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ETERNAL ADDITIVE COALESCENTS AND CERTAIN BRIDGES
WITH EXCHANGEABLE INCREMENTS

By Jean Bertoin

Université Pierre et Marie Curie et C.N.R.S.

Aldous and Pitman have studied the asymptotic behavior of the addi-
tive coalescent processes using a nested family random forests derived by
logging certain inhomogeneous continuum random trees. Here we propose
a different approach based on partitions of the unit interval induced by cer-
tain bridges with exchangeable increments. The analysis is made simple
by an interpretation in terms of an aggregating server system.

1. Introduction. This work is motivated by some recent papers [12], [4,
5] and [8] on additive coalescents. First, recall that these random processes
describe the evolution of the ranked sequence of masses in a system of clusters
in which each pair of clusters, say with masses mi and mj, merges as a single
cluster with mass mi+mj at rate κ�mi�mj� =mi+mj, independently of the
other pairs. We refer to [2] for a survey on such (and also other) coalescent
models and their applications.

Roughly, a natural problem in this setting is to consider asymptotics when
one starts with a large number of small clusters. In this direction, Evans and
Pitman [12] have first shown that the so-called standard additive coalescent
arises at the limit as n→∞ of the additive coalescent process started at time
− 1

2 log n with n clusters, each with mass 1/n. By splitting the continuum ran-
dom tree along its skeleton, Aldous and Pitman [4] have then constructed a
fragmentation process that is connected to the standard additive coalescent by
a simple deterministic time-change. A different construction of the same frag-
mentation process has been presented in [8], by considering the partitions
of the unit interval induced by a standard Brownian excursion with drift,
where the drift coefficient coincides with the time parameter of the fragmen-
tation process. Finally, Aldous and Pitman [5] have characterized the entrance
boundary of the additive coalescent (which corresponds to the so-called eternal
additive coalescents) and made the connection with a family of inhomogeneous
continuum random trees; see also Camarri and Pitman [9].

Our purpose here is to present a simpler approach to investigate the asymp-
totic behavior of additive coalescents, which also provides a different represen-
tation of the eternal processes. Again, partitions of the unit interval induced
by a certain excursion with drift have a key role. The connection between ad-
ditive coalescent and interval partitions is enlightened by an interpretation in
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terms of an aggregating server system. More precisely, the rest of the paper
is organized as follows.

The next section focuses on the finite setting (i.e., when at the initial time
we start with finitely many clusters). We first introduce an aggregating server
system and observe that the evolution of this system can be described in terms
of the lengths of the intervals of constancy for the maximal function of a
certain excursion with varying drift. This excursion is constructed from some
bridge by the following classical path-transformation: one splits the bridge
at the location of its infimum and interchanges the resulting two portions of
paths. The bridge itself is defined as a piecewise linear function whose jumps
represent the initial service rates in the system. When the initial data of the
system are suitably randomized, the above random bridge has exchangeable
increments. Moreover, the evolution of the server system becomes Markovian
and is related to the (discrete) additive coalescent.

This enables us to investigate in the third section the asymptotic behavior
of the additive coalescent started with a large number of small clusters, using
Kallenberg’s results [14] for the convergence of processes with exchangeable
increments. We first recast the preceding quantities in Skorohod’s space D
of càdlàg paths. Next, we develop some technical results on bridges with ex-
changeable increments and their associated excursions. Then we derive the
main result on the asymptotic behavior of additive coalescents relying on the
connections established in Section 2.

Finally, some miscellaneous comments are made in Section 4.

2. An aggregating server system.

2.1. Mechanism of the server system. Fix an integer n ≥ 2 and consider the
following system of customers-servers. At the initial time t = 0, we have n cus-
tomers and n servers. Both servers and customers are indexed by 	1� 	 	 	 � n

(we shall often identify this set with Z/nZ). The ith customer requires a quan-
tity of service si ≥ 0 and is served by the ith server. The service rate (or output
rate) of the ith server is ri > 0, in the sense that the quantity of service it
delivers on a time duration δ is riδ. It is convenient for our future purpose
to assume unit total service rate, that is, r1 + · · · + rn = 1. At the first time
when a server has completely served its customer, this customer leaves the
system and the server aggregates with its successor in Z/nZ to form a new
server whose service rate is just the sum of the two previous service rates.

To give a more formal description, introduce the following notation. If
�x1� 	 	 	 � xn� is a sequence of n ≥ 2 real numbers and i ≤ n a positive integer,
we construct a sequence with �n− 1� real numbers by

�x1� 	 	 	 � xn�⊕i = �x1� 	 	 	 � xi−1� xi + xi+1� xi+2� 	 	 	 � xn� for i = 1� 	 	 	 � n− 1

and

�x1� 	 	 	 � xn�⊕n = �x2� 	 	 	 � xn−1� xn + x1� 	
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Then let i�1� be the index of the first customer completely served and

A1 = min
k=1�			�n

sk/rk = si�1�/ri�1�
the instant when its service is completed. At time A1 the system evolves into
a new system with �n − 1� customers and �n − 1� servers, both indexed by
	1� 	 	 	 � n − 1
. In this new system, the sequence of service rates is
�r1� 	 	 	 � rn�⊕i�1� and the sequence of required services is �s1 − r1A1� 	 	 	 � sn −
rnA1�⊕i�1�.

The mechanism of evolution after timeA1 is the same as before; for the sake
of simplicity, we assume that the initial data are such that there are never two
or more customers which are completely served at the same time. Of course,
the system stops when all the customers have been completely served.

Let us introduce some notation to describe the state of the system as time
evolves. We write #�t� for the number of customers (or of servers) present at
time t,

R�t� = (R1�t�� 	 	 	 �R#�t��t�
)

for the sequence of service rates at time t, and

R↓�t� =
(
R
↓
1�t�� 	 	 	 �R↓#�t��t�

)
for the decreasing rearrangement of the sequence R�t�. In particular #�0� = n
and R�0� = �r1� 	 	 	 � rn�. We also set A0 = 0 and for k = 1� 	 	 	 � n−1, we define
Ak as the first instant when k customers have been completely served,

Ak = inf 	t ≥ 0�#�t� = n− k
 	
In other words, for k = 1� 	 	 	 � n−1,Ak is the instant when the kth aggregation
happens, and therefore we shall often refer to Ak as the kth aggregation time.
It is also convenient to write An = s1 + · · · + sn for the time when the system
stops, where the identity stems from the fact that the total service rate is 1
and the servers are always working.

2.2. Bridge representation of the server system. Our purpose here is to
show that the ranked state of the aggregating server system can be expressed
in terms of the intervals of constancy of a certain family of increasing func-
tions. The latter will be constructed from some bridge that we now introduce
(see Figure 1).

Let U1 be an arbitrary real number in �0�1�. We set

Ui+1 = U1 + �s1 + · · · + si�/An [mod 1] for i = 1� 	 	 	 � n− 1

and define

b�u� =
n∑
i=1

ri
(
1	u≥Ui
 − u

)
� 0 ≤ u ≤ 1 	(2.1)

Note that b�0� = b�1� = 0 whenever Ui �= 0�mod 1� for i = 1� 	 	 	 � n, and then
b can be thought as a bridge on �0�1�.
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Fig. 1.

Next, recall our assumption that two different customers are never com-
pletely served at the same time, and let � ∈ 	1� 	 	 	 � n
 denote the index at the
initial time of the customer that will be the last to be completely served. This
quantity has a simple interpretation in terms of the bridge. If we set µ = U�+1
with the convention that � + 1 = 1 when � = n, then we have the following
identity.

Lemma 1. The bridge b reaches its infimum at a unique location which is
µ. More precisely b�µ−� = inf 0≤u≤1 b�u� < b�µ� and for every u �= µ, b�µ−� <
b�u� ∧ b�u−�.

Proof. For the sake of simplicity, we identify here 	1� 	 	 	 � n
 with Z/nZ,
in the sense that additions of indices are taken modulo n. As the customer
with label � is the last to be completely served, for every i = 1� 	 	 	 � n− 1, the
customers with labels � + 1� 	 	 	 � � + i are served only by servers built from
the servers with labels �+ 1� 	 	 	 � �+ i, and they have been completely served
before time An. In other words, we have

�r�+1 + · · · + r�+i�An > s�+1 + · · · + s�+i�
or equivalently b�U�+i+1−� > b�U�+1−�. This shows that the instant of the
infimum of the bridge b must be µ = U�+1. ✷

In order to describe the ranked state of the aggregating server system in
terms of the bridge b, we consider the following path transformation b → ε
which has been introduced by Takács [17] and used by Vervaat [18] to change
a Brownian bridge into a normalized Brownian excursion (cf. Figure 1):

ε�x� = b�x+ µ �mod 1�� − b�µ−�� x ∈ �0�1� 	(2.2)

Note that ε starts from b�µ�−b�µ−� > 0, ends at 0, and stays positive on �0�1�.
Hence ε can be thought of as an excursion with unit length. We also point out
that the excursion ε does not depend on the value of U1, the arbitrary real
number that is used to define the bridge b.
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Fig. 2. Excursion with drift ε�τ� and intervals of constancy �hatched� of its supremum.

Next, we define for every τ > 0 and u ∈ �0�1�
ε�τ��u� = τu− ε�u�� ε̄�τ��u� = sup

{
0 ∨ ε̄�τ��x��0 ≤ x ≤ u

}
	(2.3)

Note that ε̄�τ��·� is a continuous function (because all the jumps of ε�τ� are neg-
ative), starts from ε̄�τ��0� = 0 and ends at ε̄�τ��1� = τ. We call interval of con-
stancy of ε̄�τ� any interval component of �0�1�\Supp�dε̄�τ��, where Supp�dε̄�τ��
denotes the support of the Stieltjes measure dε̄�τ�. We write

F�ε̄�τ�� =
(
F1�ε̄�τ��� 	 	 	

)
for the sequence of the lengths of the intervals of constancy of ε̄�τ�, ranked in
the decreasing order. See Figure 2.

We are now able to state the main result of this section which provides a
simple representation of the ranked state of the aggregating server at time t.
Recall that #�t� is the number of servers at time t and that An = s1 + · · · + sn
is the time at which the system stops.

Proposition 1. Fix t ∈�0�An� and set τ = t−1An−1. Then there are exactly
#�t� intervals of constancy of ε̄�τ�, and the decreasing sequence of their lengths,
F�ε̄�τ��, is �t/An�R↓�t�.

Proof. To ease the notation, we assume that the instant of the infimum
of the bridge is µ = U1, that is (by Lemma 1) that the label at the initial
time of the last customer that will be completely served is n. This induces
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no loss of generality as the mechanism of the server system is invariant by
cyclic permutation of indices. For the sake of simplicity, we may also suppose
that U1 = 0 (recall that the excursion ε does not depend on U1), so that
Ui+1 = �s1 + · · · + si�/An and ε = b.

Denote the number of intervals of constancy of ε̄�τ� by k, and let 0 =
g1 < d1 < · · · < gk < dk < 1 be the sequence of their left and right
extremities. The left extremities gi are jump times of the excursion ε and
di = inf

{
x > gi � ε�τ��x� > ε�τ��gi−�

}
, where we agree that ε�τ��0−� = 0. Be-

cause ε�τ� is a process with constant drift τ+1 = t−1An and has only negative
jumps of size −rj at Uj, we have

n∑
j=1

rj1	gi≤Uj≤di
 = t−1An�di − gi�� i = 1� 	 	 	 � k 	(2.4)

We claim that the left-hand side of (2.4) is the service rate of the ith server
at time t, where the labeling of servers is made according to the rules given
in section 2.1. Indeed, consider the first interval �g1� d1� and write m for the
largest index such that Um ≤ d1. Then, whenever m ≥ 2�

ε�τ��Uj−� = t−1AnUj − �r1 + · · · + rj−1� < 0 for j = 2� 	 	 	 �m

and whenever m < n�

ε�τ��Um+1−� = t−1AnUm+1 − �r1 + · · · + rm� > 0 	

Equivalently (recall that An = s1 + · · · + sn), provided that m ≥ 2�

�r1 + · · · + rj−1� t > s1 + · · · + sj−1 for j = 2� 	 	 	 �m(2.5)

and provided that m < n�

�r1 + · · · + rm� t < s1 + · · · + sm	(2.6)

The inequality (2.5) implies that the initial first �m− 1� customers have been
completely served at time t, and therefore, at time t, the initial first �m −
1� servers have already aggregated as a single server. Recall the initial nth
customer has not been completely served at time t < An, so (2.6) implies that
the initial mth customer has not been completely served either when m < n.
We conclude that at time t, the first server is built from the servers with initial
labels 1� 	 	 	 �m and no others.

An iteration of this argument completes the proof. ✷

2.3. Markovian evolution. Let us fix a decreasing sequence r↓1 ≥ · · · ≥ r↓n >
0 with r↓1 + 	 	 	 + r↓n = 1. We henceforth assume that the data of the server
system are random. Specifically, let the customers pick their servers at time
t = 0 according to the equiprobability, in the sense that the sequence of initial
service rates R�0� = �r1� 	 	 	 � rn� is a random permutation of �r↓1� 	 	 	 � r↓n�. We
also suppose that the initial quantities of service s1� 	 	 	 � sn required by the
customers are given by an i.i.d. sequence of exponential variables with pa-
rameter 1, and are independent of the customers’ choice of the servers. This
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obviously implies that there are never more than one customer which is com-
pletely served at any given time.

We first point out that the aggregating server system can be described as
a Markov chain.

Proposition 2. (i) The sequence of aggregation times, �Ak�k = 1� 	 	 	 � n�,
has the law of the sequence of the first n jumps times of a Poisson process
with intensity 1, and is independent of the sequence of the states �R�Ak�� k =
0� 	 	 	 � n− 1�.

(ii) The ranked sequence of the service rates �R↓�Ak�� k = 0� 	 	 	 � n − 1� is
a Markov chain with �n − 1�-steps. Its transition probabilities are given as
follows. For every k = 0� 	 	 	 � n − 2 and 1 ≤ i < j ≤ n − k, the conditional

probability given R↓�Ak� that the servers with respective service rates R
↓
i �Ak�

and R
↓
j�Ak� aggregate at time Ak+1� is

R
↓
i �Ak� +R↓j�Ak�
n− k− 1

	

Proof. We shall first work with the non-ranked sequence of service rates
R�·�. Given the initial service rates R�0�, the time that the ith server (i.e.,
with service rate ri) would need if it were alone to serve completely the ith cus-
tomer is ei = si/ri. Plainly e1� 	 	 	 � en is a family of n independent exponential
variables with parameters r1� 	 	 	 � rn. The first completed service thus occurs
at time A1 = e1 ∧ · · · ∧ en; recall i�1� denotes the index of the first completely
served customer, that is, A1 = ei�1�. By a standard property of independent ex-
ponential laws, A1 has an exponential distribution with parameter

∑n
1 ri = 1,

and is independent of i�1�. Moreover, conditionally on A1 and i�1�, the quan-
tities of services required at time A1 by the remaining �n− 1� customers are
i.i.d. exponential variables with parameter 1 and the probability that i1 = j
is rj/ �

∑n
1 ri� = rj.

Iterating this argument proves the assertion (i), and also that the sequence
of service rates �R�Ak�� k = 0� 	 	 	 � n−1� is a Markov chain. More precisely, its
probability transitions can be described as follows. For every k = 0� 	 	 	 � n− 2
and j = 1� 	 	 	 � n− k, the conditional probability given R�Ak� = �R1�Ak�� 	 	 	 �
Rn−k�Ak�� that the jth server [i.e., with service rate Rj�Ak�] is the one that
will serve completely its customer at time Ak+1, is Rj�Ak�.

It should also be clear that since R�0� is a random permutation of R↓�0�,
R�A1� is a random permutation of R↓�A1� which is independent of the aggre-
gation timeA1 and the ranked service ratesR↓�A1�. By iteration, this ensures
that the Markov property of the non-ranked chain �R�Ak�� k = 0� 	 	 	 � n − 1�
propagates to the ranked chain �R↓�Ak�� k = 0 	 	 	 � n − 1�. All that we need
now is to calculate the transition probabilities. We work conditionally on the
ranked state R↓�Ak� of the system at the instant of the kth aggregation. Pick
i� j in 	1� 	 	 	 � n−k
 with i �= j, and consider the event �ij that after time Ak
the first server which completely serves its customer is the one with serving
rate R↓i �Ak� and that the server is aggregates with is the one with serving
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rate R↓j�Ak�. By construction, �ij is thus the intersection of two independent

events with respective probabilities R↓i �Ak� (according to the first part of the
proof) and 1/�n− k− 1� (because customers pick their servers at random). In
conclusion

P
(
�ij
) = R↓i �Ak�
n− k− 1

	

Plainly the events �ij and �ji are disjoint and their union is precisely the
event that the pair of servers with serving rates 	R↓i �Ak��R↓j�Ak�
 is the first
to merge at time Ak+1 as a single server in the system. In particular

P
(
�ij ∪ �ji

) = R↓i �Ak� +R↓j�Ak�
n− k− 1

	

This completes the proof of the statement. ✷

Next we turn our attention to the bridge b defined in the preceding section
(recall the notation used there). In this direction, we specify that the number
U1 used to define b is now random; more precisely that U1 has the uniform
distribution on �0�1� and is independent of the preceding data.

Lemma 2. The bridge b = �b�u��0 ≤ u ≤ 1� has exchangeable increments.

Proof. The variables �s1 + · · · + si�/An, i = 1� 	 	 	 � n − 1, are the order
statistics of �n − 1� independent uniformly distributed random variables. As
U1 is independent of the preceding and also uniformly distributed, we can
think of 	U1� 	 	 	 �Un
 as the set of values taken by n independent uniformly
distributed variables on �0�1�. Because R�0� = �r1� 	 	 	 � rn� is a random per-
mutation of R↓�0� and is independent of U1� 	 	 	 �Un, we now see that b has
exchangeable increments. ✷

2.4. Connection with the additive coalescent Let us first recall the dynam-
ics of the additive coalescent which has been studied in depth by Aldous, Evans
and Pitman [4, 5, 12]. Consider at the initial time γ0 = 0 a decreasing sequence
M�0� = �m1� 	 	 	 �mn� of n positive real numbers with m1 + · · · + mn = 1,
which are viewed as the sequence masses of clusters (arranged in the de-
creasing order) in a system with unit total mass. Suppose that pairs of clus-
ters of masses 	mi�mj
 merge into a single cluster of mass mi +mj at rate
κ�mi�mj� = mi +mj, independently of the other pairs. The first coalescence
occurs at time γ1, at which the sequence of masses is re-ranked to form the de-
creasing sequence M�γ1� = �M1�γ1�� 	 	 	 �Mn−1�γ1��, and the evolution of the
system resumes with the same dynamic, and stops when the system reduces
to the single unit mass. LetM�t� denote the ranked sequence of masses in the
system at time t and for k = 1� 	 	 	 � n−1, γk the instant of the kth coalescence.
In other wordsM�t� = �M1�γk−1�� 	 	 	 �Mn−k�γk−1�� for t ∈ �γk−1� γk�.
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It is easily checked from the preceding description that the durations be-
tween consecutive coalescence times, γ1� γ2 − γ1� 	 	 	 � γn−1 − γn−2 form a se-
quence of independent exponential variables with parameters n−1� n−2� 	 	 	 �1,
and are independent of the state chain �M�γk�� k = 0� 	 	 	 � n − 1�. Moreover
the latter is Markovian and its transitions can be described as follows. For
every k = 0� 	 	 	 � n − 2, given M�γk� = �x1� 	 	 	 � xn−k�, the probability that
M�γk+1� is the result of the coalescence of the clusters with masses xi and xj,
1 ≤ i < j ≤ n− k, is

xi + xj
n− k− 1

	

We see from Proposition 2(ii) that the state-chains associated respectively
to the additive coalescent and to the aggregating server system, �M�γk�� k =
0� 	 	 	 � n−1� and �R↓�Ak�� k = 0� 	 	 	 � n−1�, have the same transition probabil-
ities. Comparing the distributions of the jump times in the additive coalescent
process and in the aggregating server system enable us connect the two by
a simple time-substitution. Recall that #�t� denotes the number of servers
present at time t in the aggregating server system, and that An−1 is the in-
stant when the ultimate aggregation of servers occurs. Set

I�t� =
∫ t
0

du

#�u� − 1
� t ≤ An−1

and introduce the time change

T�t� = u ⇐⇒ I�u� = t� t < I�An−1�	

Corollary 1. If the initial states R↓�0� and M�0� are the same, then
�M�t��0 ≤ t ≤ γn−1� has the same law as �R↓�T�t���0 ≤ t ≤ I�An−1��.

Proof. Plainly, the sequence of the states of the time-changed process
R↓�T�·�� is

R↓�T�I�Ak��� = R↓�Ak�� k = 0� 	 	 	 � n− 1�

and we know from above that it has the same law as the sequence of the states
of the additive coalescent process.

On the other hand, we know from Proposition 2(i) that �n − #�t��0 ≤ t ≤
An−1� is a Poisson process with unit rate, stopped at its first passage time
at n − 1, and is independent of the sequence of the successive states of the
aggregating server system. It follows that the increments of I,

I�Ak+1� − I�Ak� =
Ak+1 −Ak
n− k− 1

� k = 0� 	 	 	 � n− 2(2.7)

form a sequence of independent exponential variables with parameters n −
1� n− 2� 	 	 	 �1; thus they have the same law as the sequence of the durations
between successive coalescence times in the additive coalescent process. As
for both the additive coalescent process and the aggregating server process,
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the sequence of coalescence (aggregation) times is independent of the chain of
successive states, the proof is complete. ✷

3. Asymptotic regimes. We are concerned here with the asymptotic be-
havior of various objects considered in the preceding section when the initial
number n of clusters (or servers) tends to infinity. To that end, we shall first
investigate continuity properties of the functionals of paths appearing in Sec-
tion 2.2. We will then consider bridges with exchangeable increments in the
framework of Kallenberg [14]. Putting the pieces together then readily yields
the main result on the asymptotic behavior of additive coalescent processes.

3.1. Continuity of functionals of bridges and excursions. We write D for
the space of càdlàg paths ω � �0�1� → R, and B for the subspace of bridges,
that is, of paths ω ∈ D with ω�0� = ω�1� = ω�1−� = 0. Both D and B are
endowed with Skorohod’s topology, so a sequence �ωn�n ∈ N� converges in D
(or in B) to ω if and only if there exists increasing bijections αn � �0�1� → �0�1�
such that limn→∞ αn�x� = x for all x ∈ �0�1� and ωn ◦ αn converges uniformly
on �0�1� to ω as n→∞.

Given a path ω ∈ D, call µ ∈ �0�1� a location of infimum for ω if

ω�µ−� ∧ω�µ� = inf 	ω�u�� u ∈ �0�1�
 	
If now ω ∈ B is a bridge, we denote by µ̄ the largest location of its infimum
and set

εω�u� = ω �u+ µ̄�mod 1�� − inf
�0�1�
ω� 0 ≤ u ≤ 1 	

Plainly εω is a path in D which only takes nonnegative values; it will be
referred to as the excursion associated to ω. We leave to the reader the proof
of the following elementary lemma.

Lemma 3. Let ω ∈ B be a bridge; suppose that ω has a unique location of
infimum, µ̄ = µ, and thatω is continuous at µ. Consider a sequence �ωn�n ∈ N�
that converges in B to ω. Then the sequence �εωn� n ∈ N� of the excursions
associated to �ωn�n ∈ N� converges in D to εω.

Next, we denote by � the space of decreasing numerical sequences x1 ≥
x2 ≥ · · · ≥ 0 with

∑∞
1 xn <∞, and by �1 the subspace of � of sequences with∑∞

1 xn = 1. Both are endowed with the �1-norm. Given an increasing path i
∈ D, we write

F�i� = �F1�i��F2�i�� 	 	 	� ∈ �

for the sequence of the lengths of the intervals components of the complement
of the support of the Stieltjes measure di, arranged in the decreasing order.
Finally, for any path ω ∈ D, we set

ω̄�u� = sup
{
ω�v�+�0 ≤ v ≤ u} � u ∈ �0�1�

where x+ stands for the positive part of the real number x.
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Lemma 4. Let ω ∈ D be such that

ω�u� ∨ω�u−� < ω̄�u� for every u ∈�a� b�
whenever �a� b�⊆ �0�1� is an interval of constancy for ω̄. Consider a sequence
�ωn�n ∈ N� that converges in D to ω. Then F�ω̄n� converges pointwise to
F�ω̄�. If moreover F�ω̄� ∈ �1, then F�ω̄n� converges to F�ω̄� in � �i.e., for the
�1-norm�.
Proof. The argument for the proof of the first assertion is easy, and we

again leave it to the reader. So suppose that F�ω̄� ∈ �1. We know from the
first part that for each k = 1�2� 	 	 	, Fk�ω̄n� converges to Fk�ω̄� as n → ∞,
and by Fatou’s lemma and our assumption that

lim sup
n→∞

∞∑
k=1

Fk�ω̄n� ≤ 1 =
∞∑
k=1

Fk�ω̄� 	

An application of Scheffé’s lemma entails that F�ω̄n� converges to F�ω̄� in
�1. ✷

3.2. Bridges with exchangeable increments and excursions. In this section,
we consider a decreasing sequence of nonnegative real numbers θ = �θ1� 	 	 	�
with

∞∑
j=1

θ2j ≤ 1(3.8)

and set

σ2 = 1−
∞∑
j=1

θ2j 	

We shall further suppose that

either σ > 0 or
∞∑
i=1

θi = ∞ 	(3.9)

Following Kallenberg [14], we introduce bθ, a bridge with exchangeable incre-
ments given by

bθ�x� = σb�x� +
∞∑
j=1

θj

(
1	x≥Vj
 − x

)
� x ∈ �0�1�(3.10)

where (b�x��0 ≤ x ≤ 1� is a standard Brownian bridge and V1� 	 	 	 an i.i.d.
sequence of uniform random variables on �0�1� which is independent of the
bridge b. More precisely, the series in (3.10) converges uniformly on �0�1�,
a.s. The hypothesis (3.9) is a necessary and sufficient condition for bθ to have
unbounded variation a.s.

In the sequel, we shall need the following property which is doubtless
known.

Lemma 5. For every c ∈ R, we have a.s.
inf 	u ≥ 0 � bθ�u� > cu
 = 0 	
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Proof. Recall from Theorem 2.2 of Kallenberg [15] that under the as-
sumption (3.9), we have a.s.

lim sup
u→0+

�bθ�u��
u

= ∞ 	

So, if the conclusion of the lemma failed, then we would have with positive
probability

lim sup
u→0+

bθ�u�
u

≤ c and lim inf
u→0+

bθ�u�
u

= −∞ 	

This is impossible, because it is well-known that the process � 1
u
bθ�u��1 ≥

u > 0� is a backward (i.e., when the time parameter u decreases from 1 to
0) martingale which has obviously no positive jumps, and such martingales
cannot converge to −∞. ✷

Next, we consider for each n ∈ N a decreasing sequence r↓n�1 ≥ · · · ≥ r↓n�n > 0

of positive real numbers with r↓n�1 + · · · + r↓n�n = 1. We set

σ2
n =

n∑
i=1

(
r
↓
n�i

)2
�

and we assume that

lim
n→∞σ

2
n = 0 and lim

n→∞ r
↓
n�i/σn = θi for every i = 1� 	 	 	 	(3.11)

We denote by bn the bridge with exchangeable increments that is distributed
as the process b defined by (2.1) for r↓j = r↓n�j, j = 1� 	 	 	 � n (cf. also Lemma
2). Note that bn coincides in distribution with the bridge bθ defined by (3.10)
when θj = r↓n�j for j = 1� 	 	 	 � n and θj = 0 for j > n.

The hypothesis (3.11) ensures that as n→∞,

σ−1
n bn converges in distribution on D to bθ;(3.12)

see Kallenberg [14]. To ease the notation, we write εθ and εn for the excursions
associated to bθ and bn, respectively.

Lemma 6. As n→∞, σ−1
n εn converges in distribution on D to εθ.

Proof. We check that the sample paths of the bridge bθ = ω fulfill a.s. the
requirements of Lemma 3. It is known that with probability one, bθ reaches
its the overall infimum at a unique location µθ; see Theorems 1.3(a) and 1.5 in
Knight [16]. On the other hand, bθ has only positive jumps, so bθ�µθ�−bθ�µθ−�
can be viewed as the initial jump (if any) of the post-infimum process obtained
by splitting the path bθ at µθ. It follows from a version of the Sparre-Andersen
identity for processes with exchangeable increments that the latter quantity
has the same law as the first positive jump of bθ across 0, that is, bθ�ρ�−bθ�ρ−�
where ρ = inf 	u ≥ 0 � bθ�u� > 0
. See e.g. Theorem 3.1 and the comment on
page 28 in [6]. According to Lemma 5, ρ = 0 a.s. and we conclude that bθ is
continuous at µθ a.s. Our claim thus follows from (3.12) and Lemma 3. ✷
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Finally, just as in (2.3), introduce for an arbitrary τ > 0

ε
�τ�
θ �u� = τu− εθ�u�� u ∈ �0�1�(3.13)

and recall that ε̄�τ�θ stands for the continuous supremum process of ε�τ�θ and
F�ε̄�τ�θ � for the sequence of the lengths of the intervals of constancy of ε̄�τ�θ ,
ranked in the decreasing order. Plainly the intervals of constancy of ε̄�τ�θ get
finer as τ increases, so �F�ε̄�τ�θ �� τ ≥ 0� can be thought of as a fragmentation
process.

In order to apply Lemma 4 to the sample paths of ε�τ�θ , we shall need the
following technical result.

Lemma 7. We have with probability one that�
(i) ε�τ�θ �u� < ε̄�τ�θ �u� for every u ∈�a� b� whenever �a� b�⊆ �0�1� is an interval

of constancy for ε̄
�τ�
θ .

(ii) F�ε̄�τ�θ � ∈ �1.

Proof. Recall that µθ denotes the a.s. unique location of the infimum of
bθ. The argument is based on the fact that

µθ and εθ are independent and µθ is uniformly distributed on �0�1�	(3.14)

This is a straightforward extension of results in [16]. More precisely, pick an
arbitrary y ∈ �0�1� and set b′�x� = bθ�x+ y �mod 1�� − bθ�y�. Then b′ has the
same law as bθ and, in the obvious notation, µ′ = µθ + y�mod 1� and ε′ = εθ.
This entails (3.14).

(i) If (i) failed with positive probability, then by (3.14) and the fact that
bθ can be recovered by splitting εθ at 1 − µθ, we would deduce that with
positive probability, the process with exchangeable increments τu − bθ�u�,
u ∈ �0�1�, reaches the same local maximum at two distinct locations. We see
from Corollary 1.4 and Lemma 1.2 in Knight [16] that this is impossible.

(ii) Fix u ∈�0�1� so that by (3.14),

P
(
ε
�τ�
θ �u� = ε̄�τ�θ �u�

)
= 1
u
P
(
ε
�τ�
θ �u� = ε̄�τ�θ �u�� µθ > 1− u

)
	

Again recovering bθ by splitting εθ at 1− µθ, we get

P
(
ε
�τ�
θ �u� = ε̄�τ�θ �u�

)
≤ 1
u

∫ u
0
P

(
τy− bθ�y� = sup

0≤x≤y
�τx− bθ�x��

)
dy 	

On the other hand, it is seen by time-reversal that

P

(
τy− bθ�y� = sup

0≤x≤y
�τx− bθ�x��

)
= P �bθ�x� − τx ≤ 0 for all x ∈ �0� y�� �



ETERNAL ADDITIVE COALESCENTS 357

and we know from Lemma 5 that the right-hand side is zero. It now follows
from Fubini theorem that 	u ∈ �0�1� � ε�τ�θ �u� = ε̄�τ�θ �u�
 has Lebesgue measure
zero a.s., which concludes the proof. ✷

3.3. A limit theorem for additive coalescents. We are now able to investi-
gate the asymptotic behavior of additive coalescents. Recall that we consider
for every integer n a ranked probability distribution �r↓n�1� 	 	 	 � r↓n�n� which
represents the ranked masses of the initial n clusters, and which can also be
thought of as the ranked service rates of the n servers at the initial time. We
write M�n� = �M�n��t�� t ≥ 0� for the additive coalescent process started at
time t = 0 with n clusters with masses r↓n�1 ≥ · · · ≥ r↓n�n > 0. More precisely

M�n��t� = �M�n�
1 �t�� 	 	 	� where M�n�

k �t� is the mass of the kth heavier cluster

at time t with the convention that M�n�
k �t� = 0 when there are less than k

clusters at time t.
Just as in Aldous and Pitman [5], we assume that the asymptotic behavior

as n → ∞ of these ranked probabilities is given by (3.11) (recall also the
conditions (3.8) and (3.9) on the limit θ). It has been proved in [5] that in
this situation, the sequence of shifted coalescent processes �M�n��− log σn −
log t��� t ≥ σn� has a limit distribution as n → ∞, which can be described in
terms of a certain inhomogeneous random tree cut by an independent Poisson
point process on its skeleton. We are now able to state the following variant
of this result, which provides an alternative description of the limit process.
Recall that ε�τ�θ is the excursion process with drift τ defined by (3.13), and that
�1 denotes the space of decreasing numerical sequences with sum 1, endowed
with the �1-norm.

Theorem 1. Under the preceding assumptions, the �1-valued process(
M�n��− log σn − log t���0 < t < 1/σn

)
converges in the sense of finite dimensional distributions as n→∞ toward the
fragmentation process (

F�ε̄�t�θ �� t ≥ 0
)
	

Proof. To ease the notation, we shall only prove the convergence for the
one-dimensional distributions. The argument obviously extends to finite di-
mensional distributions.

We shall mainly work in the setting of the aggregating server system. For
every n ∈ N, consider the process R�n�↓ of ranked service rates defined in
Section 2 when at the initial time, the ranked service rates are given by r↓j =
r
↓
n�j, j = 1� 	 	 	 � n. In the obvious notation, we know from Proposition 2(i)

that the durations between successive aggregating times �A�n�k+1 − A
�n�
k � k =

0� 	 	 	 � n − 2� form a sequence of �n − 1� i.i.d. variables distributed according
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to the exponential law with parameter 1. Fix t ≥ 0 and set

t�n� �= A�n��n−nσnt�
where �·� denotes the integer part. Recall from (2.7) that for k = 1� 	 	 	 � n,

I�n��A�n�k � =
k∑
j=1

A
�n�
j −A�n�j−1

n− j 	

It is easily seen that if we define

o�n� t� �= I�n�
(
A
�n�
�n−nσnt�

)
+ log σn + log t�

then

lim
n→∞ o�n� t� = 0 in probability.(3.15)

Recall also that T�n� is the inverse of the functional I�n� that appears in the
time substitution of Corollary 1. By definition,

T�n� �− �log σn + log t� + o�n� t�� = t�n��
and by Corollary 1,

M�n� �− �log σn + log t� + o�n� t�� d= R�n�↓�t�n�� 	
We study the right-hand side using the representation in terms of lengths

of intervals of constancy of the supremum process of an excursion with drift.
Recall that bn denotes the bridge with exchangeable increments that is dis-
tributed as the process b defined by (2.1) when r↓j = r↓n�j, j = 1� 	 	 	 � n, and
that εn is the excursion associated to bn by (2.2). We know from Proposition 1
that

t�n�
A
�n�
n

R�n�↓�t�n�� = F
(
ε̄
�τ�n��
n

)
�

where

τ�n� = A
�n�
n

t�n� − 1 = A
�n�
n −A�n��n−nσnt�
A
�n�
�n−nσnt�

	

On the one hand, as A�n�k = A�n�1 + · · · + �A�n�k −A�n�k−1� is the sum of k i.i.d.
exponential variables with unit mean, it is seen from the weak law of large
numbers that

lim
n→∞

t�n�
A
�n�
n

= 1 and lim
n→∞σ

−1
n τ�n� = t in probability.(3.16)

On the other hand, introduce the sequence of processes

ηn�u� = σ−1
n �τ�n�u− εn�u�� � u ∈ �0�1��



ETERNAL ADDITIVE COALESCENTS 359

and note that F
(
ε̄
�τ�n��
n

)
= F �η̄n�. Recall from Lemma 6 that σ−1

n εn converges

in distribution on D to εθ as n→∞, so by (3.16) ηn converges in distribution
on D to ε�t�θ . Thanks to Lemmas 4 and 7, we deduce that

lim
n→∞F

(
ε̄
�τ�n��
n

)
= lim
n→∞F �η̄n� = F

(
ε̄
�t�
θ

)
in distribution on �1�

and hence

lim
n→∞M

�n� �−�logσn+logt�+o�n�t��=F
(
ε̄
�t�
θ

)
in distribution on �1 	(3.17)

To complete the proof, we point out that the process �F�ε̄�t�θ �� t ≥ 0� is con-
tinuous in probability at each time t (this follows from Lemmas 4 and 7) and
that for every k = 1� 	 	 	, the processes M�n�

1 �t� + · · · +M�n�
k �t� are monotone

decreasing in the time variable t. Theorem 1 now derives from a standard
argument of monotonicity from (3.15) and (3.17). ✷

4. Miscellaneous comments. The dynamics of the aggregating server
system bear some striking similarities with hashing with linear probing in
computer science. That the latter area is related to the additive coalescent
has been observed by Chassaing and Louchard [11]. See also [10] and the
references therein.

It should be pointed out that Aldous and Limic [3] (see also [1]) have given
representations of the state at a fixed time of eternalmultiplicative coalescents
using as well ladder times of certain Lévy type processes.

When θ ≡ 0, b0 is the Brownian bridge, and according to Vervaat [18], ε0
is the normalized Brownian excursion. Hence �F�ε̄�t�0 �� t ≥ 0� is the fragmen-
tation process constructed from the Brownian excursion in [8].

We stress that Aldous and Pitman [5] have also shown that conversely, any
extreme eternal additive coalescent can be obtained as the limit of a sequence
of additive coalescent processes fulfilling the assumptions of Theorem 1. In
this direction, we focussed here on the situation where the ranked masses
of clusters at the initial time are deterministic. Nonetheless, as mixtures of
bridges of the type (3.10) are again bridges with exchangeable increments (see
Kallenberg [14]), the present approach yields more generally a construction of
any (i.e., not necessarily extreme) eternal additive coalescent based on some
bridge with exchangeable increments.

The present construction of eternal additive coalescents should have a cru-
cial role to extend the connection between the standard additive coalescent
and sticky particle systems with Brownian initial velocity (see [7]) to some
other classes of random initial velocities.

Let us discuss the situation when the assumption (3.9) fails, that is, suppose
that σ = 0 and / �=∑∞

i=1 θi <∞. The argument as in the proof of Proposition
1 shows that for every τ ≥ 0, one has a.s.

∞∑
i=1

Fi�ε̄�τ�θ � =
/

/+ τ 	
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Informally, this implies that a portion with mass τ/�/+ τ� of the system has
been reduced to dust at time τ by the fragmentation process.
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