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CRITICAL LARGE DEVIATIONS IN HARMONIC CRYSTALS
WITH LONG-RANGE INTERACTIONS

By P. Caputo1 and J.-D. Deuschel

Technische Universität, Berlin

We continue our study of large deviations of the empirical measures
of a massless Gaussian field on �d, whose covariance is given by the Green
function of a long-range random walk. In this paper we extend techniques
and results of Bolthausen and Deuschel to the nonlocal case of a random
walk in the domain of attraction of the symmetric α-stable law, with α ∈
�0�2∧d�. In particular, we show that critical large deviations occur at the
capacity scaleNd−α, with a rate function given by the Dirichlet form of the
embedded α-stable process. We also prove that if we impose zero boundary
conditions, the rate function is given by the Dirichlet form of the killed
α-stable process.

1. Introduction and results. We consider a field of random heights φx ∈
� at sites x ∈ �d of the d-dimensional integer lattice. The distribution P of the
field is Gaussian, with mean zero and covariance given by the Green function
of a lattice random walk; that is,

P�φxφy� = G�x�y� =
∞∑
n=0
pn�x�y��(1.1)

where p�x�y� is the probability of jumping from x to y, pn is the correspond-
ing nth iterate and the random walk is assumed to be homogeneous, symmet-
ric and transient. If p�·� ·� is the simple random walk in dimension d ≥ 3,
P is known as the massless (lattice) free field. In general, we refer to P as
the harmonic crystal with random walk p. We are going to investigate large
deviations of the empirical field of P.

1.1. Noncritical large deviations. Let RN denote the empirical field in a
cubic box 
N of side N ∈ �+,

RN�φ� = N−d ∑
x∈
N

δθx φ� φ ∈ ��(1.2)

where � = ��d denotes the set of height configurations equipped with product
topology, δξ stands for the Dirac measure at ξ ∈ � and θxφ denotes the shifted
configuration φ·+x. Let also �1��� denote the set of probability measures on
����� where � is the Borel σ-field on �, and � S

1 ��� the set of translation
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invariant elements of �1���, that is, invariant under the action of �θx� x ∈
�d�. �1��� and � S

1 ��� are equipped with the weak topology. If RN is seen
as a random element of �1���, by the ergodic theorem P�RN ∈ �� → 1 as
N → ∞ for any open set � ⊂ �1��� with P ∈ �. We have shown in [7] that
RN satisfies a weak large deviation principle at the volume scale with rate
given by the specific relative entropy

h�µ�P� =
{
limN→∞N−dHN�µ�P�� µ ∈ � S

1 ����
+∞� µ ∈ �1���\� S

1 ����(1.3)

where HN�µ�P� denotes the usual relative entropy functional on the box 
N.
Then, for any compact F ⊂ � S

1 ��� such that supµ∈F µ�φ2
x� < ∞,

lim sup
N→∞

N−d logP
(
RN ∈ F) ≤ − inf

µ∈F
h�µ�P��(1.4)

and for any open set G ⊂ � S
1 ���,

lim inf
N→∞

N−d logP
(
RN ∈ G) ≥ − inf

µ∈G
h�µ�P��(1.5)

The (nonnegative) function h�·�P� was also shown to satisfy the variational
principle

h�µ�P� = 0 ⇔ µ ∈ �S
2 �(1.6)

where �S
2 denotes the set of Gibbs measures associated to the formal

Hamiltonian

� �φ� = 1
4

∑
x�y

p�x�y��φx −φy�2�(1.7)

which are translation invariant and have finite second moments. The lower
bound (1.5) together with (1.6) shows that deviations within the set �S

2 are of
order o�Nd� on the exponential scale. We then speak of critical large
deviations.

As discussed in [7], we may replace P by P0
N, the (Gaussian) Gibbs measure

on 
N with zero boundary conditions and the bounds (1.4) and (1.5) remain
unchanged. In particular, the rate function is the same. Our main results will
show that this is not the case for critical large deviations; that is, boundary
conditions play an important role here.

1.2. Critical large deviations. Critical large deviations have been studied
for the massless free field and more generally for any harmonic crystal arising
from a finite-range irreducible random walk, in [4]. The transience assumption
for such random walks requires d ≥ 3, and by a classical invariance principle
capacities scale asNd−2. The authors prove a strong large deviation principle
for RN at the scaleNd−2, with rate function given by the Dirichlet form of an
embedded Brownian motion. In this paper we extend the analysis of [4] to the
case of random walks in the domain of attraction of a stable law. In particular,
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we consider massless fields Pα, α ∈ �0�2∧ d� and d ≥ 1, defined by (1.1) with
p = pα an homogeneous, isotropic random walk satisfying

�H1� lim
�x�→∞

�x�d+αpα�0� x� = vα�d�

for some constant vα�d ∈ �0�∞�, where �x� denotes the Euclidean norm of
x ∈ �d. We will sometimes omit the subscript α and simply write P for Pα. By
(H1), the lattice process converges to the symmetric α-stable process on �d,
after suitable rescaling. We also assume

�H2� lim
�x�→∞

�x�d−αG�0� x� = ωα�d�

with ωα�d ∈ �0�∞�. Note that (H2) is a kind of local CLT statement, which
is known to hold for finite-range irreducible random walks (with α = 2) [23].
We show in Appendix B how to construct examples of random walks satisfying
both (H1) and (H2). As we shall see, in this setting the correct scale for critical
large deviations is Nd−α.

1.3. Main results. In analogy with [4], our first main result establishes a
strong large deviation principle for the empirical field of Pα at the capacity
scale Nd−α, with rate function given by the Dirichlet form of the symmetric
α-stable process in �d, embedded in the “macroscopic” box V = 
N/N. Let us
describe the result in more detail. Using Theorem 2.1 of [7] we may charac-
terize elements of �S

2 as mixtures of translates of Pα. In particular, following
an idea introduced in [4], we may write �S

2 in the following convenient way.
Let V = �− 1

2 �
1
2 �d, and let L2�V� denote the space of real square integrable

functions on V. For each t ∈ �, let γt be the measure obtained from Pα by
translating φx into φx + t for every x ∈ �d; that is, γt is the Gaussian field
with constant mean t and covariance G. We then have

�S
2 = {

γ�ϕ�� ϕ ∈ L2�V�}�(1.8)

where

γ�ϕ� ≡
∫
V
γϕ�x� dx�(1.9)

We recall that, in the above decomposition, apart from the case of extremal
Gibbs states (ϕ = const. a.e.), the profile ϕ need not be unique, [4, 7].

The Dirichlet form of the symmetric α-stable process on �d is given (up to
a constant factor) by

� �ψ�ψ� = 1
2

∫
�d

∫
�d

(
ψ�x� − ψ�y�)2 �x− y�−d−α dxdy�(1.10)

The extended domain of � �·� ·� is denoted �� ; see Appendix A for details. We
shall use the notation ψ1V to denote restriction of ψ to V. For µ ∈ �1���, the
rate function is given by

	α�µ� = 1
2 inf

ψ∈�� �
µ=γ�ψ1V�

� �ψ�ψ��(1.11)
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where the infimum over empty sets is set equal to +∞. Note that, since the
constraint on ψ is only relevant to the box V, the above variational problem
is naturally linked to the problem of balayage on V. We refer to Appendix A
for a thorough discussion, and a proof (see Theorem A.3) of the identification
of so-called embedded and balayaged Dirichlet forms. The latter is denoted

�V�ϕ�ϕ� = inf
ψ∈�� �

ϕ=ψ1Va�e�
� �ψ�ψ�� ϕ ∈ L2�V��(1.12)

so that the rate function 	α may also be written

	α�µ� = 1
2 inf
ϕ∈L2�V��
µ=γ�ϕ�

�V�ϕ�ϕ��(1.13)

We prove the following strong large deviation principle for RN.

Theorem 1.1. 	α is lower semicontinuous; it has compact level sets, and
the following bounds hold:

(i) For any closed set F ⊂ �1���,
lim sup
N→∞

Nα−d logPα
(
RN ∈ F) ≤ − inf

µ∈F
	α�µ��(1.14)

(ii) For any open set G ⊂ �1���,
lim inf
N→∞

Nα−d logPα
(
RN ∈ G) ≥ − inf

µ∈G
	α�µ��(1.15)

Our next result is a strong large deviation principle for the empirical field
of P0

α�N, the harmonic crystal on 
N with zero boundary conditions outside.
This is the centered Gaussian field with covariance �N, the Green function
of the stable random walk, killed upon exiting 
N, see [7]. The rate function
is now expressed in terms of the Dirichlet form of the symmetric α-stable
process killed upon exiting box V. The question of zero b.c. was not addressed
in [4]. On the other hand, our result is easily seen to apply to the case of any
irreducible, isotropic random walk with finite variance, replacing the stable
process by Brownian motion (α = 2).

Let � 0
V denote the domain of the Dirichlet form for the killed process, that

is, the set of ψ ∈ �� such that ψ1Vc = 0 a.e. Then the rate function is given by

	 0
α �µ� = 1

2 inf
ψ∈� 0

V�
µ=γ�ψ1V�

� �ψ�ψ��(1.16)

Writing

� 0
V�ϕ�ϕ� = � �ψ�ψ�� ψ ∈ � 0

V�ψ1V = ϕa�e��(1.17)

we may also express 	 0
α as

	 0
α �µ� = 1

2 inf
ϕ∈L2�V��
µ=γ�ϕ�

� 0
V�ϕ�ϕ��(1.18)
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Theorem 1.2. 	 0
α is lower semicontinuous; it has compact level sets, and

the following bounds hold:

(i) For any closed set F ⊂ �1���,
lim sup
N→∞

Nα−d logP0
α�N

(
RN ∈ F) ≤ − inf

µ∈F
	 0
α �µ��(1.19)

(ii) For any open set G ⊂ �1���,
lim inf
N→∞

Nα−d logP0
α�N

(
RN ∈ G) ≥ − inf

µ∈G
	 0
α �µ��(1.20)

Remark. The expressions (1.11) and (1.16) show that 	 0
α �µ� ≥ 	α�µ� for

any µ ∈ �1���. Strict inequality is easily seen to occur. For instance, let us
compute the rate at which RN concentrates around the extremal Gibbs states
γt, t ∈ �. For the infinite field problem we have

	α�γt� = t2

2
capα�V��(1.21)

where capα�V� is the capacity of the unit box V for the symmetric α-stable
process. In particular, 	α�γt� < ∞. On the other hand, we expect that the cost
of such a deviation in the case of zero boundary condition is at least on the
surface scale Nd−1 for each t �= 0. This would imply 	 0

α �γt� = +∞ for α > 1,
t �= 0. Indeed, if we replace V by a Euclidean ball B we have (see Lemma A.4)

� �1B�1B� =
{+∞� α ∈ �1�2�� d ≥ 2,
< ∞� α ∈ �0�1�� d ≥ 1.(1.22)

1.4. Strategy of proofs. We turn to a description of the main ideas involved
in the proofs of Theorems 1.1 and 1.2. This will lead us to the analysis of the
large deviations of profile measures. The results about profiles, Theorems 1.3
and 1.4, can be considered of interest in their own right.
Lower bounds. The main idea of the lower bound is to use the convergence

pointed out in Appendix B, Lemma B.5, which is seen to yield convergence
of relative entropies on capacity scale. Namely, given a smooth profile ψ ∈
	∞�V�, consider the Gaussian measure γψN ∈ �1��
N�, defined by

γψN�φx� =ψN�x� = ψ�x/N��
γψN�φxφy� − γψN�φx�γψN�φy� =G�x�y�� x� y ∈ 
N�

(1.23)

Its Radon–Nykodin derivative w.r.t. PN, the marginal of P on the box 
N, is
given by

ϕN�φ� = dγψN

dPN
�φ� = exp

(
−1
2

〈
ψN�G

−1
N ψN

〉

N

+ 〈
ψN�G

−1
N φ

〉

N

)
�(1.24)

where GN denotes the Green function G restricted to 
N and �·� ·�
N stands
for the usual l2�
N�-scalar product. Therefore,

HN�γψN �P� = γψN�logϕN� = 1
2

〈
ψN�G

−1
N ψN

〉

N
�(1.25)
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and by Lemma B.5,

lim
N→∞

Nα−dHN�γψN �P� = 1
2�V�ψ�ψ��(1.26)

The classical change of measure argument then shows that all we have to do
to establish the lower bound is check that

lim
N→∞

γψN
(
RN ∈ G) = 1�

for any open set G containing the measure γ�ψ�.
Upper bounds: profile measures. The proof of the upper bounds is based

on the following analysis of ergodic properties of level 2 profiles. We define the
profile measures

YN�φ� = N−d ∑
x∈
N

δx/N ⊗ δφx�(1.27)

YN is a random variable with values in �1�V × ��, the set of probability
measures on the product V× �. We consider the rate function


α�ν� =
{

1
2�V�ϕ�ϕ�� if ν = +�ϕ�� ϕ ∈ L2�V�,
+∞� otherwise,

(1.28)

where ν ∈ �1�V× �� and we have defined the map

+�ϕ� = dx⊗ � �ϕ�x�� σ2��(1.29)

with � �m�σ2� the normal distribution on � with mean m and variance σ2 ≡
G�0�0�. We shall prove the following strong large deviations principle for YN
under the infinite volume field Pα.

Theorem 1.3. The function 
α is lower semicontinuous and has compact
level sets. Moreover, the profiles YN satisfy the estimates:

(i) For any closed set F ⊂ �1�V× ��,
lim sup
N→∞

Nα−d logPα
(
YN ∈ F) ≤ − inf

ν∈F

α�ν��(1.30)

(ii) For any open set G ⊂ �1�V× ��,
lim inf
N→∞

Nα−d logPα
(
YN ∈ G) ≥ − inf

ν∈G

α�ν��(1.31)

Convention. We shall sometimes abbreviate a statement like (1.30) and
(1.31) above by saying that YN satisfies the strong Nd−α-LDP (under the
measure P) with rate function 
α. The LDP is said to be weak if the upper
bound (1.30) is restricted to compact sets.

The idea behind the proof of Theorem 1.3 is the same as in [4]. We first
consider the signed measures XN on V, defined by

XN�φ� = N−d ∑
x∈
N

φxδx/N�(1.32)
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SinceXN is a Gaussian variable, a large deviations principle underP is estab-
lished in a standard way, by computing the logarithmic moment generating
function

logP
(
expNd−α �XN�ψ�) = 1

2VarP�Nd−α �XN�ψ�� = 1
2N

−2α �ψN�GNψN�
N �
for ψ ∈ 	 �V�, ψN�x� = ψ�x/N�, x ∈ 
N. Thanks to Lemma B.4, we obtain

lim
N→∞

Nα−d logP
(
expNd−α �XN�ψ�) = 1

2�ψ��Vψ�V�(1.33)

where �V is the integral operator associated to the Riesz kernel (see Appendix
A). The Legendre transform of (1.33), which is precisely the Dirichlet form
�V, is then the good rate function of the (level 1) Nd−α-LDP for XN; see
Proposition 2.3.

The main point of the argument is to lift this level 1 LDP to a level 2 LDP
for YN: we make a continuous transformation which sends XN into a smooth
profile φN�ε ∈ L2�V�, ε > 0, given by

φN�ε�x� = N−d ∑
z∈
N

ρε�x− z/N�φz�(1.34)

where ρε ∈ 	∞��d� is a smooth probability density which tends to a delta
function as ε → 0. We then define the level 2 profile measures

+ε�XN� = dx⊗ � �φN�ε�x�� σ2� ∈ �1�V× ���(1.35)

A large deviations principle for +ε�XN� is obtained via contraction princi-
ple on the variables XN, for each fixed ε > 0. The crucial point is to show
that as ε goes to zero the variables +ε�XN� and YN are exponentially well
approximated on the scale Nd−α. The main ingredient in the approximation
is a conditioning argument which fully exploits the Gaussian nature of the
problem. Following [4], we choose a sublattice � = L�d, with scale L > 0 and
consider the Gaussian fields

ζx = P�φx�
� �� τx = φx − ζx� x ∈ �d�(1.36)

where 
� denotes the σ-algebra generated by the variables φx, x ∈ � . The
fields τ and ζ are independent. Moreover, we have a random walk represen-
tation for the τ-field,

P�τxτy� = GL�x�y�� x� y ∈ �d�(1.37)

where GL is the Green function of the random walk which is killed upon
hitting the sub-lattice� ; see [22]. In particular, τ is a weakly coupled field; see
Lemma C.2. We then choose the scale L = logN and introduce the auxiliary
profiles

ZN�φ� = N−d ∑
x∈
N

δx/N ⊗ � �ζx� σ2��(1.38)

Using the weak coupling property of the field τ we prove that ZN approx-
imates exponentially both the profiles YN and +ε�XN�; see Proposition 2.2
and Proposition 2.1.
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Let us finally discuss the profiles YN under the measure P0
α�N, the zero

boundary conditions field. We define the rate function


 0
α �ν� =

{
1
2�

0
V�ϕ�ϕ�� if ν = +�ϕ�� ϕ ∈ L2�V�,

+∞� otherwise.
(1.39)

Theorem 1.4. The function 
 0
α is lower semicontinuous, it has compact

level sets and:

(i) For any closed set F ⊂ �1�V× ��,
lim sup
N→∞

Nα−d logP0
α�N

(
YN ∈ F) ≤ − inf

ν∈F

 0
α �ν��(1.40)

(ii) For any open set G ⊂ �1�V× ��,
lim inf
N→∞

Nα−d logP0
α�N

(
YN ∈ G) ≥ − inf

ν∈G

 0
α �ν��(1.41)

The proof of Theorem 1.4 will be accomplished through the following main
steps. We introduce the measures PN�Lk , L > 0 and k > 1, defined as the
harmonic crystal corresponding to a random walk with soft killing proportional
to L/Nα in the region Wk�N = 
kN \ 
N, that is,

dP
N�L
k

dP
�φ� = (

ZLk�N
)−1 exp

(
− 1

2LN
−α ∑

x∈Wk�N

φ2
x

)
�

We denote GN�Lk the corresponding Green function. The first step then con-
sists in proving a large deviations principle for YN under PN�Lk , for each
fixed L > 0 and k > 1. This will be obtained essentially as an application
of Varadhan’s lemma (cf. Proposition 3.1). Note that the choice of the scaling
LN−α is precisely the one required. The second step is the exponential approx-
imation between PN�Lk ◦ Y−1

N and PN�∞k ◦ Y−1
N when L goes to infinity. Here

P
N�∞
k stands for the harmonic crystal in the large box 
kN with zero bound-

ary conditions onWk�N (Note that in the local case PN�∞k is not distinguished
from P0

N as soon as k > 1.) The approximation is achieved by means of a
probabilistic estimate on the top eigenvalue of the difference of covariances
�
N�L
k ≡ G

N�L
k − �k�N (cf. Proposition 3.2). We have

�
N�L
k �x�y� = Ɛx

[ ∞∑
n=τk�N

1�y��ξn� exp
(

− log �1 +LN−α�
n∑
l=0

1Wk�N
�ξl�

)]
�

where τk�N is the hitting time

τk�N = inf�n ≥ 1� ξn ∈ Wk�N��
In our proof we use the random walk very explicitly, in particular Levy’s
inequality and the arc-sine law. Finally, we shall prove that, as k → ∞, the
field PN�∞k ◦Y−1

N is exponentially equivalent to P0
N ◦Y−1

N .
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1.5. A remark on conditional limit theorems. We conclude this introduction
with an application of Theorem 1.3 to conditional limit laws. Let us define the
level 3 empirical field,

�N�φ� = N−d ∑
x∈
N

δx/N ⊗ δθxφ�

This is a random measure with values in �1�V×��. Note that
�N�φ� ◦ π−1

0 = YN�φ��
where π0 � � → � is the canonical projection onto the origin, π0φ = φ0, and,
for all F ∈ Cb���, 〈

RN�φ��F〉 = 〈
�N�φ��1V ⊗F〉�

Next, define the rate function,

�α�Q� =
{

1
2�V�φ�φ�� if Q = :�φ�� φ ∈ L2�V�,
+∞� otherwise,

where

:�φ� = dx⊗ γφ�x��

Now in view of Theorem 1.3 and using a projective limit argument, it is not
too difficult to show that �N satisfies the strong Nd−α- LDP (under Pα) with
rate function �α.

Let us present a simple application of this result. For m�s2 > 0, define

A�m� = �Q ∈ �1�V×�� � �Q ◦ π−1
0 �1V ⊗φ0� ≥ m��

C�s2� = �Q ∈ �1�V×�� � �Q ◦ π−1
0 �1V ⊗φ2

0� ≥ s2��
and set

AN�m� = ��N�φ� ∈ A�m�� =
{
φ � N−d ∑

x∈
N
φx ≥ m

}
�

CN�s2� = ��N�φ� ∈ C�s2�� =
{
φ � N−d ∑

x∈
N
φ2
x ≥ s2

}
�

The asymptotics of the conditional measures Pα� · ∣∣AN�m�� and Pα� · ∣∣CN�s2��
asN → ∞ are characterized by solutions of the following variational problems:

inf
{
�V�ψ�ψ� � ψ ∈ �� �

∫
V
ψ�x� dx = m

}
(1.42)

and

inf
{
�V�ψ�ψ�� ψ ∈ �� �

∫
V
ψ2�x�dx = s2 − σ2

}
�(1.43)

The unique solution ψm of (1.42) is of the form

ψm�x� = m

c�V��V1V�x� where c�V� =
∫
V
�V1V�x�dx
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(see Appendix A for a definition of the integral operator �V). Next, let e1 be
the L2�V�-normalized eigenfunction associated to the largest eigenvalue λ1 of
�V, [cf. (A.10)], and for s2 > σ2, let

ξs2�x� = (√
s2 − σ2

)
e1�x�� x ∈ V�

Then ξs2 and −ξs2 are the unique solutions of the variational problem (1.43).
Next, for given ε > 0 and x ∈ V let



ε�x
N = 
�εN� + �xN�

be the cubic box of side �εN� centered at �xN� and let Rε�xN denote the corre-
sponding empirical field,

R
ε�x
N �φ� = �εN�−d ∑

y∈
ε�xN
δθyφ�

Let also Bρ�µ� denote the Prohorov ball of radius ρ around µ ∈ �1���. The
next convergence result for the conditional laws follows from the above LDP
for �N.

Proposition 1.5. Let m > 0, s2 > σ2 and x ∈ V; then for each ρ > 0,

lim
ε→0

lim
N→∞

P�Rε�xN /∈ Bρ�γψm�x��
∣∣AN�m�� = 0

and

lim
ε→0

lim
N→∞

P�Rε�xN /∈ Bρ�γξs2 �x�� ∪Bρ�γ−ξs2 �x��
∣∣CN�s2�� = 0�

In fact, by symmetry,

lim
ε→0

lim
N→∞

P�Rε�xN ∈ Bρ�γξs2 �x��
∣∣CN�s2��

= lim
ε→0

lim
N→∞

P�Rε�xN ∈ Bρ�γ−ξs2 �x��
∣∣CN�s2�� = 1

2 �

We expect a stronger result; that is, a convergence for the measures

P�θ�Nx�φ ∈ · ∣∣AN�m�� to γψm�x�

and

P�θ�Nx�φ ∈ · ∣∣CN�m�� to 1
2γξs2 �x� + 1

2γ−ξs2 �x��

without having to take macroscopic averages on the box 
ε�xN .
Note. The result for local interactions as stated in Theorem 0.13 of [4] is

wrong; one should instead consider the conditional measure of the empirical
field RN.

The standard way to prove such a convergence is to introduce the field
with periodic boundary conditions on 
N, which in our case does not exist.
An alternative way, would be to consider mesoscopic scales as used in the
description of the Wulff droplet for the three-dimensional Ising model (cf. [3]
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or [8]). Thus replace the macroscopic box 
ε�xN by the mesoscopic box 
ε�N�� x
N of

side ε�N�N with limN→∞ ε�N� = 0. We believe that Proposition 1.5 holds for
such scaling, but this would require a nontrivial improvement of Theorem 1.3.

The rest of the paper is divided into three main sections. In Section 2 we
study the infinite volume problem, Theorem 1.1 and Theorem 1.3, adapting
the proof of [4]. In Section 3 we consider the case of zero boundary conditions,
Theorem 1.2 and Theorem 1.4. In the Appendix we collect a few basic facts
dealing with the α-stable process and α-stable random walk. In particular we
show the convergence of the properly rescaled capacity of the random walk to
the capacity of the stable process. Our main result here is Theorem A.3, which
gives the variational formula (1.12).

2. Infinite volume field. In this section we prove Theorem 1.3 and Theo-
rem 1.1. Since the proofs follow very closely the ideas of [4], we shall sometimes
omit details of those arguments which carry over unchanged to our setting.
A more extensive treatment of the matter may be found in [6], Chapter 7.

2.1. Proof of Theorem 1.1. Observe first that compactness of level sets of
	α, and therefore also lower semicontinuity, simply follow from (1.12), the
continuity of the map

L2�V� � ϕ → γ�ϕ� ∈ �1���(2.1)

and Lemma A.2.
In view of (1.12), to prove the lower bound (1.15) it is sufficient to show

lim inf
N→∞

Nα−d logP
(
RN ∈ G) ≥ − 1

2�V�ψ�ψ�(2.2)

for any ψ ∈ L2�V� such that γ�ψ� ∈ G, see [11]. Moreover, due to the continuity
of the map (2.1) and the semicontinuity of �V, we may restrict ourselves to ψ ∈
	∞�V�. Given a smooth profile ψ ∈ 	∞�V�, consider the Gaussian measure
γψN defined in (1.23). As discussed in the previous section, all one has to
check is

lim
N→∞

γψN
(
RN ∈ G) = 1�(2.3)

for any open set G containing γ�ψ�. Note that if ψ is a constant, then (2.3)
is a straightforward consequence of the ergodic theorem. Moreover, (2.3) can
be extended to piecewise constant functions. Following [4], Theorem 2.9, one
proves that (2.3) holds for any ψ ∈ 	∞�V�.

We turn to the upper bound of Theorem 1.1. We shall assume the validity of
Theorem 1.3, whose proof will be given in the next subsection. We start with
a proof of the exponential tightness of RN. Namely, there exist c > 0, L0 > 0,
such that, for any L > L0,

lim sup
N→∞

Nα−d logP
(
RN /∈ �L

) ≤ −cL�(2.4)
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where �L is the compact set

�L = {
µ ∈ � S

1 ���� µ�φ2
0� ≤ L}�(2.5)

In order to prove (2.4), notice that for any a > 0,

P
(
RN /∈ �L

) ≤ exp �−aL�P
(
expaN−d ∑

x∈
N
φ2
x

)
�(2.6)

From Lemma C.1 we obtain

logP
(
RN /∈ �L

) ≤ −aL+ aN−d Tr GN + 2a2N−2dW�2aN−d� λ1� Tr G2
N�

where λ1 = λ1�N� is the maximal eigenvalue of GN and we have set β =
2aN−d in Lemma C.1. Recalling (B.10) it is easy to check

λ1�N� ≤ max
x∈
N

∑
y∈
N

G�x�y� ≤ O�Nα��(2.7)

Tr G2
N = ∑

x�y∈
N
G�x�y�2 ≤ o�Nd+α��(2.8)

Choosing now a = a�N� = 2cNd−α in (2.1), for c > 0 sufficiently small, we see
that W�2aN−d� λ1� is uniformly bounded in N and the last term in the r.h.s.
is o�Nd−α�. Using Tr GN = Ndσ2, we have (2.4) for all sufficiently large L.

To prove (1.14) we may now assume F to be a compact set. Then, the
classical Heine–Borel argument shows that to establish (1.14), it is sufficient
to prove, for any µ ∈ F,

lim
ρ↘0

lim sup
N→∞

Nα−d logP
(
RN ∈ Bρ�µ�) ≤ −	α�µ��(2.9)

where Bρ�µ� is the Prohorov ball of radius ρ around µ. In view of (1.4)
and (1.6), (2.9) is always satisfied for µ /∈ �S

2 . We may therefore assume
µ = γ�ψ� for some ψ ∈ L2�V� [cf. (2.1)]. Notice that

µ ◦ π−1
0 = γ�ψ� ◦ π−1

0 =
∫
V
� �ψ�x�� σ2�dx�(2.10)

Consider the level 2 empirical measure

LN�φ� = RN�φ� ◦ π−1
0 = N−d ∑

x∈
N
δφx ∈ �1����

In particular,

�LN�φ�� f� = �YN�φ��1V ⊗ f� � f ∈ 	b����
Let B1

ρ denote the Prohorov ball of radius ρ in �1���. Then if RN ∈ Bρ�µ�,
there exists ρ′ > 0 such that LN ∈ B1

ρ′ �µ ◦ π−1
0 �, with ρ′ → 0, as ρ → 0. Apply-

ing the contraction principle (see, e.g., [10], Theorem 4.2.1) to the variables
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YN and using Theorem 1.3, we see that

lim
ρ↘0

lim sup
N→∞

Nα−d logP
(
RN ∈ Bρ�µ�)

≤ lim
ρ′↘0

lim sup
N→∞

Nα−d logP
(
LN ∈ B1

ρ′ �µ ◦ π−1
0 �) ≤ −
̃α�µ��

where


̃α�µ� ≡ inf
{

α�ν�� ν ∈ �1�V× ��� ν�1V ⊗ ·� = µ ◦ π−1

0

}
�

By the definition (1.28) of 
α and (2.10), we see that 
̃α�µ� = 	α�µ�. This
concludes the proof of (2.9). ✷

2.2. The profile measures. Here we prove Theorem 1.3. Let us first intro-
duce some notations. For every bounded Lipschitz continuous function f on V
or on �, we write

!f!BL = !f!∞ + sup
x �=y

�f�x� − f�y��
�x− y� �

We define the metric d∗ by

d∗�µ� ν� = sup
{� �ν − µ�f⊗ g� �� f ∈ 	 �V�� !f!BL ≤ 1#

g ∈ 	 ���� !g!BL ≤ 1
}
�

(2.11)

where µ� ν ∈ �1�V× �� and we have used the notation

�µ�f⊗ g� =
∫
V

∫
�
f�x�g�u�µ�dx�du��

Recall that the weak topology is compatible with the Wasserstein metric,
which is obtained from (2.11) by replacing f ⊗ g with h ∈ 	 �V × �� such
that !h!BL ≤ 1. Since the functions f ⊗ g are separating in �1�V × ��, one
concludes that d∗ metrizes the weak topology on �1�V× ��.

The main step in the proof of Theorem 1.3 is a large deviation principle for
the profiles ZN. These are defined by

ZN�ζ� = N−d ∑
x∈
N

δx/N ⊗ � �ζx� σ2��(2.12)

where ζx = P�φx�
� � is the field defined in (1.36) with � = L�d. The next
step is to establish the exponential equivalence of YN and ZN.

Proposition 2.1. The profiles ZN satisfy the strong Nd−α-LDP with rate
function 
α.

Proposition 2.2. For any β > 0, for any f ∈ 	 �V� and g ∈ 	 ��� such
that !g!BL < ∞, we have

lim sup
N→∞

Nα−d logP
(� �YN −ZN�f⊗ g� � ≥ β) = −∞�(2.13)
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To prove Proposition 2.2 we may repeat the arguments of [4], Proposi-
tion 3.10. The crucial point is the weak dependence of the field τ = φ − ζ,
which in our setting is expressed by the estimates of Lemma C.2. With this new
ingredient, the proof given in [4] applies. We do not provide further details.

Assuming the validity of Propositions 2.1, whose proof will be given below,
we now complete the proof Theorem 1.3.

Proof of Theorem 1.3. The statements about the rate function 
α follow
from the same arguments as for the rate function 	α, and the continuity of
the map +� L2�V� → �1�V× �� given in (1.29).

Let us show how to prove the upper bound (1.30). To prove that the profiles
YN are exponentially tight, we may define the compact sets

�L = �µ ∈ �1�V× ��� 〈µ�1V ⊗ z2〉 ≤ L��L > 0�(2.14)

and use the same argument as for (2.4). Then, by the Heine–Borel argument,
it is sufficient to show that for any µ ∈ F we can find a sequence �ρ�µ�, ρ > 0,
of neighborhoods of µ such that

lim sup
ρ↘0

lim sup
N→∞

Nα−d logP
(
YN ∈ �ρ�µ�) ≤ −
α�µ��(2.15)

For any ρ > 0, we may choose functions ui ∈ 	b�V×��, i = 1� � � � � n and ε > 0
such that

�ρ�µ� = �ν ∈ �1�V× �� � � �ν − µ�ui� � < ε� i = 1� � � � � n�
and

�ν ∈ �1�V× ��� � �ν − µ�ui� � < 2ε� i = 1� � � � � n� ⊂ Bρ�µ��
where Bρ�µ� denotes the ball of radius ρ around µ for a metric which is com-
patible with the weak topology (e.g., d∗). Moreover, by a density argument we
may further assume the functions ui to be (a linear combination of functions)
of the form f⊗g, with f ∈ 	 �V� and g ∈ 	 ��� with !g!BL < ∞. At this point
it is an easy exercise to show that Proposition 2.2 implies

lim sup
N→∞

Nα−d logP
(
YN ∈ �ρ�µ�)

≤ lim sup
N→∞

Nα−d logP
(
ZN ∈ Bρ�µ�)�(2.16)

From (2.16) and the upper bound for ZN (cf. Proposition 2.1), we arrive at
(2.15). The lower bound can be proved in a similar way. ✷

Large deviations for ZN. We turn to the proof of Proposition 2.1. Here we
follow Proposition 3.9 in [4]. We recall below the main steps needed.

Step 1. The first step consists of proving a large deviation principle for
level 1 profile measures. The profiles

XN�φ� = N−d ∑
x∈
N

φxδx/N
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are Gaussian random variables with values in� �V�, the set of all finite signed
measures on V. We equip � �V� with the locally convex topology generated
by the functionals

µ →
∫
V
fdµ� f ∈ 	 �V��

With this choice, the sets

�r�V� = {
µ ∈ � �V�� !µ!var ≤ r}� r > 0�

are compact (! · !var denotes the total variation norm).

Proposition 2.3. The measuresXN satisfy the strongNd−α-LDP with rate
function

J�µ� = 1
2 sup
f∈	 �V�

{
2µ�f� − �f��Vf�V

}
�(2.17)

where �V is the integral operator defined in (A.9).

Proof. The function J is clearly convex and lower semicontinuous. More-
over, using Lemma A.2, one checks the identity

J�µ� =
{

1
2�V�ψ�ψ�� if µ�dx� = ψ�x� dx�ψ ∈ L2�V�,
+∞� otherwise.

(2.18)

Lemma A.2 also implies compactness of the level sets of J. The argument
used for (2.2) then implies the lower bound

lim inf
N→∞

Nα−d logPα
(
XN ∈ G) ≥ − inf

µ∈G
J�µ��(2.19)

for any open set G ⊂ � �V�.
To prove the upper bound we use the asymptotics of the logarithmic moment

generating function (1.33). The Legendre transform of (1.33) coincides, by def-
inition with the function J, and by the standard argument (cf., e.g., Theorem
4.5.3 of [10]) this leads to the upper bound

lim sup
N→∞

Nα−d logPα
(
XN ∈ F) ≤ − inf

µ∈F
J�µ��(2.20)

for any compact setF ⊂ � �V�. In order to remove the compactness restriction
observe that by the same argument used for (2.4) we have

lim sup
N→∞

Nα−d logP
(
XN /∈ �r�V�) ≤ −cr2� r > 0�

for some constant c > 0. ✷

Step 2. In the second step we lift the LDP of Step 1 to an LDP for smooth
level 2 profiles. Let ρ be a smooth probability density with support contained
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in the unit ball of �d, and define ρε�x� = ε−dρ�x/ε�� ε > 0. For each µ ∈
� �V�� ε > 0, we form the function µε ∈ 	 �V�,

µε�x� = ρε ∗ µ�x� =
∫
V
ρε�x− y�µ�dy��

We define

+ε� � �V� → �1�V× ��� +ε�µ� = +�µε��
where + is defined by (1.29). Then +ε is continuous for each ε > 0.

From Step 1 and the contraction principle we see that the bounds of
Theorem 1.3 are satisfied for each ε > 0 if we replace YN with +ε�XN� and
the rate function 
 with

Jε�ν� = inf
{
J�µ�� µ ∈ � �V� � +ε�µ� = ν

}
�(2.21)

Step 3. The next step is to prove exponential approximation of +ε�XN�
and ZN, as ε ↘ 0. Recall the definition of the metric d∗; see (2.11).

Lemma 2.4. For any β > 0,

lim
ε↘0

lim sup
N→∞

Nα−d logP
(
d∗�+ε�XN��ZN� ≥ β) = −∞ �(2.22)

Proof. Let f ∈ 	 �V�, g ∈ 	 ��� be given, with !f!BL ≤ 1, !g!BL ≤ 1. By
definition,

�f⊗ g�+ε�XN� −ZN� =
∫
V
f�x�ḡσ�φN�ε�x��dx

−N−d ∑
x∈
N

f�x/N�ḡσ�ζx��(2.23)

where ḡσ�m� is the function
ḡγ�m� ≡

∫
�
g�r�� �m�γ2��dr��

and we have introduced the random profile

φN�ε�x� = N−d ∑
y∈
N

ρε�x− y/N�φy� x ∈ V�φ ∈ ��(2.24)

We can rewrite (2.23) as

N−d ∑
z∈
N

∫
V
dx

[
f�x/N+ z/N�ḡσ�φN�ε�x/N+ z/N�� − f�z/N� ḡσ�ζz�

]
�

Using the assumptions on f�g and the smoothness of ḡσ , one easily checks
the following estimates, valid uniformly on x ∈ V and z ∈ 
N:

�ḡσ�φN�ε�x/N+z/N����f�x/N+z/N�−f�z/N�� ≤ N−1�

�f�z/N���ḡσ�φN�ε�x/N+z/N��−ḡσ�φN�ε�z/N��� ≤ Cε−d−1N−d−1 ∑
y∈
N

�φy��

�f�z/N���ḡσ�φN�ε�z/N��−ḡσ�ζz�� ≤ C�ηεz��



258 P. CAPUTO AND J.-D. DEUSCHEL

where C < ∞ is independent of N�ε, and we have defined the field

ηεz = ζz −φN�ε�z/N�� z ∈ �d�(2.25)

Thanks to these bounds we have

d∗�+ε�XN��ZN� ≤ N−1 +CN−d ∑
z∈
N

(�ηεz� +N−1ε−d−1�φz�
)
�(2.26)

We first observe that for any β > 0,

lim sup
N→∞

Nα−d logP
(
N−d−1 ∑

z∈
N
�φz� ≥ β

)
= −∞�(2.27)

This is an obvious consequence of the argument used in the proof of (2.4). The
proof of the lemma will then be complete by showing

lim
ε↘0

lim sup
N→∞

Nα−d logP
(
N−d ∑

z∈
N
�ηεz� ≥ β

)
= −∞� β > 0�(2.28)

Let

�εN�y� z� = P�ηεyηεz�� y� z ∈ 
N�
denote the covariance of the centered Gaussian field ηε on 
N, and let λ1�N�ε�
be its largest eigenvalue. By Chebyshev’s inequality and Lemma C.1, for any
a > 0 we have the bound

logP
(
N−d ∑

z∈
N
�ηεz� ≥ β

)
≤ −aβ2 + aN−d Tr �εN + 2a2N−2d Tr ��εN�2W�2aN−d� λ1��

(2.29)

where W is defined by (C.2). We first claim that, for each ε > 0,

lim
N→∞

N−d Tr �εN = 0�(2.30)

Indeed,

Tr �εN = ∑
z∈
N

P�ηεz2� ≤ 2
∑
z∈
N

P�ζ2z� + 2
∑
z∈
N

P�φN�ε�z/N�2��

The second term above is easily seen to be at most O�Nα�, while from
Lemma C.2 with L = logN, we have

N−d ∑
z∈
N

P�ζ2z� = N−d ∑
z∈
N

[
G�z� z� −GL�z� z�] → 0� N → ∞�

This proves (2.30). It is also not difficult [cf. (2.8)] to see that

Tr ��εN�2 ≤ o�Nd+α��(2.31)

Let us define, for each ε > 0,

γ�ε� = lim sup
N→∞

N−αmax
x∈
N

∑
z∈
N

��εN�x� z���(2.32)
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We claim that

lim
ε↘0

γ�ε� = 0�(2.33)

We postpone for a moment the proof of this last fact and show that (2.33) is
in fact sufficient to complete the proof of Lemma 2.4. Let us assume γ�ε� > 0
for each ε > 0 (the proof is simpler otherwise) and fix

a = a�N�ε� = γ�ε�−1/2Nd−α�(2.34)

With this choice of a, we see that (2.33) implies, for large N,

aN−dλ1�N�ε� ≤ γ�ε�−1/2N−αmax
x∈
N

∑
z∈
N

��εN�x� z�� ≤ 2γ�ε�1/2�

which shows thatW�2aN−d� λ1�N�ε�� is uniformly bounded in (2.29). Insert-
ing (2.34) in (2.29) and using (2.30) and (2.31), we have the upper bound

lim sup
N→∞

logP
(
N−d ∑

z∈
N
�ηεz� ≥ β

)
≤ −γ�ε�−1/2β2�

which implies (2.28).
It remains to prove (2.33). Let us define the field

η̃εz = ζz −N−d ∑
y∈
N

ρε�z/N− y/N�ζy = ηεz +N−d ∑
y∈
N

ρε�z/N− y/N�τy�

where τ = φ− ζ is the centered Gaussian field with covariance GL. From the
independence of ζ and τ we have

�εN�x�y� = P�η̃εxη̃εy� +N−2d ∑
z� z′∈
N

ρε�x/N− z/N�ρε�y/N− z′/N�GL�z� z′��

Moreover, we easily see from Lemma C.2 that

lim sup
N→∞

N−αmax
x∈
N

∑
y∈
N

�GL�x�y�� = 0

and therefore (2.33) will follow from

lim
ε↘0

lim sup
N→∞

N−αmax
x∈
N

∑
y∈
N

�P�η̃εxη̃εy�� = 0 �(2.35)

Letting Gζ = G−GL and using P�ζxζy� = Gζ�x�y�, we have
P�η̃εxη̃εy� = Gζ�x�y�

−N−d ∑
z∈
N

[
ρε�y/N− z/N�Gζ�x� z�

+ρε�x/N− z/N�Gζ�y� z�]
+N−2d ∑

z� z′∈
N
ρε�x/N− z/N�ρε�y/N− z′/N�Gζ�z� z′��

(2.36)
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Again we may neglect the contribution of GL to this sums. It is therefore
sufficient to prove (2.35) by replacing Gζ with G in (2.36). At this point we
use (B.10) to write

G�x�y� = gα�x− y� +R�x− y�
with gα�x� = ωα�d�x�α−d, and

lim
�x�→∞

�x�d−α�R�x�� = 0�

In particular,
lim sup
N→∞

N−αmax
x∈
N

∑
y∈
N

�R�x− y�� = 0�

and we are left with the contribution of gα alone in (2.36). By Riemann inte-
gration (see Lemma B.4),

lim sup
N→∞

N−αmax
x∈
N

∑
y∈
N

��εN�x�y��

≤ max
x∈V

∫
V

∣∣gα�x− y� − 2ρε ∗ gα�x− y� + ρε ∗ ρε ∗ gα�x− y�∣∣dy�
Since the densities ρε converge to the Dirac mass, a dominated convergence
argument implies the claim (2.35). This completes the proof of (2.33).

Step 4. From Step 2 and Step 3 above, together with the exponential
approximation lemma (see, e.g., Theorem 4.2.16 of [10]) we see that ZN sat-
isfies the weak Nd−α-LDP with rate function given by

J̃�ν� = sup
δ>0

lim inf
ε↘0

inf
ν′∈Bδ�ν�

Jε�ν′��(2.37)

where Bδ�ν� is the ball of radius δ around ν w.r.t. the d∗ metric in �1�V×��.
To extend the upper bound to all closed sets we observe that the variable
ZN are exponentially tight [choose, e.g., the compact sets (2.14)]. In order to
conclude Proposition 2.1 we only have to check that (2.37) yields the correct
rate function. The final step consists then in proving that


 �ν� = J̃�ν�� ν ∈ �1�V× ���(2.38)
The above identity can be obtained as in Lemma 3.13 of [4]. This completes
the proof of Proposition 2.1. ✷

3. Zero boundary conditions field.

3.1. Proof of Theorem 1.2. We proceed in analogy with the proof of Theorem
1.1. To prove the lower bound in Theorem 1.2 we have to replace (1.25) with

HN�γψN �P0
α�N� = 1

2

〈
ψN��

−1
N ψN

〉

N
�(3.1)

By Lemma B.4 and (A.28),
lim
N→∞

Nα−dHN�γψN �P0
α�N� = 1

2�
0
V�ψ�ψ��(3.2)

As before, the lower bound now follows from standard arguments. Moreover,
assuming that the profiles YN satisfy Theorem 1.4 the upper bound in
Theorem 1.2 can be proved by the same argument used for the infinite volume
field in Section 2.
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3.2. Profiles with zero boundary conditions. Here we prove Theorem 1.4.
Before starting we need a slight extension of the results of the previous section
on the infinite volume field. Let k > 0 and define

Vk = �−k/2� k/2�d� 
kN = NVk ∩ �d�

Let also

Y
�k�
N �φ� = N−d ∑

x∈
kN
δx/N ⊗ δφx�(3.3)

Y
�k�
N is a 

kN -measurable random variable with values in � �k��Vk × ��, the

space of nonnegative measures on the product Vk × � with total variation
norm bounded by kd, equipped with the weak topology. Then the proof of
Theorem 1.3 shows that for each integer k ≥ 1, the profiles Y�k�

N satisfy the
strong Nd−α-LDP with rate function


 �k��µ� =
{

1
2�Vk�ϕ�ϕ�� if µ = dx⊗ � �ϕ�x�� σ2�� ϕ ∈ L2�Vk�,
+∞� otherwise,

(3.4)

where now µ is a measure in � �k��Vk × ��, and �Vk stands for the Dirichlet
form embedded in Vk, that is,

�Vk�ϕ�ϕ� = inf�� �φ�φ�� φ ∈ �� � φ = ϕ a.e. onVk�� ϕ ∈ L2�Vk��

Soft killing measures. For each L > 0, k ≥ 1, define the measure PL�Nk by

dP
N�L
k

dP
�φ� =

(
Z
N�L
k

)−1
exp

(
− 1

2LN
−α ∑

x∈
kN\
N
φ2
x

)
�(3.5)

Then PN�Lk is the centered Gaussian field with covariance GN�Lk , given by the
Green function of the stable random walk on �d, with soft killing on the set

kN \ 
N only,

G
N�L
k �x�y� = Ɛx

∞∑
n=0

1y�ξn� exp
(

− log �1 +LN−α�
n∑
l=0

1Wk�N
�ξl�

)
�(3.6)

with

Wk�N ≡ 
kN\
N�
The expression (3.6) can be easily obtained by explicit computations (see,
e.g., [7], Lemma 4.5) for similar derivations.

Proposition 3.1. For each L > 0, k > 1, the profiles YN satisfy the strong
Nd−α-LDP under the measure PN�Lk with rate function


k�L�µ� =
{

1
2 �k�L�ψ�ψ�� if µ = +�ψ�� ψ ∈ L2�V�,
+∞� otherwise,

(3.7)
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where µ ∈ �1�V× �� and

�k�L�ψ�ψ� ≡ inf
ϕ∈L2�Vk��
ϕ1V=ψ a�e�

{
�Vk�ϕ�ϕ� +L

∫
Vk\V

ϕ�x�2dx
}
�(3.8)

Proof. The proof uses the LDP for Y�k�
N and Varadhan’s lemma. Note in

fact that

1
2LN

−α ∑
x∈Wk�N

φ2
x = 1

2LN
d−α

〈
Y

�k�
N �f

〉
�(3.9)

with

f�x� r� = 1Vk\V�x� ⊗ r2� x ∈ Vk� r ∈ ��(3.10)

However, a straightforward application of Varadhan’s lemma is not allowed
since the function (3.10) is not continuous. We first have to deal with the
following approximation.

Let ε > 0 and define the sets

Vε�± = �−�1 ± ε�/2� �1 ± ε�/2�d� 

ε�±
N = NVε�± ∩ �d�

Let fε�−0 ∈ 	 �Vk� be the function which is zero on V, 1 on Vk \ Vε�+ and
interpolates linearly in the set Vε�+ \V. Let also fε�+0 ∈ 	 �Vk� be the function
which is zero on Vε�−, 1 on Vk \V and interpolates linearly in V \Vε�−. We
define

fε�±�x� r� = f
ε�±
0 �x� ⊗ r2� x ∈ Vk� r ∈ ��(3.11)

We also define the probability measures PN�Lε�± on � by

dP
N�L
ε�±
dP

=
(
Z
N�L
ε�±

)−1
exp

(
− 1

2LN
d−α

〈
Y

�k�
N �f

ε�±
〉)
�(3.12)

From Varadhan’s Lemma (see, e.g., Theorem 4.3.1 in [10]) we have

lim
N→∞

Nα−d logZN�Lε�± = − inf
µ∈�1�V×��

{

 �k��µ� + L

2

〈
µ�f

ε�±
0

〉}
= −σ

2L

2

∫
Vk

f
ε�±
0 �x�dx+ 1

2 inf
ϕ∈L2�Vk�

×
{
�Vk�ϕ�ϕ� +L

∫
Vk

f
ε�±
0 �x�ϕ�x�2dx

}
= −σ

2L

2

∫
Vk

f
ε�±
0 �x�dx�

(3.13)

Note that the functions fε�± are not bounded, but the exponential tightness of
the sets (2.14) shows that there is no difficulty in applying Varadhan’s lemma.
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Also, it follows that for each L > 0 and ε > 0, the profiles YN satisfy the
strong Nd−α-LDP under the measure PN�Lε�± with rate


 ε�±
k�L �µ� = 1

2 inf
ϕ∈L2�Vk��
µ=+�ϕ1V�

{
�Vk�ϕ�ϕ� +L

∫
Vk

f
ε�±
0 �x�ϕ�x�2 dx

}
�(3.14)

To complete the proof of the proposition, note that

�YN�fε�−� ≤ �YN�f� ≤ 〈
YN�f

ε�+〉 �
In order to prove the large deviations upper bound, let F ⊂ �1�V × �� be a
closed set. We have

P
N�L
k

(
YN ∈ F) ≤ ZN�Lε�−

Z
N�L
ε�+

PN�Lε�−
(
YN ∈ F)�(3.15)

Therefore,

lim sup
N→∞

Nα−d logPN�Lk

(
YN ∈ F)

≤ − inf
µ∈F


 ε�−
k�L �µ� + σ2L

2

∫
Vk

(
f
ε�+
0 �x� − fε�−0 �x�

)
dx�

(3.16)

Since the last term in the r.h.s. of (3.16) vanishes as ε → 0, in order to prove
the upper bound we only have to show

inf
µ∈F


 ε�−
k�L �µ� ↗ inf

µ∈F

k�L�µ�� ε → 0�(3.17)

Let ϕ ∈ L2�Vk� be the minimizer in (3.14). With µ = +�ϕ1V� ∈ F, we have


 ε�−
k�L �µ� = 1

2
�Vk�ϕ�ϕ� + L

2

∫
Vk

f
ε�−
0 �x�ϕ�x�2 dx

≥ 1
2
�Vk�ϕ�ϕ� + L

2

∫
Vk\V

ϕ�x�2 dx− L

2

∫
Vε�+\V

ϕ�x�2 dx�
(3.18)

An application of the Sobolev inequality of Theorem 1, Chapter 5 in [24] (see
also [14], Example 1.5.2) shows that there exists a constantK < ∞ such that,
if p0 = 2d/�d− α�,

!ϕ!2p0�Vk
=
(∫

Vk

ϕ�x�p0 dx

)2/p0

≤ K�Vk�ϕ�ϕ��(3.19)

for any ϕ ∈ L2�Vk�. Let v�ε� denote the volume ofVε�+ \V. Hölder’s inequality
and (3.19) imply∫

Vε�+\V
ϕ�x�2 dx ≤ v�ε�1/q!ϕ!2p0�Vk

≤ v�ε�1/qK�Vk�ϕ�ϕ��(3.20)

where q = p0/2/�p0/2− 1�. Letting c�ε� = v�ε�1/qKL, by (3.18) and (3.20) we
have


 ε�−
k�L �µ� ≥ �1 − c�ε��
k�L�µ��(3.21)
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for any µ such that µ = +�ϕ1V� for some ϕ ∈ L2�Vk�. Taking the infimum
over such µ ∈ F, (3.17) follows from c�ε� → 0 as ε → 0. The lower bound can
be proved by the same argument (inverting the role of the functions fε�±). ✷

Exponential approximation. Let us consider the field

ωx = ω�φ�x = φx −PN�Lk �φx�
Wk�N
�� x ∈ 
N�k > 1�(3.22)

Observe that PN�Lk ◦ω−1 is the centered Gaussian field on �
N with covariance
�k�N, the Green function of the random walk which is killed upon hitting
Wk�N. We define the profiles of the ω-field,

�N�φ� = YN�ω� = N−d ∑
x∈
N

δx/N ⊗ δωx�(3.23)

Then

P
N�L
k ◦ � −1

N = P
N�∞
k ◦Y−1

N � L > 0� k > 1�(3.24)

where PN�∞k is the centered Gaussian measure on �
N with covariance �k�N.
The zero boundary condition field P0

N = P0
α�N of Theorem 1.4 shall be recov-

ered by letting k → ∞ in the end. Recall the definition (2.11) of the metric d∗.

Proposition 3.2. For any k > 1, β > 0,

lim
L→∞

lim sup
L→∞

Nα−d logPN�Lk

(
d∗�YN��N� ≥ β) = −∞�(3.25)

Proof. Let ηx be the field

ηx = φx −ωx = P
N�L
k �φx�
Wk�N

�� x ∈ 
N�(3.26)

As in the proof of Lemma 2.4, the claim (3.25) will follow from

lim
L→∞

lim sup
L→∞

Nα−d logPN�Lk

(
N−d ∑

x∈
N
�ηx� ≥ β

)
= −∞� β > 0�(3.27)

Observe that η is the centered Gaussian field with covariance �N�Lk = G
N�L
k −

�k�N [see (3.6)], that is, for x�y ∈ 
N,

�
N�L
k �x�y� = Ɛx

[ ∞∑
n=τk�N

1y�ξn� exp
(

− log �1 +LN−α�
n∑
l=0

1Wk�N
�ξl�

)]
�(3.28)

where

τk�N = inf�n ≥ 1� ξn ∈ Wk�N��(3.29)
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Then from the proof of Lemma 2.4 we see that it will be enough to prove that,
for each k > 1,

lim
N→∞

N−d−α Tr
(
�
N�L
k

)2

= 0� L > 0�(3.30)

lim
L→∞

lim sup
N→∞

N−d ∑
x∈
N

�
N�L
k �x� x� = 0�(3.31)

lim
L→∞

lim sup
N→∞

N−αmax
x∈
N

∑
y∈
N

�
N�L
k �x�y� = 0�(3.32)

Since �N�Lk �x�y� ≤ G�x�y�, it is clear that (3.30) simply follows from (2.8).
In order to prove (3.31) and (3.32) we may proceed as follows. For each δ ∈
�0�1/4�, recall the boxes



δ�−
N = 
�1−2δ�N� 


δ�+
N = 
�1+2δ�N

so that a site in 
δ�−N has a distance at least δN from any site in 
cN. We
also choose δ > 0, such that 
δ�+N ⊂ 
kN. It is clear that it is sufficient to
prove (3.27) with 
N replaced by 
δ�−N , for any δ > 0. In particular, it will be
sufficient to replace (3.31) and (3.32) by

lim
L→∞

lim sup
N→∞

N−d ∑
x∈
δ�−N

�
N�L
k �x� x� = 0�(3.33)

lim
L→∞

lim sup
N→∞

N−α max
x∈
δ�−N

∑
y∈
δ�−N

�
N�L
k �x�y� = 0� δ > 0�(3.34)

Consider the random walk ξ0� ξ1� ξ2� � � � starting at ξ0 = x ∈ 
δ�−N , and let τk�N
be as in (3.29). Define also the function

:N�L�ξ� n� = log �1 +LN−α�
n∑
l=0

1Wk�N
�ξl�� n ∈ �+�(3.35)

Then by (3.6) and (3.28), using the strong Markov property we have

�
N�L
k �x�y� = ƐxƐξτk�N

[ ∞∑
n=0

1�y��ξn� exp �−:N�L�ξ� n��
]

= ƐxG
N�L
k �ξτk�N� y�� x� y ∈ 
δ�−N �

(3.36)

Let us call sN the time of first come back to 
δ�−N after exiting 
N. By the
strong Markov property, from (3.36) we have

�
N�L
k �x�y� = ƐxƐξτk�N

[
exp �−:N�L�ξ� sN − 1��GN�Lk �ξsN� y�

]
�(3.37)

Using GN�Lk �z� y� ≤ σ2, this shows that

�
N�L
k �x� x� ≤ σ2 ƐxƐξτk�N

exp �−:N�L�ξ� sN − 1��� x ∈ 
δ�−N �(3.38)
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On the other hand, letting

�
N�L
k �x�
δ�−N � ≡ ∑

y∈
δ�−N

�
N�L
k �x�y�� G

N�L
k �z�
δ�−N � ≡ ∑

y∈
δ�−N

G
N�L
k �z� y��

we see from (3.37) that

�
N�L
k �x�
δ�−N � = ƐxƐξτk�N

[
exp �−:N�L�ξ� sN − 1��GN�Lk �ξsN�


δ�−
N �]�

Since [cf. (B.10)]

sup
N

max
x∈
δ�−N

N−αG�x�
δ�−N � < ∞�

using GN�Lk ≤ G, there exists a constant C < ∞ such that for any N ∈ �+ we
have

N−α�N�Lk �x�
δ�−N �
≤ CƐx Ɛξτk�N

exp �−:N�L�ξ� sN − 1��� x ∈ 
δ�−N �
(3.39)

We may restrict to the case ξτk�N ∈ 

δ�+
N ∩ Wk�N in (3.39); that is, we may

exclude that the walk entersWk�N by hittingWk�N\
δ�+N . Indeed, for any k > δ,
the probability of a single jump from inside 
N to Wk�N\
δ�+N is bounded by
�k− δ�−α N−α; therefore,

max
x∈
δ�−N

�x
(
ξτk�N ∈ Wk�N\
δ�+N

)
→ 0� N → ∞�

In particular, (3.38) and (3.39) show that both claims (3.34) and (3.34) will
follow from the following lemma.

Lemma 3.3. For any δ > 0,

lim
L→∞

lim sup
N→∞

max
z∈
δ�+N ∩Wk�N

Ɛz exp �−:N�L�ξ� sN − 1�� = 0�(3.40)

Proof. We are going to exploit the fact that z ∈ WN�L is at least at distance
δN from any site x ∈ 
δ�−N see Figure 1. Let us define the first exit time for
the Euclidean ball BδN�ξ0� of radius δN around ξ0,

sδN = inf�n ≥ 1 � �ξn − ξ0� ≥ δN��(3.41)

Note that by construction BδN�z� ∩
δ�−N = ) if ξ0 = z ∈ 
δ�+N ∩Wk�N; therefore
in this case sN ≥ sδN. We claim that

lim sup
N→∞

�0
(
sδN < εN

α
) → 0� ε → 0�(3.42)



LARGE DEVIATIONS WITH LONG-RANGE INTERACTIONS 267

Fig. 1. Random walk in 
N.

Assuming the validity of (3.42), we may (by the arbitrariness of ε) rule out
the possibility that ξn visits 
δ�−N ∪ 
ckN up to time �εNα�. In particular, the
lemma will follow from

lim
L→∞

lim sup
N→∞

sup
z∈
cN

Ɛz

[
exp

(
− 1

2LN
−α

�εNα�−1∑
n=0

1
cN�ξn�
)]

= 0(3.43)

for all ε > 0, where we use the fact that for LN−α ≤ 1, log �1 +LN−α� ≥
1
2LN

−α. To prove (3.43), it is sufficient to show that for all ε > 0,

lim sup
N→∞

sup
z∈
cN

�z

(
N−α

�εNα�−1∑
n=0

1
cN�ξn� ≤ γ
)

→ 0� γ → 0�(3.44)

We are left with the proof of (3.42) and (3.44).

Proof of (3.42). By a well-known inequality of Levy (cf., e.g., [25], Theo-
rem 1.4.15), we have

�0
(
sδN < εN

α
)=�0

(
max

1≤n≤�εNα�
�ξn� ≥ δN

)
≤ 2d�0��ξ�εNα�� ≥ δN/d��

(3.45)

Let ξ̄�n� = n−1ξ�nα�. Then (3.45) implies

�0
(
sδN < εN

α
) ≤ 2d�0

(�ξ̄�ε1/αN�� > δε−1/α/d
)
�(3.46)
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We now use the invariance principle ξ̄�n� →�d� Uα [cf. (B.8)] to write

lim sup
N→∞

�0

(
sδN < εN

α
)

≤ 2d�
(

�Uα� > δε−1/α/d
)

≤ ε c�d� δ��(3.47)

for some finite constant c�d� δ�, where � ∈ �1��d� is the distribution of
the symmetric α-stable variable Uα, with density qα�1� x� [cf. (A.1)]. This
proves (3.42).

Proof of (3.44). We first observe that the probability appearing in (3.44)
is maximized when z ∈ ∂+
N, with ∂+
N denoting the set of sites x /∈ 
N at
Euclidean distance d�x�
N� = 1 from 
N. By symmetry, the situation may
be further simplified as follows. Let �ξn� = �ξ1n� � � � � ξdn� be the d−dimensional
random walk vector and let JT, T ∈ �+, be the time spent up to time T on the
half space corresponding to nonnegative values of the first coordinate; that is,
JT = ∑T

n=0 1�+�ξ1n�. Then, for any z ∈ 
cN, letting T = �εNα� − 1,

�z

(
N−α

�εNα�−1∑
n=0

1
cN�ξn� ≤ γ
)

≤ �0�JT/T ≤ γ/ε��(3.48)

We now apply to ξ1n the arcsine law for an arbitrary one-dimensional, sym-
metric random walk (cf. [13], Chapter XII). Namely, the distribution of JT/T
converges, as T → ∞, to the arcsine function

�0�JT/T ≤ γ/ε� → 2
π
arcsin

√
γ/ε� T → ∞�(3.49)

From this and (3.48) the claim (3.44) follows immediately. ✷

Proposition 3.4. For each k ≥ 1, the profiles YN satisfy the strong Nd−α-
LDP under the measure PN�∞k with rate function


k�µ� =
{

1
2 �k�∞�ψ�ψ�� if µ = +�ψ�� ψ ∈ L2�V�,
+∞� otherwise,

(3.50)

where µ ∈ �1�V× �� and
�k�∞�ψ�ψ� ≡ �Vk�ψ̃� ψ̃�� ψ̃ ∈ L2�Vk�� ψ̃

=
{
ψ� on V�
0� on Vk\V a.e.(3.51)

Proof. We see from (3.24) and Propositions 3.1 and 3.2, that as L → ∞,
the measures PN�Lk are an exponentially good approximation of the measure
P
N�∞
k . Therefore, using the classical exponential approximation lemma (cf.

Theorem 4.2.16 of [10]), we have that YN satisfies the weakNd−α-LDP under
the measure PN�∞k , with rate given by

˜
k�µ� = sup
δ>0

lim inf
L→∞

inf
ν∈Bδ�µ�


k�L�ν��(3.52)
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where 
k�L is the rate function defined in (3.7). As in the previous section,
there is no difficulty in turning the weak LDP into a strong LDP. The propo-
sition then follows if we prove


k�µ� = ˜
k�µ�� µ ∈ �1�V× ���(3.53)

From (3.7) and (3.8) it is easily seen that 
k�L�µ� ≤ 
k�µ� and 
k�L�µ� is
increasing in L for fixed µ. It follows 
k�µ� ≥ ˜
k�µ�, µ ∈ �1�V×��. To prove
the converse, assume µ ∈ �1�V×�� and ˜
k�µ� < ∞. By lower semicontinuity,
for all ε > 0, there exists δ > 0 such that 
k�L�ν� ≥ 
k�L�µ� − ε, for any
ν ∈ Bδ�µ�. In particular, there exists ψ ∈ L2�V� such that µ = +�ψ� and
by (3.8),

˜
k�µ� ≥ 1
2 lim inf

L→∞
�k�L�ψ�ψ� − ε�(3.54)

By compactness we may now find a sequence ϕk�L ∈ L2�Vk�, L > 0, such that
ϕk�L1V = ψ a.e. and

�k�L�ψ�ψ� = �Vk�ϕk�L� ϕk�L� +L
∫
Vk\V

ϕk�L�x�2 dx�

This implies ϕk�L1Vk\V → 0 as L → ∞, in L2�Vk�, and therefore ϕk�L →
ϕk�∞ in L2�Vk� where ϕk�∞1V = ψ a.e. and ϕk�∞1Vk\V = 0 a.e. By lower
semicontinuity we then have

lim inf
L→∞

�k�L�ψ�ψ� ≥ lim inf
L→∞

�Vk�ϕk�L� ϕk�L�

≥ �Vk�ϕk�∞� ϕk�∞� = �k�∞�ψ�ψ��
From (3.54) and the arbitrariness of ε, this implies 
k�µ� ≤ ˜
k�µ�. ✷

Proof of Theorem 1.4. We are now in the position to conclude the proof of
Theorem 1.4. We first prove thatPN�∞k is an exponentially good approximation
of P0

N as k → ∞. In order to do so, observe that (cf. Proposition 3.2) it is
sufficient to prove

lim
k→∞

lim sup
N→∞

N−d ∑
x∈
N

�̃k�N�x� x� = 0�(3.55)

lim
k→∞

lim sup
N→∞

N−αmax
x∈
N

∑
y∈
N

�̃k�N�x�y� = 0�(3.56)

where we have defined

�̃k�N�x�y� ≡ �k�N�x�y� − �N�x�y��(3.57)

Recall that �k�N is the Green function of the random walk with killing on
Wk�N = 
kN \ 
N, while �N is the Green function of the random walk with
killing on 
cN. We then have

�̃k�N�x�y� = Ɛx

[ ∞∑
n=τk�N

1y�ξn�# τk�N > σk�N
]
�(3.58)
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where

σk�N = inf�n ≥ 1� ξn ∈ Wk�N��
τk�N = inf�n ≥ 1� ξn /∈ 
kN��

Using the strong Markov property we can write

�̃k�N�x�y� ≤ ƐxƐξτk�N
G�ξτk�N� y� ≤ sup

z/∈
kN
G�z� y�� x� y ∈ 
N�

Then using assumption H2 [cf. (B.10)] we have

N−d ∑
x∈
N

�̃k�N�x� x� ≤ sup
x∈
N

sup
z/∈
kN

G�x� z� ≤ C ��k− 1�N�α−d�

for some C < ∞ as N → ∞. This obviously implies (3.55). On the other hand,
by the same argument,

N−αmax
x∈
N

∑
y∈
N

�̃k�N�x�y� ≤ Nd−αC��k− 1�N�α−d = C�k− 1�α−d�

for all sufficiently large N, and (3.56) follows by letting k → ∞.
From the preceding observations we know (cf. the proof of Proposition 3.4)

that YN satisfies the strong Nd−α-LDP under the measure P0
N, with rate

function given by

˜
∞�µ� = sup
δ>0

lim inf
k→∞

inf
ν∈Bδ�µ�


k�ν��(3.59)

where 
k has been defined in (3.50). We are left with the proof of

˜
∞�µ� = 
 0
α �µ�� µ ∈ �1�V× ���(3.60)

where 
 0
α is the rate function defined in (1.39). Observing that �k�∞�ψ�ψ� ≤

� 0
V�ψ�ψ�, for any ψ ∈ L2�V� [cf. (3.51) and (A.28)], it is clear that 
 0

α �µ� ≥
˜
∞�µ�, µ ∈ �1�V× ��. To prove the converse, as in Proposition 3.4, it is suf-

ficient to show that if ψ ∈ L2�V� is such that �k�∞�ψ�ψ� < ∞, then [cf.(3.51)]

lim
k→∞

�k�∞�ψ�ψ� = lim
k→∞

�Vk�ψ̃� ψ̃� = � 0
V�ψ�ψ��(3.61)

Moreover, by a density argument, we may restrict to ψ ∈ 	 1�V�. In this case,
using Lemma B.4 and Lemma B.5, we see that (3.61) follows if we can show

lim
k→∞

lim
N→∞

Nα−d ∑
x�y∈
N

ψ�x/N�ψ�y/N��G−1
kN�x�y� −G−1�x�y�� = 0�(3.62)

where G−1�x�y� = δ�x�y� − p�x�y� and GkN stands for the matrix
�G�x�y��x�y∈
kN . We recall that (cf. [7], Lemma A.1 and Proposition 3.1)∑

y∈
N
�G−1

kN�x�y� −G−1�x�y�� ≤ �x�ξ1 /∈ 
kN��

The r.h.s. above is the probability that, starting in x ∈ 
N, the first jump brings
the particle outside 
kN, and is easily seen to be bounded by C��k− 1�N�−α,
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for sufficiently large N, with C < ∞ independent of k and N. Going back
to (3.62), we then see that

Nα−d ∑
x�y∈
N

ψ�x/N�ψ�y/N��G−1
kN�x�y� −G−1�x�y��

≤ !ψ!2∞Nα sup
x∈
N

�x�ξ1 /∈ 
kN� ≤ C !ψ!2∞ �k− 1�−α�

for all sufficiently large N. This proves (3.62) and completes the proof of
Theorem 1.4. ✷

APPENDIX

A. The symmetric �-stable process. The Appendix is divided in three
parts: Appendix A deals with the symmetric α-stable process, Appendix B is
devoted to the stable random walk model and Appendix C contains a few
useful estimates for Gaussian expectations.

A.1. Free process. Let α ∈ �0�2�. The symmetric α-stable process is defined
as the Markov process on �d whose transition kernel has density

qα�t� x− y� = 1
�2π�d

∫
�d
e−i�x−y�·ξ e−t�ξ�α dξ�(A.1)

The case α = 2 is singular, it gives Brownian motion in �d with q2�t� x� the
centered Gaussian density with variance 2t. On the other hand, for α < 2 one
shows that

lim
�x�→∞

�x�d+αqα�1� x� = cα�d ≡
( ∫

�d

1 − cos ξ̂ · x
�x�d+α dx

)−1
�(A.2)

with ξ̂ a unit vector in �d, (see, e.g., [2]). We shall assume α < d in order to
have a transient process. In particular, we may define the resolvent kernel

gα�x� =
∫ ∞

0
qα�t� x�dt = ωα�d �x�α−d� ωα�d = ���d− α�/2�

2απd/2��α/2� �(A.3)

A detailed account of the potential theory associated to the kernel gα, also
known as the M. Riesz kernel, can be found in the treatise [15].

The Dirichlet form of the symmetric α-stable process is given by

� �ψ�ψ� = 1
2

∫
�d

∫
�d
g−α�x− y�(ψ�x� − ψ�y��2 dxdy�(A.4)

where we have introduced the kernel g−α�x� ≡ cα�d�x�−d−α, with cα�d the con-
stant given in (A.2), (cf. Chapter 1 of [15]). Its domain is given by

�̃� =
{
ψ ∈ L2��d� �

∫
�d

∫
�d
g−α�x− y��ψ�x� − ψ�y��2 dxdy < ∞

}
�(A.5)
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In terms of Fourier transforms we have

� �ψ�ψ� =
∫
�d

�ψ̂�ξ��2 �ξ�α dξ�(A.6)

where ψ̂ denotes the Fourier transform of ψ. Following Example 1.5.2 of [14]
we can describe the extended domain of � as the range of the integral operator
given by gα/2,

�� = �ψ = gα/2 ∗ ϕ�ϕ ∈ L2��d��
and, for ψ = gα/2 ∗ ϕ we have

� �ψ�ψ� = �ϕ�ϕ��(A.7)

where �·� ·� denotes scalar product in L2��d�. Notice that �̃� ⊂ �� , but ψ ∈ ��

is not necessarily in L2��d�, because gα is only locally in L1��d�. In fact, �� is
the space of ψ ∈ L1

loc��d� such that ψ is a tempered distributions and ψ̂�ξ� is
square integrable w.r.t. �ξ�α. Since the process is transient, the Dirichlet space
�� with inner product � �·� ·� is a Hilbert space [14].

The capacity of a compact set � ⊂ �d is defined by the variational formula:

capα��� = inf �� �ψ�ψ�� ψ ∈ �� � ψ = 1 a�e� on �� �(A.8)

A.2. Embedded process. Let us consider the α−stable process embedded
in the unit cube V ≡ �0�1�d. We first introduce the integral operator on L2�V�
given by

�Vφ�x� =
∫
V
gα�x− y�φ�y�dy� x ∈ V�(A.9)

By approximating the singular kernel gα by a sequence of nonsingular kernels
one proves the following

Lemma A.1. The operator�V�L2�V� → L2�V� is compact andnonnegative.

By the above lemma, �V has eigenvalues �λ1 ≥ λ2 ≥ · · ·� ⊂ �+. We call
�en� the corresponding L2�V�-normalized eigenfunctions, and denote �·� ·�V
the scalar product in L2�V�. Let also �

1/2
V denote the square root of the oper-

ator �V; that is,

�
1/2
V φ = ∑

n

λ1/2n �φ� en�V en� φ ∈ L2�V��(A.10)

Note that � 1/2
V is also nonnegative and compact.

The embedded Dirichlet form �V is defined by

�V�ψ�ψ� = ∑
n

1
λn

�ψ� en�2V� ψ ∈ L2�V�(A.11)

with domain

� = �ψ ∈ L2�V�� �V�ψ�ψ� < ∞��(A.12)
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Lemma A.2. We have

�V = {
ψ = �

1/2
V φ� φ ∈ L2�V�}�

�V�ψ�ψ� = �φ�φ�V� φ = �
−1/2
V ψ�

(A.13)

Moreover, for any ψ ∈ �V and any dense subset �V of L2�V�,
�V�ψ�ψ� = sup

f∈�V

�2 �f�ψ�V − �f��Vf�V�

= sup
f∈�V

{ �f�ψ�2V
�f��Vf�V

}
�

(A.14)

Finally, the function φ → �V�φ�φ� is lower semicontinuous and has compact
level sets in L2�V�.

Proof. First observe that (A.13) is an easy consequence of the spectral
representations (A.11) and (A.10). Using again the spectral theorem, the first
line in (A.14) follows from nonnegativity of �V and the fact that the function
x�2a− λx�, for fixed a ∈ � and λ > 0, is maximized at x = a/λ. Moreover, by
the continuity of �V, the choice of the dense set �V is arbitrary. The second
variational formula in (A.14) follows by changing f into βf in the first line
of (A.14) and optimizing over β ∈ �. The lower semicontinuity of �V is a
straightforward consequence of (A.14). In particular, the level sets

+L =
{
�

1/2
V ϕ� ϕ ∈ L2�V� � �ϕ�ϕ�2V ≤ L

}
�

are closed. But since �
1/2
V is compact, +L is also relatively compact in L2�V�,

and thus compact. ✷

The following theorem shows the deep connection between the problem of
balayage (or sweeping out) on V and the embedded Dirichlet form �V. In par-
ticular, it shows that �V coincides with the so-called balayaged Dirichlet form
introduced in [19]. Also, it will turn out to be essential to prove convergence
of capacities as discussed in the next section. We introduce the hitting distri-
bution kernel

HV�x�E� = �̃x�ω�σV� ∈ E� �(A.15)

where �̃x denotes the distribution of the symmetric α-stable process on the
space of right continuous paths with left limits ω� �0�∞� → �d, such that
ω�0� = x, E is any measurable set and σV denotes the hitting time of V,

σV = inf�t ≥ 0� ω�t� ∈ V��(A.16)

ThenHV defines a probability kernel on �d and, for a measurable f we write

HVf�x� =
∫
�d
f�y�HV�x�dy��(A.17)
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Then, for any f ∈ �� , HVf is a function which agrees with f on V and is
α−harmonic outside of V, in the sense that (see Theorem 4.3.2 in [14])

� �H�f�g� = 0 f�g ∈ �� � g = 0 q�e� on��

where q.e. stands for “quasi everywhere” (i.e., everywhere apart from sets of
zero capacity).

We shall use the following notation. Let � denote the set of (signed) Radon
measures on �d, and Uµ

α the potential of µ ∈ � , that is,

Uµ
α�x� =

∫
�d
gα�x− y�µ�dy��

To µ ∈ � we associate the quadratic functional (the energy of µ)

Eα�µ�µ� =
∫
�d

∫
�d
gα�x− y�µ�dx�µ�dy��(A.18)

Measures of finite energy are denoted

�0 = �µ ∈ � � Eα��µ�� �µ�� < ∞ � �
where �µ� = µ+ + µ− is the total variation of µ = µ+ − µ−. For µ� ν ∈ �0,
we use (A.18) to define Eα�µ� ν�, by polarization. If µ ∈ �0, then by [14],
Theorem 2.2.2, Uµ

α ∈ �� and

� �Uµ
α�U

µ
α� = Eα�µ�µ� �(A.19)

Theorem A.3. For any f ∈ �V, we have

�V�f�f� =� �HVf�HVf�
= inf�� �ψ�ψ�� ψ ∈ �� � ψ = f a�e� on V�

(A.20)

Proof. Let us define

� V�f� = inf�� �ψ�ψ�� ψ ∈ �� � ψ = f a�e� on V��
Let ψ ∈ �� such that ψ = gα/2 ∗ ϕ, with ϕ ∈ L2��d� as in (A.7). Then, for any
h ∈ L2��d�,

� �ψ�ψ� = �ϕ�ϕ� ≥ 2�ϕ�h� − �h�h� �
By choosing h = gα/2 ∗φ, φ ∈ L2��d�, since gα/2 ∗ gα/2 = gα, we obtain

� �ψ�ψ� ≥ sup
φ

�2�ψ�φ� − �φ�gα ∗φ�� �(A.21)

where the supremum is taken over φ ∈ L2��d� such that gα/2 ∗φ is in L2��d�.
Restricting (A.21) to φ’s vanishing out of V and using (A.14), we see that

� �ψ�ψ� ≥ �V�f�f� � ψ = f a�e� on V�(A.22)

and therefore � V�f� ≥ �V�f�f�.
Since HVf = f q.e. (and therefore a.e.), we always have

� V�f� ≤ � �HVf�HVf� �
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To complete the proof of the theorem it is then sufficient to show

� �HVf�HVf� = �V�f�f��(A.23)

Let us first prove (A.23) when f is a potential, that is, assume there exists
µ ∈ �0 such that f = U

µ
α a.e. on V (this is the case if, e.g., f ∈ 	 d+2�V� by

Lemma 1.1 in [15]). In this case, by Theorem 4.3.2 in [14], HVf is known to
be the reduced function of f on V, that is, the potential HVf = Uν

α, for some
ν ∈ �0 with Supp�ν� ⊂ V. (The measure ν is called the balayage of µ on V.
We refer to Chapter 4 of [15] for an alternative construction.)

Then, by (A.19),

� �HVf�HVf� = � �Uν
α�U

ν
α� = Eα�ν� ν��(A.24)

Observe now that for any λ ∈ �0, Eα�ν − λ� ν − λ� ≥ 0, and therefore

Eα�ν� ν� = sup�2Eα�ν� λ� −Eα�λ� λ� � λ ∈ �0� Supp�λ� ⊂ V� �
Any λ ∈ �0 supported on V can be approximated by absolutely continuous
measures λn�dx� = φn�x�dx, φn ∈ 	 �V� (cf. [15], Lemma 1.2), so that

2Eα�ν� λn� −Eα�λn� λn� = 2�Uν
α�φn�V − �φn��Vφn�V

→ 2Eα�ν� λ� −Eα�λ� λ�� n → ∞�
Thus, using Uν

α = f a.e. on V and the variational principle (A.14), we see that

Eα�ν� ν� = sup
φ∈	 �V�

�2�f�φ�V − �φ��Vφ�V� = �V�f�f��(A.25)

This, together with (A.24), proves the claim when f is a potential. In order
to treat the general case, we use the results on spectral synthesis described
in [14]. Namely, by Theorem 2.3.2 of [14], HVf can be approximated by a
sequence of potentials Uνn

α such that Supp�νn� ⊂ V and Uνn
α converges toHVf

in the Hilbert space ��� �� �·� ·��. Then, by (A.22) we see that the functions
fn = U

νn
α 1V are �V-converging to f and by (A.25) we have

� �HVf�HVf� = lim
n→∞� �Uνn

α �U
νn
α �

= lim
n→∞Eα�νn� νn�(A.26)

= lim
n→∞�V�fn� fn� = �V�f�f��

This concludes the proof of (A.23). ✷

A.3. Killed process. Let � ��0�∞���d� be the space of right continuous
paths with left limits, equipped with the Skorokhod topology and the corre-
sponding Borel σ-algebra of measurable sets. If ω�·� ∈ � ��0�∞���d� denotes
the coordinate process generated by the symmetric α-stable density (A.1), we
define the killed process by

ωV�t� =
{
ω�t�� if t < τV,
∂� if t ≥ τV,(A.27)
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where ∂ is an extra point (the cemetery) and τV is the exit time

τV = inf�t ≥ 0�ω�t� /∈ V� �

The process ωV is called the symmetric α-stable process killed upon exiting
V. Its Dirichlet form is given by (cf., e.g., [20])

� 0
V�ψ�ψ� = � �ψ̃� ψ̃� � ψ ∈ L2�V� �(A.28)

where ψ̃ ∈ �� agrees with ψ on V and vanishes on Vc, with domain

� 0
V = �ψ ∈ �� � ψ = 0 a�e� on Vc� �(A.29)

The corresponding semigroup is defined by

PVt ψ�x� = Ɛ̃x�ψ�ω�t��# t < τV�� ψ ∈ 	b�V�� t ≥ 0�(A.30)

where Ɛ̃x denotes expectation w.r.t. the symmetric α-stable process in �d

started in x ∈ V. PVt can be extended to L2�V� and, following Theorem 2.5
in [9], one shows that it is a compact operator with eigenvalues e−µkt, k =
1�2� � � � and 0 < µ1 < µ2 < · · ·. In particular, the Green operator

� 0
V =

∫ ∞

0
PVt dt(A.31)

is a bounded, compact operator in L2�V�, with eigenvalues µ−1
1 > µ−1

2 > · · · ≥
0. We may then repeat Lemma A.2 by replacing �V with � 0

V. In particular,
the Dirichlet form � 0

V has compact level sets in L2�V�.
We close this section with a computation of � �f�f� when f is the indicator

function of a Euclidean ball.

Lemma A.4. Let f = 1Bδ , δ > 0, Bδ = �x ∈ �d � �x� < δ�. Then,

� �f�f� < ∞� if α ∈ �0�1�� d ≥ 1�(A.32)

while

� �f�f� = ∞� if α ∈ �1�2�� d ≥ 2� or α = 2� d ≥ 3�(A.33)

Proof. We first consider the case α ∈ �0�1�, d = 1. Then the Fourier
transform of f is given by

f̂�ξ� =
∫ δ

−δ
cos xξdx = 2

sin δξ
ξ

� ξ ∈ ��

From (A.6) we see that � �f�f� < ∞, and therefore (A.32) follows for d =
1. Let now d ≥ 2 and α ∈ �0�2�. Then, for any ξ ∈ �d, using the Bessel
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function (B.21), we have

f̂�ξ� =
∫
Bδ

eiξ·x dx

=
∫ δ
0
ρd−1 1

�ρ�ξ���d−2�/2J�d−2�/2�ρ�ξ��dρ

= �ξ�−d
∫ δ�ξ�

0
sd/2J�d−2�/2�s�ds�

From the asymptotic expansion for Bessel functions (cf., e.g., [12], Chapter 15)
one has, for large t,∫ t

0
sd/2J�d−2�/2�s�ds

=
√
2
π
t�d−1�/2 cos �t− �d+ 1�π/4� +O�tmax��d−3�/2�0���

(A.34)

For large �ξ� we then have

�ξ�d+1�f̂�ξ��2 = 2δd−1

π
cos2 �δ�ξ� − �d+ 1�π/4� + o�1��(A.35)

Then both claims follow from (A.35) and (A.6). ✷

B. The stable RW. For each α ∈ �0�2∧d�, we consider the jump process
on �d defined by a symmetric, homogeneous stochastic matrix pα,

pα�x�y� = pα�0� y− x� = pα�y�x�� x� y ∈ �d�∑
x∈�d pα�0� x� = 1�

(B.1)

satisfying the following assumptions.

Assumption H1.

(i) There exists a function ρα� �0�∞� → �0�1� such that

pα�0� x� = ρα��x��� x ∈ �d�(B.2)

(ii) There exists a constant vα�d ∈ �0�∞� such that

lim
t→∞

td+αρα�t� = vα�d�(B.3)

Note that if pα satisfies H1 then it is automatically irreducible. Let p̂α be the
characteristic function of pα, that is,

p̂α�θ� = ∑
x∈�d

pα�0� x�eix·θ� θ ∈ �d�(B.4)
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where �d stands for �−π�π�d. The Green function associated to pα is given
by

G�x�y� =
∞∑
n=0
pnα�x�y� = 1

�2π�d
∫
�d

ei�y−x�·θ

1 − p̂α�θ� dθ�(B.5)

Lemma B.1. Let d ≥ 1, α ∈ �0�2 ∧ d�. Assume pα satisfies H1. Then the
random walk pα is transient and (B.5) is well defined. Moreover, letting γα�d =
vα�d/cα�d [cf. (A.2)] and (B.3), we have

lim
�θ�→0

�θ�−α�1 − p̂α�θ�� = γα�d�(B.6)

Proof. The transience follows from integrability of �1 − p̂α�−1 (cf. [23]),
which in turn is a consequence of (B.6) since α < d. To prove (B.6) we follow
Example 2 in Section 8 of [23], in which the claim was proved for d = 1. Let
ε > 0 and set θ = εθ̂, with �θ̂� = 1. We write

�θ�−α�1 − p̂α�θ�� = εd
∑
x∈�d

�x�d+αpα�0� x�1 − cos εx · θ̂
�εx�d+α �

From Riemann integration, (B.3) and (A.2), we see that the above expression
converges, as ε → 0, to

vα�d

∫
�d

�1 − cos θ̂ · x��x�−d−α dx = vα�d/cα�d� ✷

Remark. Let ξ1� ξ2� � � � be the random walk generated by pα, and denote
φα�n the characteristic function of the �d-valued random variable ξ̄n = n−1/α

ξn. By (B.6) we have

φα�n�θ� = p̂α�n−1/αθ�n → exp �−γα�d�θ�α�� n → ∞�(B.7)

which implies the invariance principle

ξ̄n →�d� Uα� n → ∞�(B.8)

where �d� stands for convergence in distribution and Uα is an �d-valued
random variable distributed according to the symmetric α-stable density qα
�t = γα�d� x� [cf. (A.1)]. In this sense we say that the random walk pα is in the
domain of attraction of the symmetric α-stable law.

One can also prove the convergence of the random walk to the symmetric
α-stable process on the space of right continuous paths with left limits, when
the latter is given the Skorokhod topology; see [21]. We shall not need this
stronger result in the following.
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Convention. From now on we shall also assume

γα�d = 1�(B.9)

This is done merely for notational convenience. Indeed (B.9) amounts to fix
vα�d = cα�d in H1 or, equivalently, it corresponds to a different tuning of the
time scale for the limiting stable process. It is immediate to see that the
constant γα�d enters in the rate functions 	α�	 0

α and
α�

0
α only as a prefactor

in front of the Dirichlet form � . We also need the following.

Assumption H2. Let gα�z� = ωα�d�z�α−d, z ∈ �d, be the Riesz kernel
defined in (A.3). Then, for any η ∈ �d with �η� = 1, we have

lim
�x�→∞

�x�d−αG�0� x� = gα�η��(B.10)

Remark. It might appear at first sight that the result (B.10) simply follows
from (B.6), since a change of variables in (B.5) yields

G�0� x� = �x�α−d 1
�2π�d

∫
�x��d

eiξ·x/�x�

�1 − p̂α�ξ/�x����x�α dξ�(B.11)

But the passage to the limit under the integral is not obvious. For symmetric
irreducible random walks in dimension d = 3 (B.10) is known to hold (with
α = 2) as soon as the variance is finite; see Proposition 26.1 in [23]. In our
setting we shall rely on the analogous results of [26] for stable random walks.
The interested reader is also referred to Section 5 of [18] where (B.10) is proved
for a general class of stable random walks in the regime α > �d− 1�/2. In the
next subsection we discuss several examples for which (B.10) can be shown to
hold.

The case α = 2. The case α = 2, d ≥ 3, is often not treated explicitly in
this work, but the techniques we use certainly apply to it. Namely, one defines
the stable random walk p2 assuming that (B.2) is satisfied and replacing (B.3)
by the finite variance condition,∑

x∈�d
�x�2p2�0� x� < ∞�(B.12)

Provided H2 is satisfied, all results contained in this paper hold. The finite
range case [a special case of (B.12)] was studied in [4]. As we mentioned above,
(B.12) implies H2 (with α = 2 and g2 the Newtonian potential) when d = 3.
It has been shown that for d = 4,

∑
x∈�d �x�2 log �x�p2�0� x� < ∞ is sufficient to

prove H2; see [16]. On the other hand for d ≥ 5, H2 is known to follow from∑
x∈�d �x�d−1p2�0� x� < ∞; see [17].
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B.1. Examples. We shall be working under assumptions H1 and H2 for the
rest of the paper. In order to check assumption H2 in specific cases, we recall
a basic result of [26]. Given a function f� �d → �, denote ∇if, i = 1� � � � � d,
its discrete gradient,

∇if�x� = f�x+ ei� − f�x��
where ei is the unit vector in the positive ith direction. From Corollaries 3-A
and 3-B of [26] we obtain the following lemma.

Lemma B.2. Let d ≥ 1, α ∈ �0�2∧d�. Assume pα satisfies H1 and assume
there exists a constant c ∈ �0�∞� such that for any x ∈ �d+ with �x� > c, we
have

�−1�d∇1 · · · ∇dpα�0� x� ≥ 0�(B.13)

Then (B.10) holds.

Note that in dimension d = 1 the condition (B.13) simply means that
pα�0� x� is monotone decaying after a certain distance. Let us discuss some
more examples.

Example 1. Let d ≥ 1, α ∈ �0�2 ∧ d�, and define

pα�0� x� = b�a+ �x�2�−�d+α�/2� x ∈ �d�(B.14)

with positive constants a� b compatible with (B.1). Assumption H1 is obviously
satisfied. In order to check condition (B.13) let us consider pα�0� x� in (B.14)
as a function defined for any x ∈ �d. Let r = �x� and pα�r� = pα�0� x�. Then

∂d

∂x1 · · · ∂xd
pα�0� x� = x1 · · ·xdDd

rpα�r��(B.15)

where we have introduced the differential operator Dr = �1/r��d/dr�. It is
easily seen that

Dd
rpα�r� = �−1�d2−db�a+ r2�−�3d+α�/2

d−1∏
k=0

�d+ α+ 2k��

Restricting to �d+ and integrating along each coordinate xi, i = 1� � � � � d on an
interval of length 1 we obtain (B.13). By Lemma B.2 this implies pα satisfies
H2.

Example 2. Example 1 can be generalized by letting b depend (smoothly)
on r = �x� in (B.14). Let b�r� ≥ 0, b�r� → b > 0 as r → ∞ and assume

dk

drk
b�r� → 0� r → ∞� k = 1� � � � � d�(B.16)
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To see that (B.16) is sufficient for pα to satisfy H2, we observe that

Dd
rpα�r� =

d∑
k=0

(
d

k

)(
Dd−k
r �a+ r2�−�d+α�/2

)(
Dk
rb�r�

)
�(B.17)

Now from (B.16) we see that rkDk
rb�r� → 0 when r → ∞ for any k = 1� � � � � d.

Therefore the first term (k = 0) in (B.17) dominates when r is large. As before,
this implies that for sufficiently large �x� (B.13) is satisfied, and H2 follows
from Lemma B.2.

Example 3. Let d ≥ 1, α ∈ �0�2∧d�, and consider the discretized α-stable
process

pα�0� x� = Z−1qα�1� x��(B.18)

Here qα�1� x� is the symmetric α-stable density at time t = 1 [cf. (A.1)], and

Z = ∑
x∈�d

qα�1� x�� p̂α�θ� = Z−1 ∑
y∈�d

exp �−�θ+ 2πy�α��

In this case H1 follows from (A.2) with γα�d = Z−1. In the case d = 1, H2 fol-
lows from Lemma B.2 and the monotonicity of qα, or directly from the method
of [18]. For d ≥ 2, H2 holds as a consequence of Lemma B.2 and the following
identity for stable densities.

Lemma B.3. Let d ≥ 2 and α ∈ �0�2�. Let q�d�
α be the isotropic stable density

(A.1) in dimension d. Then, for any x ∈ �d,

∂d

∂x1 · · · ∂xd
q�d�
α �1� x� = �−1�dx1 · · ·xd�2π�dq�3d�

α �1� x��(B.19)

Proof. Let r = �x� and set q�d�
α �r� = q

�d�
α �1� x�. From (B.15) it is clear that

the claim (B.19) will follow from the identity

Drq
�d�
α �r� = −�2π�q�d+2�

α �r��(B.20)

To prove (B.20) we write

q�d�
α �r� = �2π�−d/2

∫ ∞

0
ρd−1e−ρα 1

�rρ��d−2�/2J�d−2�/2�rρ�dρ�

where we have introduced the usual Bessel function of first kind,

Jν�z� = �z/2�ν√
π��ν + 1

2�
∫ 1

−1
�1 − t2�ν−1/2eitz dt�(B.21)

Using the known identity (see, e.g., [1], 9.1.30)

Dzz
−νJν�z� = −z−�ν+1�Jν+1�z��



282 P. CAPUTO AND J.-D. DEUSCHEL

we conclude

Drq
�d�
α �r� = �2π�−d/2

∫ ∞

0
ρd+1e−ραDrρ

1
�rρ��d−2�/2J�d−2�/2�rρ�dρ

= −2πq�d+2�
α �r�� ✷

Remark. In the above lemma the function e−ρα plays no essential role.
In particular, this means that any probability density q which is given by
the Fourier transform of a (sufficiently rapidly decaying) radial function will
satisfy (B.19). Now, if this density also satisfies q�x� ∼ �x�−d−α then we may
set pα�0� x� = const�× q�x�, and both H1 and H2 are satisfied.

B.2. Limit theorems. In the rest of this section we exploit the convergence
(B.10) to prove that certain quadratic forms associated to the lattice random
walk converge, after rescaling, to the forms of the corresponding stable pro-
cess in �d (see previous section). The following convergence results were first
obtained in [4], for the local case. The generalization of Lemma B.4 to our
setting is straightforward. On the other hand, the capacity-order result of
Lemma B.5 appears to be nontrivial, since Theorem A.3 is essential.

We denote by GN the matrix

GN = �G�x�y��x�y∈
N�(B.22)

We also use the notation G−1�x�y� = δ�x�y� − pα�x�y�. Recall that �−1
N =

G−1�N, that is, the Green function of the random walk killed upon exiting 
N
coincides with the restriction of G−1 to 
N. For any subset 
 of �d we let �·� ·�

denote the scalar product in l2�
�. We refer to (A.6) and (A.9) for the definition
of the Dirichlet form � �·� ·� and the integral operator �V, respectively.

Lemma B.4. Let f be a Riemann integrable function on V and let h ∈
	 1��d� ∩ L2��d�. Define fN�x� = f�x/N�, for x ∈ 
N, and hN�x� = h�x/N�,
for x ∈ �d, then

lim
N→∞

N−d−α�fN�GNfN�
N = �f��Vf�V�

lim
N→∞

N−d+α�hN�G−1hN��d = � �h�h��

In particular, for any h ∈ L2��d�, such that h1Vc = 0 a.e., and h1V ∈ 	 1�V�,
we have

lim
N→∞

N−d+α�hN��−1
N hN�
N = � �h�h��
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Proof. From Riemann integration and (B.10),

lim
N→∞

N−d−α�fN�GNfN�
N
= lim

M→∞
lim
N→∞

N−2d ∑
x�y∈
N�
�x−y�>M

f�x/N�Nd−αG�x− y�f�y/N�

= lim
N→∞

N−2d ∑
x�y∈
N�x �=y

f�x/N�gα�x/N− y/N�f�y/N�

= �f��Vf�V�
To prove the second identity we write

lim
N→∞

N−d+α�hN�G−1hN��d

= 1
2 lim
M→∞

lim
N→∞

N−2d ∑
x�y∈�d�

�x−y�>M

Nd+αpα�0� x− y�(h�x/N� − h�y/N�)2

= 1
2cα�d lim

N→∞
N−2d ∑

x�y∈�d� x �=y
�x− y�−d−α(h�x/N� − h�y/N�)2

= � �h�h��
where we have used (B.3) with vα�d = cα�d [cf. (B.9)] and the expression (A.4)
for � �·� ·�.

Finally, the last assertion is an immediate consequence of the previous one,
since if h1Vc = 0 a.e. we have

�hN��−1
N hN�
N = �hN�G−1hN��d ✷

Lemma B.5. Let f ∈ 	 1�V� and define fN�·� = f�·/N� on 
N. Then
lim
N→∞

N−d+α�fN�G−1
N fN�
N = �V�f�f��(B.23)

Proof. Recall that

�fN�G−1
N fN�
N = sup

{
2�fN�φN�
N − �φN� GNφN�
N�φN ∈ �
N

}
Therefore

N−d+α�fN�G−1
N fN�
N ≥ 2N−d�fN�φN�
N −N−d−α�φN�GNφN�
N�

for any φ ∈ 	 �V�, with φN�·� = φ�·/N�. By Lemma B.4 and (A.14), we see
that

lim inf
N→∞

N−d+α�fN�G−1
N fN�
N ≥ �V�f�f��
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On the other hand, for each h ∈ 	 1��d� ∩L2��d�, with h = f on V,

�fN�G−1
N fN�
N ≤ sup

φ∈Q2��d�

{
2�hN�φ��d − �φ�Gφ��d

}
= �hN�G−1hN��d �

Using Lemma B.4 and Theorem A.3, we see that

lim sup
N→∞

N−d+α�fN�G−1
N fN�
N

≤ inf
{
� �h�h�� h ∈ 	 1��d� ∩L2��d�� h = f a�e�onV

}
= inf

{
� �h�h�� h ∈ �� � h = f a.e. on V

}
= �V�f�f�� ✷

Remark. As a consequence of Lemma B.5 we obtain the convergence of
capacity. Choosing f = 1V, we have

lim
N→∞

N−d+α capN�
N� = capα�V��(B.24)

where

capN�
N� = �1N�G−1
N 1N�
N

is the capacity of the box 
N for the random walk (cf., e.g., Chapter 25 of [23]),
while

capα�V� = �V�1V�1V�
is the capacity of V for the α-stable process [cf. (A.8) and Theorem A.3].

C. Some Gaussian tools. Let µ be the centered Gaussian law on �n,
n ∈ �+, with positive definite covariance matrix

� = ��i� j�i� j=1�����n�

and denote by λ1 ≥ λ2 ≥ · · · ≥ λn > 0 the eigenvalues of �.

Lemma C.1. For any β > 0 such that βλ1 < 1, we have

logµ
(
exp 1

2β
n∑
i=1
φ2
i

)
≤ 1

2β Tr �+ 1
2β

2W�β�λ1�Tr �2�(C.1)

where

W�β�λ1� = 1
2 − log �1 − βλ1��(C.2)
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Proof. Direct computation yields

µ

(
exp

1
2
β

n∑
i=1
φ2
i

)
= det�1 − β��−1/2 =

n∏
j=1

�1 − βλj�−1/2�

Using
n∑
j=1
λj = Tr ��

n∑
j=1
λ2j = Tr �2�

and the definition (C.2) of W, we have

log µ
(
exp

1
2
β

n∑
i=1
φ2
i

)
= −1

2

n∑
j=1

log�1 − βλj
) = 1

2

n∑
j=1

∞∑
k=1

�βλj�k
k

= 1
2
β Tr �+ 1

2

n∑
j=1

∞∑
k=2

�βλj�k
k

≤ 1
2
β Tr �+ 1

2
β2

∞∑
k=0

�βλ1�k
k+ 2

Tr �2

≤ 1
2
β Tr �+ 1

2
β2W�β�λ1� Tr �2� ✷

C.1. Conditioning on a sub-grid. Let pα be the transition of the stable
random walk defined in Section 2. Denote ξ0 = x� ξ1� ξ2� � � � the paths with
starting point x ∈ �d and let �x and Ɛx denote the corresponding probability
and expectation, respectively. Let L > 0 and define

τL = inf�n ≥ 0� ξn ∈ L�d��(C.3)

Define the transition

pLα �x� z� = �x�ξτL = z�� x ∈ �d� z ∈ L�d�(C.4)

The Green function of the random walk which is killed upon hitting the sub-
grid L�d is given by

GL�x�y� = Ɛx

[τL−1∑
n=0

1ξn=y

]
� x� y ∈ �d�(C.5)

We define the ζ-field,

ζx = Pα�φx�
L�d�� x ∈ �d�(C.6)

where 
L�d denotes the σ-algebra generated by the variables φx, x ∈ L�d.
We have the following random walk representation. If τx = φx − ζx, for any
L > 0, x�y ∈ �d,

ζx = ∑
z∈L�d

pLα �x� z�φz� Pα�τxτy� = GL�x�y��(C.7)

Moreover, the fields ζ and τ are independent.
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The following has been proved in [5], Proposition A.12.

Lemma C.2. Assume the random walk pα satisfies H1. Then

lim
L→∞

GL�x� x� = G�x� x� = σ2� x ∈ �d�(C.8)

Moreover, there exist constants a� b > 0 such that for any L > 0, any x�y ∈ �d

with x �= y,

GL�x�y� ≤ aLb�log �x− y��d+2+α�x− y�−d−α�(C.9)

Acknowledgment. We are grateful to Ofer Zeitouni for the proof of
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