
)
< exp�2θ2�


(6.13)

Inserting these bounds into the right-hand side of (6.8) and choosing θ =
λ/�4n�, we obtain (6.10). ✷

Side-lemmas 3 and 4 rely on the forthcoming overshooting lemma and
standard optional stopping considerations. The overshooting lemma and its
corollary are extended restatements of Lemmas 3.2 and 3.4 of [17].

Overshooting lemma. For any 0 ≤ k ≤ h ≤ u the following overshoot
bounds hold:

P
(
Yσh

≥ u
∣∣Y0 = k�σh < ∞) ≤ P

(
Y1 ≥ u

∣∣Y0 = h�Y1 ≥ h
)

=
∑∞

v=u π�h� v�∑∞
w=h π�h�w� �

(6.14)

P
(
Zτh

≥ u
∣∣Z0 = k

) ≤ P
(
Z1 ≥ u

∣∣Z0 = h� Z1 ≥ h
)

=
∑∞

v=u ρ�h� v�∑∞
w=h ρ�h�w� 


(6.15)

In particular, we have the following result.

Corollary. There exists a constant C < ∞ such that, for any 0 ≤ k < h,

E
(
Yσh

∣∣Y0 = k�σh < ∞) ≤ ∑∞
v=h π�h� v�v∑∞
w=h π�h� w� ≤ h+Ch1/2�(6.16)

E
(
Y2
σh

∣∣Y0 = k�σh < ∞) ≤ ∑∞
v=h π�h� v�v2∑∞
w=h π�h� w� ≤ h2 +Ch3/2�(6.17)

E
(
Zτh

∣∣Z0 = k
) ≤ ∑∞

v=h ρ�h� v�v∑∞
w=h ρ�h� w� ≤ h+Ch1/2�(6.18)

E
(
Z2
τh

∣∣Z0 = k
) ≤ ∑∞

v=h ρ�h� v�v2∑∞
w=h ρ�h� w� ≤ h2 +Ch3/2
(6.19)

The rightmost bounds in (6.16)–(6.19) follow from explicit computations.
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Proof of the overshooting lemma. Straightforward manipulations lead
to the following identities for 1 ≤ h ≤ v:

P
(
Yσh

= v
∣∣Y0 = k�σh < ∞)

=
h−1∑
l=0

P
(
Yσh−1 = l

∣∣Y0 = k�σh < ∞) π�l� v�∑∞
w=h π�l�w� �

(6.20)

P
(
Zτh

= v
∣∣Z0 = k

) = h−1∑
l=0

P
(
Zτh−1 = l

∣∣Z0 = k
) ρ�l� v�∑∞

w=h ρ�l�w� 
(6.21)

Using the explicit form (3.1), respectively, (3.2), of the transition probabilities
π�i� j�, respectively, ρ�i� j�, it is easy to check the following inequalities, which
hold for any 0 < l < h ≤ v, respectively, 0 ≤ l < h ≤ v,

π�l+ 1� v�
π�l� v� = l+ v

2l
<
l+ v+ 1

2l
= π�l+ 1� v+ 1�

π�l� v+ 1� �(6.22)

ρ�l+ 1� v�
ρ�l� v� = l+ v+ 1

2�l+ 1� <
l+ v+ 2
2�l+ 1� = ρ�l+ 1� v+ 1�

ρ�l� v+ 1� 
(6.23)

It follows that, for any 0 ≤ l < h ≤ v < w,

π�l+ 1� v�π�l�w� < π�l� v�π�l+ 1�w��(6.24)

ρ�l+ 1� v�ρ�l�w� < ρ�l� v�ρ�l+ 1�w�
(6.25)

Hence, for any 0 ≤ l < h ≤ u,

∞∑
v=h

π�l+ 1� v�
∞∑
w=u

π�l�w� <
∞∑
v=h

π�l� v�
∞∑
w=u

π�l+ 1�w��(6.26)

∞∑
v=h

ρ�l+ 1� v�
∞∑
w=u

ρ�l�w� <
∞∑
v=h

ρ�l� v�
∞∑
w=u

ρ�l+ 1�w��(6.27)

which directly imply (6.14), respectively, (6.15). ✷

Side-lemma 3. There exists a constant C < ∞ such that for any 0 ≤ k ≤ h
the following hold:

P
(
σh = ∞ ∣∣Y0 = k

) ≤ h− k

h
+Ch−1/2�(6.28)

E
(
σh ∧ ω

∣∣Y0 = k
) ≤ Ch2
(6.29)

Proof. We apply the optional stopping theorem to the martingales Yt,
respectively, Y2

t − 2
∑t−1

s=0Ys, t ≥ 0, both stopped at σh ∧ω.
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Proof of �6
28�:
k = E

(
Yσh∧ω

∣∣Y0 = k
) = E

(
Yσh

∣∣Y0 = k� σh < ∞)
× P

(
σh < ∞ ∣∣Y0 = k

)
(6.30)

≤
(
h+C

√
h
)
P
(
σh < ∞ ∣∣Y0 = k

)
�

where in the last inequality, we applied (6.16). Hence (6.28).

Proof of �6
29�:

k2 = E

(
Y2
σh∧ω − 2

σh∧ω−1∑
s=0

Ys

∣∣Y0 = k

)
≤ E

(
Y2
σh∧ω

∣∣Y0 = k
)− 2E

(
σh ∧ω ∣∣Y0 = k

)
�

(6.31)

where in the last inequality we used the fact that Ys ≥ 1 for s < ω. Hence

2E
(
σh ∧ω ∣∣Y0 = k

) ≤ E
(
Y2
σh

∣∣Y0 = k� σh < ∞)
× P

(
σh < ∞ ∣∣Y0 = k

)− k2 < Ch2

(6.32)

In the last inequality we used (6.17). ✷

Side-lemma 4. There exists a constant C < ∞ such that for any 0 ≤ k ≤ h
the following upper bounds hold:

E
(
τh
∣∣Z0 = k

)
< �h− k� +Ch1/2�(6.33)

E
(
τ2
h

∣∣Z0 = k
)
< Ch2
(6.34)

Proof. We apply the optional stopping theorem to the martingale Zt − t,
respectively, to the supermartingale t2 − 2tZt, t ≥ 0, both stopped at τh.

Proof of �6
33�:
E
(
τh
∣∣Z0 = k

) = E
(
Zτh

∣∣Z0 = k
)− k ≤ h− k+C

√
h
(6.35)

In the last inequality (6.18) was used.

Proof of �6
34�:
E
(
τ2
h

∣∣Z0 = k
) ≤ 2E

(
τhZτh

∣∣Z0 = k
)

≤ 2
√

E
(
τ2
h

∣∣Z0 = k
)√

E
(
Z2
τh

∣∣Z0 = k
)



(6.36)

Hence, using (6.19), we get

�6
37� E
(
τ2
h

∣∣Z0 = k
) ≤ 4E

(
Z2
τh

∣∣Z0 = k
) ≤ Ch2
 ✷
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