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1. Summary. Let F(P) be a real valued function defined on a subset 9 of
the set D* of all probability distributions on the real line. A function f of n real
variables is an unbiased estimate of F if for every system, X;, - -+, X, , of inde-
pendent random variables with the common distribution P, the expectation
of f(X; ---, X,) exists and equals F(P), for all Pin 9. A necessary and suffi-
cient condition for the existence of an unbiased estimate is given (Theorem 1),
and the way in which this condition applies to the moments of a distribution is
described (Theorem 2). Under the assumptions that this condition is satisfied
and that 9 contains all purely discontinuous distributions it is shown that
there is a unique symmetric unbiased estimate (Theorem 3); the most general
(non symmetric) unbiased estimates are described (Theorem 4); and it is
proved that among them the symmetric one is best in the sense of having the
least variance (Theorem 5). Thus the classical estimates of the mean and the
variance are justified from a new point of view, and also, from the theory, com-
putable estimates of all higher moments are easily derived. It is interesting to
note that for n greater than 3 neither the sample nth moment about the sample
mean nor any constant multiple thereof is an unbiased estimate of the nth mo-
ment about the mean. Attention is called to a paradoxical situation arising in
estimating such non linear functions as the square of the first moment.

2. Introduction. Consider the set D* of all probability distributions on the
real line. The elements P of 9* may be regarded as either set functions P(E),
defined for all Borel subsets E of the real line, (probability measures) or mono-
tone non decreasing functions P(z) of a real variable z, (cumulative distribution
functions). Suppose that F = F(P) is a real numerically valued function of
distributions. For example F(P) may be the expectation or the standard devia-
tion of the distribution P, or it may be the amount of probability P assigns to
some fixed set E,. The problem of unbiased estimation is to find a function
(statistic) of a sample of n from a population with distribution P, in such a way
that the expected value of this function is equal to the value of F(P) identically
in P. More precisely, if F(P) is defined on a subset 9 of 9*, then an unbiased
estimate of order n over D is a real valued function f = f(z;---2,) of n real
variables, which is such that for every system X;, ---, X, of independent ran-
dom variables with the common distribution P (belonging to D), the expected
value E {f(X,, ---, X,)} exists and is equal to F(P).

The problems posed in this paper are the following. (I) Which functions
F(P) admit an unbiased estimate? (II) What are all possible unbiased esti-
mates of a given function F(P)? (III) Is there a reasonable definition of “best
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unbiased estimate” which enables one to select from all unbiased estimates of a
fixed function F(P) a unique best one?'

I shall present below a complete solution of these problems, under the assump-
tion that the domain of estimation, 9, is sufficiently large. The results also
shed light on some classical concepts. It is possible, for instance, to exhibit
computable unbiased estimates for all moments of a distribution about its ex-
pected value, and to prove that the known estimates of the expectation and the
variance are essentially unique.

The vague concept of sufficiently large estimation domain 9D is easily made
precise. For any Borel set E on the real line let D+(E) be the set of all those
distributions which assign the probability 1 to some finite subset of E. Thus,
for example, if E consists of exactly two points then D*(E) is the set of all possible
probability distributions in a dichotomy. A subset D of D* will be said to be
finitely closed over E if Dx(E) ¢ 9. Finitely closed domains are “sufficiently
large.”

It is clear that some restriction (from below) on the size of D is essential for a
discussion of the characterization problem (II) and the uniqueness problem
(III). For if, for example, the domain 9D is artificially restricted to contain
only one distribution, then there will always be a plethora of completely un-
related and uninteresting solutions of the problem of unbiased estimation, none
of which can be said to be preferable to any other one. It is true, however, that
the assumption of finite closure is too restrictive. The general problems of
unbiased estimation are still unsolved over such interesting and useful domains
as the set of all continuous distributions, and the set of all absolutely continuous
distributions. There are also more special problems connected with special
classes of distributions (e.g. the normal and the rectangular distributions), as
well as the general problem of characterizing the domains which are sufficiently
large to make a uniqueness theorem possible. I hope to return to these problems
in the near future,

3. Existence. A function F(P), defined on a domain 9 g D*, will be called
homogeneous over D, of degree k = 1, 2, - - - , if there exists a real valued func-
tion ¢ = ¢(x1, -+, zx) of k real variables which is such that for every P in- 9
the Lebesgue-Stieltjes integral®

f...f¢(xl, vee L xk) dP(xy) < -0 dP(xx)

1My interest in these problems stems from conversations and correspondence with
Reinhold Baer, who first called my attention to the problem of finding unbiased estimates
for the moments about the expected value. The general questions of existence and
uniqueness of unbiased estimates were raised explicitly by J. F. Steffensen in a footnote
on p. 18 of his book, Some Recent Researches in the Theory of Statistics and Actuarial Science,
Cambridge Univ. Press, 1930.

2 All integrals in this paper are to be extended over the entire Euclidean space of in-
dicated dimension.
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exists and is equal to F(P), and if the integer k is minimal with respect to the
property of the existence of such a representation.

THEOREM 1. A necessary and sufficient condition that F have an unbiased esti-
mate of order n over D is that it be homogeneous over 9D of degree k < n.

Proor. To prove sufficiency, suppose that

F@) = [+ [, o, o) aP@) -+ aP(a)

for all P in 9, with § < n. Define f by

. @iy ooe s @y Taga, ooy Ta) = @1, o0, ).
Then if X, -+, X, are independent random variables with the same distribu-
tion P (belonging to D)

Elf(Xy, -+, X)) =f"'ff(x1’ <ee o) AP(2y) -+ - dP(zn)
=f“'f¢(x1"" , ) dP(zy) - - - dP ()

=f...f¢(xl’ ---,x,,)dP(xl) ’dP(xk) =F(P)'

The necessity of the condition is even more trivial: the definition of an unbiased
estimate of order 7 is such that the existence of one is equivalent to homogeneity
of degree < n.

As a special case, and an important illustration of how the degree is evaluated,
consider the moments Fn, = Fn.(P) of a distribution P about the origin,

Fu(P) = [2" dP(@),
and the moments F,(P) about the expected value Fi(P),
Fo(P) = f (@ — Fy(P))™ dP(z).

TuEOREM 2. If D is any subset of D* contained in the domain of definition of
each of the functions Fy, --- , F,, and finitely closed over {0, 1} (where {0, 1}
denotes the set containing the two numbers 0 and 1 only), and if kv, --- , k. are
arbitrary non negative integers, then the fgmction

F(P) = F{*(P) --- F;*(P)

s homogeneous over 9D of degree exactly k = ky + - -+ + k, .
Proor. The representation of F by a k-fold integral,

F(P) = f fxl xklxgl_H x:1+k, e gk, AP(@) - -+ dP(x),
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shows that F is homogeneous of degree < k. That the degree of F is indeed
equal to k is proved as follows. Suppose that

FP) = [+ [ o, - ) aP@) -+~ aP(@)

forall Pin 9. Observe that if P is the singular distribution which assigns prob-
ability 1 to the point 1 on the real line then the identity of the two representa-
tions of F reduces to ¢(1, ---, 1) = 1; similarly assigning the total probability
to 0 implies that ¢(0, -+, 0) = 0. More generally, choose P so that it assigns
the probability p, (0 < p < 1), to the point 1, and the probability ¢ = 1 —
p to 0. It follows that

=" +2""¢er+ - + ¢ ora,

where ¢; is the sum of all o(z1, -, 21), over those htuples (z1, --- , ;) which
contain exactly ¢ 0’s and (h — %) 1’s. If ¢ is replaced by 1 — p in the right
side of the last equation, the resulting equation is supposed to be satisfied by
allp, 0 < p < 1. If, however, h < k, then the two sides of the equation are
polynomials of different degrees; hence h > k.

CoroLLARY. If D is any subset of D* contained in the domain of definition of
the function F., and finitely closed over {0, 1} then F, is homogeneous over D of
degree exactly m and, consequently, it has unbiased estimates over D of order n if
and only if m < n.

Proor. Since

FulP) = [ @ = FuP)"dP@)
= 5 (-0(T) Eie) [ ap)

= 2 7m0 (—l)j(?) F{(P)F,.—i(P),
the conclusions of the corollary are implied by Theorems 1 and 2.

4. Symmetry. Theorem 1 may be regarded as a solution of the existence
problem (I). An examination of its proof shows, however, that the estimates
there constructed are very unsatisfactory indeed. In the special case F = F,,
for instance, the estimate becomes f(z1, -+, 2,) = #1. The first element of a
sample of n is, to be sure, an unbiased estimate of the expectation of the dis-
tribution, but it is intuitively clear that, since it ignores most of the information
at hand, it is not a good one. In order to exhibit the best estimates it becomes
necessary to study the symmetric ones. Recall that a function f = f(z,, ---,
z,) is symmetric if it is invariant under all permutations of its arguments. The
proof of the main theorem of this section, the theorem of uniqueness for sym-
metric unbiased estimates, is based on two lemmas,
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Lemma 1. If Q = Q(p1, -+, pa) 1s a homogeneous polynomial of degree >
0 7n n real variables, such that whenever 0 < p; < 1,i=1,---,n,and py + - -~
+ pn = 1then Q (p1, - -+, pn) = 0, then Q must be identically zero.

Proor. (Induction on n.) For n = 1 the lemma is trivial. Assume there-
fore that n > 1 and that the lemma is true forn — 1. Observe that the hypoth-
esis is equivalent to the vanishing of @ for all systems of non negative arguments
(without the restriction p; + - -+ + p. = 1), since any such system {p;} can be
replaced by {p:/(p1 + -+ + p»)}. If in Q the variables p:, - - - , p._1 are given
any non negative values, then the hypothesis implies that the resulting poly-
nomial in p, vanishes for all non negative values of p, , and therefore identically.
Consequently the coefficients of the powers of p, in Q, which are themselves
homogeneous polynomials in p; , « -+ , Pz, vanish for non negative arguments
and therefore (by the induction hypothesis) identically.®

Lemma 2. If 9D 48 a set of distributions finitely closed over a Borel set E of the
real line and if the symmetric function f(x,, --- , x,) 1s such that for every dis-
tribution P in D the Lebesgue-Stielljes integral

f ff(xl, cer, 22) dP(m) - - - dP(za)

exists and has the value zero, then f(xy , + -+ , %) = O wheneverx; e E,1 =1, -+, n.

Proor. Consider any point (21 , - -+ , %) with 23 ¢ E, ¢ = 1, - - -, n, and any
distribution P (in D*(E)) which assigns the probability 1 to the subset {21 , - - -,
7%} of E. If the probability of } is p;, ¢ = 1, - - -, n, then the integral

f...ff(x,,... , Tn) dP(z1) - - - dP(x,)

is a homogeneous polynomial (of degree n) in the n variables p1, +--, pa. The
hypotheses of Lemma 1 are satisfied—it follows that this polynomial vanishes
identically. The symmetry of f implies that the coefficient of the term p, - - - p,
is exactly n!f(x}, -+ - , 23,), thereby establishing the conclusion of the lemma.

If o = ¢(x1, - -+ ,%) is any function of k real variables and if n is a positive
integer, n > k, it is convenient to write

¢ln] = §0ln](xl ey x”)

for the average of the values of ¢ over all points obtained from (zi, -- -, z,) by
extracting ordered subsets of k 2’s. Thus, for instance,

(501-’02)[3] = % (xxxz + T1rs + xzxs)
and

(@)™ =% @+ - + z).

31 am indebted te J. B. Rosser and R. J. Walker for this proof; my original proof of
Lemma 1 was more complicated.
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THEOREM 3. Let D be a set of distributions finitely closed over a Borel set E of
the real line and let F be a homogeneous function of degree k,

FP) = [+ [otn, -+, z) dP@) - aP(a)

over D. If f(x, - -+, x.) 18 @ symmetric unbiased estimate of F over D, of order
n > k, then for every point (1, -+, x,) withz; e B, =1,---,n, fx;, -+,
) 18 equal to the symmetrized function ¢'™ (xy, -+ , Za).

Proor. Observe first that

f...f¢(xl, oo @) dP(z) - -+ dP(x)

remains invarian$ if (2, - - -, ) is replaced by (z;, , - - - , ;,), where {31, ---,
1%} is any subset of {1, - - - , n}, since the change is merely a matter of notation.
It follows that

F(P) = f f¢(xl, coe, 2) dP@) - -+ dP(zx)

- f f¢‘”‘(x1, cee &) dP@) - - - dP (),

so that '™ is indeed an unbiased estimate of F. Since '™ is also symmetric,
- ¢'™ satisfies the hypotheses of Lemma 2, and the desired conclusion follows
from an application of that lemma.

6. Characterization. For any Borel set E on the real line let D*(E) be the
set of all those distributions which assign the probability 0 to the complement
of E. Thus, clearly, D«(E) g D*(E); if E is the entire real line then D*(E) =
D*; if E consists of a finite number of points then Dy (E) = D*(E).

THEOREM 4. Let 9D be a set of distributions finitely closed over a Borel set E
of the real line and contained in D*(E), and let F be a homogeneous function of
degree k,

FB) = [ [ o, o) aP@) - dP()
over D. A necessary and sufficient condition that the function f = f(x1, --- , x,)

be an unbiased estimate of F over D, of order n > k, is that the Lebesgue-Stieltjes
integral

f...ff(xl, cer ) Ta) dP(z) - -+ dP(zs)

exist for every P in D and that for every point (1, --- ,2,) withzi e E, i =1, -+ -,
. . elnl [n]
n, the symmetrized function f*™ (x1, - -+ , x.) be equal to '™ (21, - -+ , Zn).
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Proor. If fis an unbiased estimate then f'™ is a symmetric unbiased esti-
mate and therefore, by Theorem 3, equal to ¢'™; the converse follows from the
facts that

f ff(xl, <o+, y) dP(x1) - -+ dP(xs)

- f ff["](xl, cer, ) dP(21) -+ - AP(xa)

and that (as a consequence of the hypothesis D g D*(E)) the equality of /' and
#'™ for points whose coordinates are in E implies the equality of their integrals.

Theorem 4 exhibits all possibilities for unbiased estimates (over domains satis-
fying the hypotheses). Given a point (2, - - - , Z.), suppose that the number of
different points obtained from it by permutations of the coordinates is N. (If
the z; are all different then N = n!). An unbiased estimate is obtained if f is
defined arbitrarily over N — 1 of these points and if its value on the Nth point is
chosen so that the identity /'™ = o'™ is satisfied. As long as the arbitrary
choices at the (possibly) uncountably infinite point groups are not too wild and
not too large (i.e. are such that the resulting function f is measurable and integra-
ble), f will indeed be an unbiased estimate. Typical nonpathological examples
of unsymmetric unbiased estimates are weighted averages of the permuted values
of ¢(z1, +-+ , 2, similar to the unweighted average '™ (@1, - - , 2.).

6. Uniqueness. The assumption of symmetry is a rather natural one to require
of an estimate: it amounts to requiring that the estimated value should be
independent of the order in which the observations are made. Theorems 3
and 4 establish that the concept of symmetry is inherently associated with un-
biased estimation and that, under this assumption, there is a unique unbiased
estimate (whenever there is one at all). These theorems, therefore, constitute
a partial answer to the uniqueness problem (III): symmetry, after all, is a possi-
ble interpretation of “good” estimate. From another point of view the answer
to the problem of “best” estimate is contained in the following theorem.

TaeEorREM 5. Under the hypotheses of Theorem 4, among all unbiased estimates

of
F(P) = f f‘P(xl, ,Z]c) dP(x;) dP(:c;,)

the symmetric one, @&y, + -+, xa) s the one with least variancé or, equivalently,
the least second moment

f f {‘/’[”](xla ,x“)}zdP(xl) <o dP ().

Proor. Observe first that if X;, ---, X, are independent random variables
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with the same distribution P then, if f is an unbiased estimate of F(P), the
variance of f(X , --- , X,) is given by

E{f(XI, ce ,Xn)}z - Ez{f(XI’ ce 7Xn)}-

Since the second term is the same for all f, namely F*(P), minimizing the variance
is indeed equivalent to minimizing

BU, - X = [ [ ooy 2 dPG@) -+ PG,

This quantity need not be finite even for f’s and P’s for which E{f(X,, - -+, X,)}
exists. It will be shown, however, to be minimized by ¢'™ in the sense that

Ee"(Xy, -, X)) S E{f(Xy, -+, XD

for all unbiased estimates f and all P, and that the inequality actually holds for
some P.

For the proof consider any unbiased estimate f of ¥. For any given point
(21, -+, ,) suppose that N is the number of different points obtained from it
by permutations of the arguments, and denote by fi, 7 = 1, - -- , N, the values
of f at these points. Since, according to Theorem 4, f'™ = '™, it follows that

2
Ol =(%V Z?’-lfe) < 5 st = (O
Hence

f f (o™ (@1, +oe )} dP(zy) + -+ dP(za)
<[ [ iF@, e apP@) - PG

- f ff”(xl, e, @) dP(z) -+ - dP(z).

This already establishes the minimal property of ¢'™ in the weak sense.
If the inequality were an equality for all P for which the terms are defined then,

by Lemma 2, it would follow that

{(o[n](xl’ D) xn)}z = {fz(xl y "y xﬂ)}["]
for all (x1, -+, x,). Hence the Schwarz inequality, as applied above to the

1 .
sum > Y. f., reduces to an equality; this can happen if and only if (fi, - - - ,fv)

1 1
is proportional to ( N Z—V) , .e. if and only if all f; are equal to each other.

The validity of this statement for every point is equivalent to the symmetry of f
and hence, by Theorem 3, to the statement f = ¢'™. This concludes the proof

of Theorem 5.
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7. Concluding remarks. (1) The most obvious estimates of the moments,
F.(P), of a distribution about the origin are the sample moments

LRI

Their use is justified by the uniqueness theorems (3, 4, and 5) of this paper.
Similarly one might think that the natural estimates of the moments, F,(P),
about the expected value F1(P), are best estimated by the sample moments

1<, _
gm(xl y *tc xﬂ) = ;’Lz:i-l (xc - x)m

about the sample mean & = —?1;’ > tiz;. Denotebyfm(zi, « , ) the estimate

of F.(P) obtained by expanding F.(P) in terms of the F;(P), as in the proof of
the corollary to Theorem 2, and then estimating each term by the symmetric
estimate considered in Theorems 3 and 4. Then an easy calculation shows that

n

n — lyﬁ(xl) s ’xﬂ)

fZ(xly tee 7xl) =

and

n2
fa(@1, ++-, 2a) = mgs(xl, see, Zn).

(These functions are the classical estimates of F, and F;.) For m > 3, f, can
still be expressed in terms of g’s, but no longer as a constant multiple of g, . It
appears that in general f,, is a linear combination of g1, - - - , gm With coefficients
which are rational numbers whose denominators are (n — 1)(n — 2) --- (n —
m <+ 1). This fact is another aspect of the non existence of unbiased estimates
of order n for F,, when m > n. ,

(2) For any Borel set E on the real line denote by F z(P) the probability, P(E),
assigned by P to E. If ¢g(x) is the characteristic function of the set E, the
representation

Fa(P) = [ os(z) dP@)

shows that F(P) is homogeneous of degree 1, and therefore possesses unbiased
estimates of all orders. The symmetric unbiased estimate of order n is given, in
perfect accordance with intuitive demands, by the function fg(z; , - - - , z.) whose

1
value is " times the number of those coordinates z; which belong to E.

(3) The situation in estimating such “non linear” functions as (Fi(P))® is
somewhat paradoxical. In the first place it appears strange that there should be
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essentially different processes for estimating the expected value and the square of
the expected value. (Recall that since

(Fy(P))* = f f 2172 dP(21) dP(2),

the symmetric unbiased estimate of (Fy(P))? of order n, is (z.2:)'™.) Consider,
for instance, the distribution P which assigns probability % to each of the points
41 and —1. The symmetric unbiased estimate of order 2 for Fi(P) is (z: +
z), and for (Fy(P))* it is z1x2 . Hence in the four possible cases

(17 1)’ (1, —'1)7 (_1’ 1)7 (_'1, _1)
the biased, incorrect estimate {(z1 + z2)}” for (F1(P))’ yields
1’ O’ 07 1’
whereas the unbiased, correct estimate yields
1, -1, -1, 1.

The actual value of (F1(P))? is, of course, 0. Hence it is true in this case that
whenever the biased estimate is in error, the unbiased one errs by the same
amount. To add insult to injury, the unbiased procedure even yields negative
estimates for the essentially non negative quantity (Fi(P))’. These considera-

tions seem to indicate the necessity for caution in using unbiased estimates of
“non linear’”’ quantities, such for instance as F,.(P).



