MINIMAL VARIANCE AND ITS RELATION TO EFFICIENT
MOMENT TESTS
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1. Summary. When a curve is fitted to a set of data by moments, the usual
procedure used in testing the hypothesis that the population is of the given form
with the parameters as computed from the moments is to compare the higher
moments with their expected values as determined by the hypothesis. Gen-
erally speaking, moments about the mean are computed although the reason for
this is not clear. To shed some light on this question, the sample given in the
introduction is fitted to two curves. Moments about various points are com-
pared with their expected values and the discrepancy in standard units ex-
amined. This discrepancy is found to vary widely and to have a maximum.
The notion of equivalent moment tests is introduced, and on this basis the most
efficient moment test is defined in such a way that of all equivalent moment
tests, this one is most likely to reject a false hypothesis.

For any moment it is shown that there is a point about which its variance is a
minimum. The conditions are found which determine the position of this point
for second and third moments. It is proved that for symmetrical populations
the variance is minimal when the moments are computed about the mean of the
population. If the population is an asymmetrical Pearson frequency function,
it is proved that the point about which the third moment variance is minimal
differs more from the mean than does’the corresponding point for second mo-
ments. The condition is pointed out for which this is true in the general case.

The third and fourth standard semi-invariants of second moments of minimal
variance are computed and compared to those of the second moment about the
mean. The ratios of these are displayed for some populations to illustrate how
this may be used to investigate when the approach to normality is more rapid
in one case than in the other. Some examples are presented to contrast these
and other tests.

2. Introduction. In testing the hypothesis that a given set of observations
is a random sample from a completely specified population (either a priori or
specified by a consideration of the sample), generally the Chi-square test is
applied or certain functions of the moments are compared with their expected
values and the significance of their departure as determined by the hypothesis
is examined.

In the Neyman-Pearson theory it is required that the functional form be
known. The hypothesis then is some statement concerning the parameters.
The main principle there used is that the test used should be such that, while
keeping the probability of rejecting the hypothesis when true at a certain sig-
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nificance level, it will minimize the chance of accepting the hypothesis when
some alternative is true.

However, if the functional formisregarded asunknown, the alternative hypoth-
eses are then usually unknown. The test then must be one that does not
depend on alternatives. In the light of incomplete knowledge of the distribu-
tion of sample statistics, and since moments of moments are practically the
only ones known, we shall here use the principle of comparing observed moments
with their expected values. It is known that the distribution of moments in
large samples is asymptotic to the normal distribution if the appropriate mo-
ments of the population exist [1]. Here we shall confine ourselves to such
populations and large samples.

To introduce the idea which underlies the theory here presented, consider a
simple example. Suppose a sample is given and the hypothesis is of the form
f(z, 6) with @ = 6,. Furthermore, suppose the first moment of the sample is
equal to its expected value. If a second-moment test is used, this means that
one computes the arithmetic mean of the squares of the deviations of the elements
of the sample about some point, and compares this with the theoretical moment
about the same point. Generally speaking, the point used is the mean of the
population or the mean of the sample. However, the point may be chosen in
any manner. For each such choice a test can be devised such that the prob-
ability of rejecting the hypothesis when true is e. All such tests are called equiv-
alent moment tests. Among these equivalent moment tests, one particular
second-moment will have the minimal variance. This one is here called the
most efficient moment test.

This test has the property that the range of values of the second moment for
which the hypothesis is accepted is as small as possible. Thus of all equivalent
second-moment tests, this one is most likely to reject a false hypothesis.

This idea may be easily extended to moments of higher order, in all of which
the concept of minimal variance is fundamental. The point of view may be
taken that the point about which the moments are computed should be such
that the variance is a minimum; or what is equivalent, the variance of moments
about the origin is minimized by choosing the origin properly.

An example is here presented to bring this out more clearly. A sample of
1,000 items is given and fitted by the first two moments to two different fre-
quency functions. (The sample items are not given here; they are to be found
in Tables for Statisticians [2]). The third and fourth moments have been
computed and the discrepancies in standard units as determined by the
hypotheses are exhibited in a table.

This sample of 1,000 items considered as a sample from an infinite population
has these moments:

my = 139.288

my = 19692.452
ms = 2827467.388
ms = 412561061.04
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By fitting the first two moments of the sample to curve A,

n+1
a n —ar

i T R
we get @ = 0.4781516735 and n = 65.60079029; to curve B,
1 e—(z—n)2/2v’
27

we get u = 139.288 and ¢° = 291.305056.
The discrepancy between the observed and theoretical rth moment about any

point is measured by

y:

” ”
m, — Wr

ue — ui?
n

in which m, is the rth moment of the sample of n about this point, and u, is
the rth moment of the population about the same point.

The values of | ¢ | have been computed corresponding to various points for the
third and fourth moments. These are exhibited in four tables, given below.

Examination of the table for the discrepancy between the observed and theo-
retical third moments for curve B, shows that when this moment is computed
about z = 0, the hypothesis is accepted at the 19, level; this is also true for x
= 39.3, but for + = 139.3 the hypothesis would be rejected at that level. It
is evident that some rule must be established to decide what point is to be used
to make the test.

If the curve is fitted by the first two moments the value ms — us is the same
for every point. This is easily demonstrated, for if ms and p; are measured
about a point / units to the right of the origin, ms. = ms — 3hms + 3h’m; — h®
and pi = 3 — 3huz + K% — 1'. Now, ms = s and mi = pi. It follows
that ms’ — w3’ = mg — us.

The maximum value of | ¢ | is attained when the variance of third moments is
a minimum. In this manner it is assured that the range of values for which
the third moment is accepted shall be a minimum.

If the third moments agree, or the agreement is sufficiently close such that the
hypothesis cannot be rejected, m; — us is constant or varies only slightly from
point to point, so that minimizing the variance yields the maximum value of ¢.

As is seen from the tables above, when the moments are compared at the dif-
ferent points, the hypothesis may be accepted for one point and rejected for
another. By the principle of using the point which yields the minimal variance,
the hypothesis will be rejected more often than for other points. Thus, of all
equivalent moment tests, this one is most likely to reject a false hypothesis.

The problem of determining for various moments how the origin may be
chosen such that the variance of the distribution of these moments shall be a
minimum is now considered.

t=
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3. First moments. In the case of the first moment, whose expected value is
the mean of the population, the variance is given by ;&(u; — u). Tt is obvious
that the choice of origin does not affect the variance of the first moment, since
it is well known that ps — p.’ is invariant with respect to choice of origin.

4. Minimal variance of second moments. The variance of second moments

about an arbitrary origin is ;ll (us — ns’). Expressed in terms of uj and central

TABLES
Curve A. Curve B.
Third moments. Fourth moments. Third moments. | Fourth moments.
Point t Point t Point t Point t
0 .0365 0 .197 0 .085 0 .02
50 .084 50 .697 39.3 .19 39.3 .13
100 .33 100 4.74 89.3 .69 99.3 .88
120 77 120 14.17 109.3 | 1.16 109.3 1.09
130 1.28 130 26.76 119.3 | 2.39 119.3 2.00
140 1.91 140 49.03 129.3 | 4.05 129.3 3.18
142 1.95 145 45.26 139.3 | 5.57 133.3 3.83
145 1.90 150 42.89 149.3 | 4.05 135.3 3.96
150 1.60 160 21.31 159.3 | 2.39 137.3 3.93
160 .95 180 6.25 169.3 | 1.16 139.3 3.67
170 .57 200 2.51 179.3 .98 140.3 3.46
180 .37 300 .183 189.3 .69 143.3 2.72
200 .18 199.3 .50 148.3 1.59
209.3 .38 159.3 .39
239.3 .19 179.3 .13
239.3 .07

moments, this may be written
1
1 pa(ms) = T pz + dusur + dpopr’).

Here it is evident that the variance of second moments does depend on the
choice of origin, and is not invariant under translation. \
.. .. .1
The minimum value of puy(m;) is given by p; = — i—a- and is h(“ - us — ﬁl)
2 ?
Then we may write

@ ) = & (e = 41 = ).
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Throughout this paper m, denotes the second moment of the sample about

an origin chosen such that u; = — é‘i , which is the value of u; which minimizes
(1); mj denotes the second moment about an origin chosen such that p; = 0;
my denotes the second moment about the mean of the sample. It may be noted
that in large samples the distributions of mj and m; are approximately the same.

It is clear from (2) that if us = 0, or, if the population is symmetric, i.e. f(—x)
= f(z), then p (my) = m(m3). However, if ps # 0 then po(m3) < pa(mf).

5. A moment inequality. Since the quantity given by (2) is essentially
non-negative, an inequality is obtained valid for any distribution in which the
first four moments exist, viz.

2
(3) po— w3 — 2 >0, pe # 0

M2
or in standard moments
4) a— a3 —1>0.

This is a stronger inequality than the one given by Bertelsen [3], i.e. oz —
as — 2 < 0 or the one generally known, oy > aof,[4]. This inequality, however,
was known to K. Pearson [5, p. 432], although he derived it from a different
point of view.

6. Minimal variance of higher moments. The variance of the distribution
of rth moments of random samples about an arbitrary origin always has a
minimum. The variance of m, is given by

(5) pa(my) = }z(ﬂér — w):

This expression when expanded in powers of u} is always a polynomial of even
degree with the coefficient of the highest power a positive number. Further-
more, by differentiating us(m,) with respect to u; and equating the derivative to
zero, the value of u; which minimizes ps(m,) will be found among the solutions
of that equation.

For third moments of samples the variance is given by

1
Mz(m::) = ;L[#«,s - M:?]

which, when expressed in terms of moments about the mean and powers of the
mean, becomes

1
(6) pa(ms) = ﬁ[ﬂe — ui + 6(us — Ma#z)'/i; + (15ps — Q) us” + 18usps® + Quaus'].
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Differentiating with respect to u; and equating to zero, we have
) Buaus” + O’ + (Bua — 3updut + (us — maps) = 0.

By straightforward application of the methods of solving cubics, it is easy to
show by means of (3) that (7) has one real root only, which moreover is $

B3 .
— —— according as
2up

as — az(fou — %ai —1z0.

Since it can also be shown by means of (3) that the second derivative of (6) is
positive, this root of (7) will minimize us(ms).

These facts demonstrate:

TueoreM I. The point about which the arithmetic mean of the cubes of the
variates has minimal variance is to the right, at, or to the left of the corresponding
point for the squares according as

(8) as — a3(Bou — ga§ —-1so.

By examination of (7) it is readily seen that if a; = o3 or if the population is
symmetric, the real root will be zero; so that for such a population the variance
of third moments is a minimum when moments are taken about the mean of the
population. If a5 3 o3 the variance of third moments will be a minimum when
taken about some other point.

For fourth moments of samples the variance is of the sixth degree in u; and
its derivative therefore of the fifth degree. There is not much to be said in a
general way except that if a; = auas or if the population is symmetric, uy = 0
will cause this derivative to vanish.

If the distribution is a Pearson frequency function, from the recursion formula
for the moments [6, p. 24], .

_ (2a4+4+26>
W=\

where

204 — 305 — 6

8= a4+3

The criterion (8) can be written

<2a4+4+28
az| —————

) T3 ) + a3 +§of — fouas.

It will now be shown that (9) 2 0 according as a3 2 0, since (9) is a3 D where

204 + 4 + 26

T3 + 1+ %05 — Sou .

(10) D =
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1t suffices to show that D > O for all Pearson curves. Using the method of
Lagrange multipliers, it is possible to show that within the permissible range of
values of the variables involved, the g.1.b. of D is 4, and so D > 0. It has been
proved that the variance of the squares is a minimum when u; = —Tas o. It has
just been shown that the sign of (9) agrees with that of ;. These, together with
Theorem I, demonstrate

TaeoreMm II. For Pearson frequency functions, as # 0, the point about which
the variance of cubes ts a minimum deviates more from the mean than does the cor-
responding point for the squares.

7. Symmetric populations. For the distribution of rth moments of samples
1
(11) pa(my) = ;b(”';r - ).

To find the minimum of (11) expand in terms of central moments and powers
of u1 , differentiate with respect to u; , and equate to zero. This yields:

@r — 20w + -or + K™ [(?g) Mor—k

K
B ; <::)(K 1:' 7/) Pr—i ”"—K-H] + -+ 27‘(“2,._1 - Frl‘r—l) = 0.

For each power of uy , the coefficient is an isobaric moment function and is of
even weight when the power of u; is odd, and of odd weight when the power of
u1 is even. If the population is symmetric the coefficients of even powers will
vanish as will the constant term. Then pi will be a factor, the other factor
being a polynomial with only even powers of p; . In this latter factor, where K

(12)

is even, the coefficient of Kui" " is

(13) ( par—x — 2o (:)(K i 'i> Hr—i formE44
Since
Cr)-262)0)

K
Quzr—x + Zo b (pzr—x — Mr—s Br—K+4), r — 1, K even,
-

(13) may be written

where a, b; are non-negative integers.

It can be 1mmed1ately estabhshed by use of an inequality due to Tchebycheff
[7, pp. 43, 168] that usx42: > pzx-pg: and therefore (13) is pos1t1ve or zero.

To sum up, if the odd moments vanish (12) will have a factor 1 and a factor
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which is a polynomial with even powers only of ur with positive coefficients;
therefore there is one and only one solution, y; = 0. This establishes

TaeoreM III. For a symmetrical population, the distribution of rth moments
of samples has minimal variance when the origin is the population mean.

8. Dlstnbutxon of second moments. To study in more detail the distribu-
tions of m; and m3 the higher moments are computed and compared Applying
the formula for the distribution of rth moments we obtain, for m3

pr(me) = p

() =+ (ua = )

14 — 34 + 2
(14) as(mg) = i"/_ (aau 5
oy o _ 1]las— 4o + 6oy — 3 _
a4(’lnz) 3 = n[ (c“ — 1)2 3]
ete.

For the distribution of ms , we get
2

pi(mz) = pe + 2
4#2

* 1 N
pa(me) = —\pa — p2 — —
n
as — 3oy + 2 + 30} — 3asas + Bauai — ai
\/;b (014 - a: _1)312
1

as(mg) — 3 = ;[(as — 4og + 6as — 3 + 1205 a3
— 6ai — daqas + éaeag —12a40% + 4a — 4adas
+ cuas)(ow — o5 — 1) — 3]

(15)  as(my) =

ete.
Computing the ratios of o3’s, we have
(16) as(mz) _ [1 _ o5{8(as — ) — as(Bau — ag)}](l _ )-m
as(m3) as — 3oy + 2 a—1 )
Similarly

as(my) — 3
ou(m3) — 3
(17) — [1 . a3(4a1 + 6ouas + 40!%0!5 + 12&3 — 1205 — 6asas — ag - a§a4)]

ag — 4as — 3ai + 1204 — 6
a5 \7
(1-224)"
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It is evident that when as = 0, the ratio in each case is unity. These ratios
seem too involved to make any other general statements, but for particular types
of populations these ratios in terms of the parameters are considerably simplified.

To illustrate this statement, consider

e—‘l Mz
fz = .

z!

From the foregoing formulas we compute
plmy) =M +3,  pmd) =M

2 2
nz(m; = .2_%.[_ , “2(mg) = m_;'-__'n_.l
(18) aa(mz*) — /‘/z (2M + 1)5/2
as(m9) M8M24+ 22M + 1

a(my) —3 _ (12M* + 36M + 2)2M + 1)*
au(ml) — 3 M@SM® + 384M* + 112M + 1)

The minimum value of (18) is 0.71 for M= 1.22 and (18) is < 1 for M > 0.31.
The minimum of (19) is 0.70 and is < 1 for M > 0.62. For the Poisson dis-
tribution, then, not only is the variance of m; less than that of m3, but at least
as far as the first four moments are concerned, the distribution of m; approaches
normality more rapidly than does mj for all values of M > 0.62.

When one follows the same procedure for %p) 2 ¢ 7" it is found that not only
is the variance of ms less than that of m3 , but as far as the first four moments
are concerned, the distribution of m; approaches normality more rapidly than
does m3, for values of p > 0.7.

In the case of higher moments, it seems desirable to solve the necessary equa-
tions in each particular case, since the equations are somewhat involved.

19)

9. Examples. A few examples are exhibited to illustrate the foregoing ideas
and to contrast with some of the other methods.
1. A sample of 1,000 is obtained with the following distribution

z: O 1 2 3 4

f: 625 269 91 11 4
e M M*

The hypothesis being tested is that the population is f, = py ,Wwith M =
0.5.
Z = 0.5 and therefore the mean does not differ from its expected value.

By using the m; test, we compute ¢ = 2.06. If m; is distributed normally,
the hypothesis is rejected at the 5%, level. By using the mj test, we find ¢ =
1.45, and therefore by this test the hypothesis is not rejected at the 59 level.




MINIMAL VARIANCE 207

Applying the »” test, we find that the hypothesis is not rejected at the 5% level.

2. We return now to the sample mentioned in the introduction.

Since the parameters in population A were found by fitting the first two mo-
ments, the tests will be made on the hlgher moments From the definition of
my and ms it is clear what is meant by m3, ms , m4 and ms.

Consider the discrepancy of third moments in standard units ¢ as a function
of h, the distance from the origin. It is easy to see that

t = (m: — u3)/V@G,

where
1
G = ;&[#3 — ps® — 6h(us — pspz) + 3K (5ps — 3us® — 2uzp1)

— 18K3(us — psp1) + Oh'(uz — pi')l.

For the mj test, h = 139.288. The value of & which minimizes the variance
is a solution of 6(uz — p)h® — 9(us — wam)h® + (5ue — 3pa’ — 2wep)h —
(us — mapz) = 0, which, for this populatlon is h = 142.66. Usmg these values
and computing, we find, for the m3 test, ¢ = 1.90 and for the ms test, t = 1.95.

Usmg the same methods applied to fourth moment tests, we obtain for the
m3 test, h = 139.288 and ¢ = 48.7, and for the my test, h = 143.73 and ¢ =
524.

The % test cannot be used here since the moments alone are given; further-
more there is some difficulty in interpreting it under these conditions.

In this particular example, the third moment test would not reject the hypoth-
esis at the 19} level, while the fourth moment test would re;ect at that level.

3. Since population B i 1s symmetnc, it is known that the m$ and m; tests are
identical; similarly for m{ and mi. For the m; test, t = 5.57, which would
reject the hypothesis at the 19, level. The fourth moment test would not be
applied in practice.

The writer wishes to acknowledge his indebtedness to Professor P. S. Dwyer
for counsel and guidance. He also wishes to thank Professors H. C. Carver and
C. C. Craig for valuable suggestions.
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