SAMPLE CRITERIA FOR TESTING EQUALITY OF MEANS, EQUALITY
OF VARIANCES, AND EQUALITY OF COVARIANCES IN A
NORMAL MULTIVARIATE DISTRIBUTION

By S. S. WILks

Princeton University

Summary. In this paper statistical test criteria are developed for testing
equality of means, equality of variances and equality of covariances in a normal
multivariate population of & variables on the basis of a sample. More spe-
cifically, three statistical hypotheses are considered: (i) H,,., the hypothesis
that the means are equal, the variances are equal, and the covariances are
equal, (ii) H,., the hypothesis that variances are equal and covariances are
equal, irrespective of the values of the means, and (iii) H.. , the hypothesis of
equal means, assuming variances are equal and covariances are equal.

Test criteria Lmoc , L. , and L, are developed by the Neyman-Pearson method
of likelihood ratios for testing Hmy., H.. and H, respectively. The exact
moments of each of the three test criteria when the three corresponding hypoth-
eses are true are determined for any number k of variables and for any size,
n, of the sample for which the distributions exist. The exact distributions of
Lpye and L, are determined for £ = 2 and k£ = 3, and the exact distribution of
L., is found for any k; these are all beta (Pearson Type I) distributions. Tables
of 59, and 19, points of Lmyc, Lyc and L, , based on Thompson’s tables of
percentage points of the Incomplete Beta Function, are given for certain values
of k and n (Tables I and II). Also tables of values of approximate 59, and 19,
points of —n In Ly,., —n In L,. and —n(k—1) In L., for large values of n are
given (Table III), based on the fact that these three quantities are approximately
distributed according to chi-square laws for large values of n with }k(k + 3) —3,
1k(k + 1) — 2,and k — 1 degrees of freedom respectively. A table (Table IV)
is given which shows how accurate the resulting approximate 5%, and 19} points
of Ly, L, and L,, are.

The paper is written in two parts. In Part I the problem of testing the three
hypotheses is discussed and the mathematical results are presented together

with an illustrative example. Part IT is given for the reader who wishes to study

the mathematical derivation of the results.

I. THE PROBLEM AND A STATEMENT OF RESULTS

1.1. Introduction. Situations occasionally arise, in which it may be desired
to test the hypothesis that the means are equal, the variances are equal and the
covariances are equal in a multivariate population in which the variables are
correlated, the test to be made on the basis of a sample from such a population.
In the case of a normal multivariate distribution this means testing the hypo-
thesis that the distribution is symmetric with respect to the variables.
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As an example' suppose three “parallel forms” of a test are constructed and
all are given to a group of n college entrance students. On the basis of the
scores of the n students on the three tests, how could one test the hypothesis
that the three tests are really parallel forms, as far as means, variances and
-covariances are concerned? In other words, how could one test the hypo-
thesis that the scores can be regarded as being from a sample of individuals
from a college entrance population of individuals in which the distribution
function of the three variables is such that the means of the three variables are
all equal, the variances are equal and the covariances are equal? Actually, as
far as practical considerations are concerned in testing work, it is frequently
sufficient to consider only normally distributed populations. So therefore one
may raise the question as to how to test the hypothesis that the three-variable
sample can be considered as having come from a normal three-variable popula-
tion which is symmetrical in the three variables, i.e. a normal population in
which the means are equal, the variances are equal, and the covariances are
equal. Or more generally, one may raise the analogous question for the case
of k variables.

Similarly, one could mention biological examples which have been treated by
intra-class correlation methods and raise the question as to whether the under-
lying multivariate distribution can be judged to be symmetric in the variables
on the basis of information supplied by the sample.

To attempt to deal with this problem by comparing means, or variances or
covariances two at a time or performing what might appear to be extensions of
existing tests for two or more independent samples of one variable leads to com-
plications because of correlation among the variables in the original population.
What is needed is some kind of a comprehensive test which will take into account
all means, variances and covariances at one time. If it turns out that the hypoth-
esis of equal means, equal variances and equal covariances is not supported
by the sample, then one can raise the question as to whether the sample supports
the hypothesis that the variances are equal and covariances are equal irrespective
of means. If the answer is yes here, one can ask the further question as to
whether the sample supports the hypothesis of equal means. Such tests will be
developed in this paper for samples from a normal multivariate population.
More specifically three tests are developed. (i) Test L., . for testing the hypoth-
esis H,,. that all means are equal, all variances are equal and all covariances
are equal, (ii) test L,. for the hypothesis H,. that all variances are equal and
all covariances are equal, irrespective of the values of the means, and (iii) test

1 The problem treated in this paper arose from discussions with Professor Harold O.
Gulliksen, of the Psychology Department of Princeton University, in connection with the
problem of testing whether two or more forms of an examination can be considered as
“parallel forms”’. The author would like to take this opportunity to acknowledge various
helpful discussions he has also had with his colleague Professor John W. Tukey in con-
nection with this paper.
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L,, for the hypothesis H,, that the means are equal, assuming that H,. is true,
i.e. that the variances are equal and the covariances equal.

There are rather obvious extensions of the hypotheses H,,., H,. and H,,
‘and their corresponding test criteria. For example, one could divide the vari-
ables in the multivariate population into two sets, and consider the hypothesis
H{Y, (say), analogous to Him. , that the means are equal, the variances are equal
and the covariances are equal within each of the two sets and that the covariances
of variables between the two sets are all equal. Similarly, H® and H? could
be defined so as to be analogous to H,, and H, . However, these extensions
will not be considered in this paper.

In Part I of this paper we shall discuss the problem of testing hypotheses
regarding equality of means, equality of variances, and equality of covariances
in a normal multivariate population, and summarize the mathematical results
which have been obtained. An illustrative example will also be given. The
derivation of the test criteria and their sampling theory is presented in Part II
of the paper.

1.2. The hypotheses to be tested. We assume that there is a k-variate
population II in which the variables 2, , 2, - - - , i are distributed according to
a normal k-variate probability density function such that the mean value of
z;isa; (1 = 1,2, ---, k) and the variance-covariance matrix of z,, x2, - -+ , T
is || pijoio ||, pi; being the correlation coefficient between z; and z;(¢ # j), and
o; being the standard deviation of z; .

In specifying the hypotheses to be considered it will be convenient to define
three conditions on the parameters of population II:

Condition C,,: that the means of the z; are all equal.

Condition C,: that the variances of the z; are all equal.

Condition C.: that the covariances of the x; and z; (¢ # j) are all equal.

The hypotheses regarding II to be tested are as follows:

H .,.: that conditions C.. , C, , and C, hold

H,.: that conditions C, and C. hold i

H,.: that condition C,, holds, assuming that H,. is true.

A precise statement of these hypotheses in terms of Neyman-Pearson likeli-
hood ratio terminology will be found in Part II.

It should be noted that H,,.is a comprehensive hypothesis which specifies
equality of means, equality of variances and equality of covariances and would
be tested if one is interested in all of these quantities as a system. On the other
hand H,. refers only to equality of variances and equality of covariances re-
gardless of what values the means may have. H,, would be tested if one is only
concerned with equality of variances and equality of covariances. H,, is a more
restrictive hypothesis than either H,.,. or H,., for it refers to equality of
means under the assumption that H,. is true. In other words, H,, can only be
tested accurately when H,.is true; H., would be a generalization of the- Behrens-
Fisher problem [1] when H,, is false.
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1.3. The sample test criteria. The three hypotheses Hpye, Hy and H,, are
to be tested on the basis of a sample O, from II consisting of the following values
of the ¥’s: %y, 1 =1,2, -+ k32 =1,2,---,n

The ‘criteria for testing H noc , Hyc , and H.. depend on the following quantities
to be determined from the sample:

(1.1) 5 =13 g, Z £,

n am=] ﬁ-l
_1 > _
(1.2) = Z (Tia — %) (Tja — Zj) = = E TiaTja — ZiZ;
n a=1 N aml
(1.3) “EES ST T A

The sample criteria, based on the method of likelihood ratios, for testing
H.,.., Hyc and H,, are respectively, as follows:

(1.4) Lmvc = ch'Lmk_l
(1.5) Ly. = L2l
. T (A - A+ - 1))
L - $2(1 — 1)
m = k
(1.6) -1 + k_l_ > (@& - )
- 133

where | s;;| is the determinant of sample variances and covariances.

The range of values of each of the three criteria is from 0 to 1. A necessary
and sufficient condition for each criterion to have the value 1 is that the hypoth-
esis for which the criterion is a test be (accidentally) identically supported
by the sample. If the hypothesis (any one of the three being considered) is
true, the average value of the corresponding criterion will be less than 1, but
this average value will be nearer 1 than when the hypothesis is false.

If H,,. is true (i.e., found to be supported by the sample on the basis of the
test Ly..) then there wﬂl be three parameters which characterize II, namely, a
(the common mean), ¢ (the common variance), and p (the common correlation
coefficient). The best estimates of these three parameters are, respectively:

1& 0
PR
k
1.7) s =8+ }c 2 @ — %)’
=1

ro=|:s2r k(k—l),_zl(x' 2]/83.

If H,. is true (i.e , found to be supported by the sample on the basis of the
test L,.) there will be k + 2 parameters which characterize II, namely the means
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@1,0z, -, 0, o (the common variance) and p (the common correlation coeffi-
cient). The best estimates of these parameters are, respectively

- - - 2
(1.8) F1, %2, -, T, ,andr.

In order to be able to use the three sample criteria Ly.,. , Lyc and L, for testing
the hypotheses H npe , Hoc y Hm, it is necessary to have their distribution func-
tions under the assumptions that the respective hypotheses H ., H,. and H,,
are true.

1.4. Sampling theory of the test criteria. The moments of the exact sampling
distributions of L, and L, when H,,,. and H,. are true respectively, have been
determined for all values of & (number of variables) and all values of n (sample
size) for which such distributions exist; ie., for ¥ > 2 and » > k. The g-th
moments of the distributions of the two criteria are as follows:

k 1 — 7
M) = 6 = 1 IT W

(1.9) . LGk — n)
and
E 11 ]
M,(L,.) = (k — 1)°%™ G —19) + g
(1.10) A s i)

) rGe — 1)(n — 1))
rGk — D — 1) + gk — 1))
For the cases of k = 2and k = 3, these moments simplify so that the distribu-

tion functions of Ly.. and L,. can be readily inferred. They turn out to be as
follows:

For k = 2:
(1.11) AF (Lmye) = 30 — 2)(Lonoe) ™ d Loy
FGn — 1)) 4w -4
1.12 dF(L,) = ——2— "2’ _ L. 1— L,) ’dL,.
(112 ) = a2y o 4T
For k = 3:
113)  dF(Lme) = o™ (VTo)™ (1 = VI &N/ T,

2I'(n — 3)

A1) @) = P (VI - VD) dVEL.
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The distribution function of L,, when the hypothesis H, is true has been found
to be

dF(Ly) = rGGnk — 1))
(1.15) ™ TG = 1)k — )Gk — 1)
. Lén(n—l)(k—l)—l (1 _ Lm);(k_l)_l AL .

Details of the derivation of these distribution functions will be found in Part
II.

In a paper published elsewhere in the present issue of the Annals of Mathe-
matical Statistics, Tukey and Wilks [2] show how the probability integrals of
L. and L, and of other statistical critéria having moments of a rather general
class can be fitted by Incomplete Beta Functions in such a way that all moments
of the fitted distribution agree with those of the actual distribution up to and

including terms of order %L .

It will be noted that the probability integrals of L,.,. and L,. for k = 2, those
of /Ly, and \/ L, for k = 3, and that of L,, for any value of k, are Incomplete
Beta Functions [3], with the following values of p and g¢:

k criterion i P

2 Lo in — 2) 1

2 L,. in — 2) 1

3  Lnae n—3 3

3 VL. n—3 2

k Ly 3(n — Dk - 1) 3k — 1)

Percentage points® of the distributions of these criteria for the cases men-
tioned in this table can therefore be read from Thompson’s [4] tables of per cent
points for the Incomplete Beta Function. 5%, and 19, points for Lm,. and L,
for k = 2 and 3 are given in Table I for certain values of n. Table II shows
59, and 19, points of L,, for certain values of n for k = 2, 3, 4, 5 and 6.

1.6. The equivalence of L., and an analysis of variance test for a k by » lay-
out. One can set up a Snedecor F ratio for testing hypothesis H,, by setting

_.3(n — 1)(k — 1)(1 — Ly)
- 1k —1)Ln

and entering the F tables with n; = k — 1 and n, = (n — 1)(k — 1) degrees of

(1.16) F

2 The 1009, point, say Le , of a given criterion L (any of those being considered) having
p

L
distribution dF (L) is given by f ¢ dF (L) = e.
1)



SAMPLE CRITERIA

263

TABLE I
5% and 1%, points of Ly, and Ly fork = 2and k = 3
k=2 k=3
L Lo L L.

n n

5% 1% 5% 1% 5% 1% 5% 1%
3 [0.0025 | .0001 |0.0062 | .0002 | 4 (0.00029/0.00001|0.00064|0.00003
4 || .0500 | .0100 | .0975 | .0199 | 5 | .0095 | .0018 | .0183 | .0035
5| .1357 | .0464 | .2285 | .0808 6 .0358 | .0112 | .0618 | .0198
6| .2236 | .1000 | .3416 | .1588 | 7 | .0736 | .0300 | .1174 | .0493
7| .3017 | .1585 | .4307 | .2352 | 8 | .1165 | .0559 | .1749 | .0866
8| .3684 | .2154 | .5005 | .3039 | 9 | .1603 | .0860 | .2297 | .1272
9| .4249 | .2683 | .5559 | .3637 || 10 .2028 | .1181 | .2802 | .1682
10 || .4729 | .3162 | .6007 | .4154 || 11 .2432 | .1508 | .3259 | .2079
11 || .5139 | .3594 | .6375 | .4601 | 12 .2808 | .1829 | .3670 | .2457
12 || .5493 | .3981 | .6682 | .4989 || 13 .3157 | .2141 | .4040 | .2811
13 || .5800 | .4329 | .6943 | .5328 || 14 .3480 | .2439 | .4373 | .3141
14 | .6070 | .4642 | .7165 | .5626 || 15 L3778 | .2722 | .4674 | .3448
15 | .6307 | .4924 | .7358 | .5889 | 16 | .4052 | .2990 | .4946 | .3732
16 | .6518 | .5180 | .7528 | .6124 | 17 | .4306 | .3243 | .5193 | .3996
17 | .6707 | .5411 | .7675 | .6334 || 18 .4540 | .3482 | .5418 | .4240
18 | ,6877 | .5623 | .7807 | .6522 | 23 | .5484 | .4482 | .6293 | .5230
19 | .7030 | .5817 | .7925 | .6693 | 33 | .6660 | .5811 | .7326 | .6470
20 | .7169 | .5995 | .8031 | .6848 | 63 | .8135 | .7591 | .8549 | .8029
21 | .7294 | .6159 | .8126 | .6989 | <« {1.0000 !1.0000 |1.0000 |1.0000
22 || .7411 | .6310 | .8213 | .7119 l
23 | .7518 | .6450 | .8292 | .7237
24 || .7616 | .6579 | .8365 | .7347
25 || .7707 | .6700 | .8431 | .7448
26 | .7791 | .6813 | .8493 | .7542
27 | .7869 | .6918 | .8549 | .7629
28 | .7942 | .7017 | .8602 | .7710
29 | .8010 | .7110 | .8651 | .7786
30 | .8074 | .7197 | .8697 | .7857
31| .8133 | .7279 | .8739 | .7924
32 | .8190 | .7356 | .8779 | .7987
42 | .8609 | .7943 | .9073 | .8454
62 | .9050 | .8577 | .9375 | .8945
122 | .9513 | .9261 | .9684 | .9460
 |I1.0000 {1.0000 |1.0000 |1.0000
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TABLE II
5%, and 19, points of L
k=2 k=3 k=4 k=5
n
5% 1% n 5% 1% n 5% 1% n 5% 1%
2 10.0062(0.0002] 2 | .0500[0.0100{ 2 | .0973| .0328] 2 | .1354] .0589
3| .0975| .0199] 3 | .2236/ .1000] 3 | .2960| .1698] 3 | .3426| .2221
4 | .2285 .0808| 4 | .3684| .2154] 4 | .4372] .3002] 4 | .4793| .3566
5| .3416| .1588] 5 | .4729( .3162] 5 | .5340| .4019} 5 | .5709| .4560
6 | .4307| .2352| 6 | .5493| .6033| 6 | .6033| .4800f 6 | .6356/ .5302
7 | .5005| .303¢| 7 | .6070 .4642| 7 | .6550| .5409| 7 | .6837| .5872
8 | .5559| .3637] 8 | .6518| .5180] 8 | .6950| .5895| 8 | .7206| .6321
9 | .6007| .4154] 9 | .6877| .5623] 9 | .7267| .6290) 11 | .7933| .7232
10 | .6375| .4601] 10 | .7169| .5995| 10 | .7525| .6617| 16 | .8559| .8043
11 | .6682| .498¢9 11 | .7411| .6310] 11 | .7739| .6892) 31 | .9246| .8961
12 | .6943| .5328] 12 | .7616| .6579) 21 | .8788| .8290| « |1.0000(1.0000
13 | .7165| .5626] 13 | .7791| .6813] 41 | .9372| .9101
14 | .7358] .5889 14 | .7942| .7017| « (1.0000/1.0000
15 | .7527| .6124| 15 | .8074 .7197
16 | .7675| .6334] 16 | .8190| .7356
17 | .7807| .6522| 21 | .8609| .7943
18 | .7925| .6693| 31 | .9050| .8577
19 | .8031| .6848| 61 | .9513| .9261
20 | .8126| .6989| « |1.0000{1.0000

21 | .8213| .7119
22 | .8292| .7237
23 | .8365| .7347
24 | .8431| .7448
25 | .8493| .7542
26 | .8549| .7629
27 | .8602| .7710
28 | .8651| .7786
29 | .8697| .7857
30 | .8739| .7924
31 | .8779] .7987
41 | .9073| .8454

61 | .9375 .8945
121 ,9684.946ﬂ

® |1.00001.0000
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freedom. Making use of the definition of s°, s3, 7 and 7y in L, , one finds that F
can be written as

Sy S
(1.17) F=%z 1)/(n Dk
k n k
where S; = nz; (# — % and S; = 2 2, (Tia — Zw — % + %)* and
- a=1 =1

I, = % Z ZTia . Thus, the use of L, as a criterion for testing H,, is equivalent

aml
to an analysis of variance test for testing “row’’ effects in a k by n rectangular
Jayout when rows are associated with the & variables in the multivariate popula-
tion and columns are associated with the n individuals in the sample.

1.6. Approximate sampling theory of the test criteria for large samples. In
the case of large samples, it follows from a theorem [5] concerning the distribution
of likelihood ratio criteria for large samples that —n In L., —n In L, , and
—n(k — 1) In L, are approximately distributed according to chi-square distribu-
tions with 3k(k 4+ 3) — 3, 3k(k 4+ 1) — 2, and k — 1 degrees of freedom respec-
tively. Approximate 59, and 19, points of these three quantities taken from
Thompson’s [6] tables of the percentage points of the chi-square distribution
are given in Table ITI.

Table IV is given in order to furnish some idea of how the accuracy of the
approximations provided by Table III depend on n. It will be noted that the
approximate values exceed the exact values in every case, differences occuring
in the third decimal place in almost every case in which n exceeds 60. The ap-
proximate percentages to which the approximate per cent points correspond
are given by the numbers in the parentheses in Table IV. These numbers in
each case were obtained by linear interpolation from the exact 5% and 19,
points.

1.7. Comparison of L, with Mauchly’s “sphericity” test. The ecriterion
L, for testing hypothesis H,. is, in a sense, an extension of a test developed by
Mauchly [7] for testing the hypothesis of “sphericity’’ of a normal multivariate
distribution. Mauchly’s test was designed for testing the hypothesis that all
variances are equal, and that all covariances are equal to zero irrespective of the
values of the population means. The likelihood criterion for testing this hypoth-
esis of “sphericity”’ is
_ |8l

(sh)®
which should be compared with L,.. Actually, Mauchly used /L, as the test
criterion, which, of course, is equivalent to using L,. The g-th moment of L,
when the hypothesis of sphericity is true is given by

% o
r(E(n — %) + y)] T (3k(n — 1))
1.19 Kk [ 2 ’ . :

@19 U rae— |i@a-D+m

tm=]

(1.18) L,
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TABLE III

Approximate 5%, and 19, points for —n In Luye, —nlIn Ly, and —n(k — 1)1n L,
fork = 2,38, 4,5, 6.

—nln Ly —nln Ly, —n(k—1)InL,
k
d.f. 5% 19, d.f. 5% 5% d.f. 5% 1%
2 2| 5.99147| 9.21034| 1 | 3.84146] 6.63490 1 | 3.84146] 6.63490
3 6 {12.5916 {16.8119 4 | 9.48773(13.2767 | 2 | 5.99147 9.21034
4 11 |19.6751 (24.7250 8 {15.5073 (20.0902 | 3 | 7.81473|11.3449
5 17 |27.5871 (33.4087 | 13 |22.3621 (27.6883 | 4 | 9.48773[13.2767
6 24 (36.4151 |42.9798 | 19 [30.1435 |36.1908 | 5 |11.0705 |{15.0863
TABLE IV

Table indicating the accuracy of the approximate 5%, and 1%, points of Lmve, Lyc
and Ly, provided by Table 11T

5% 1%
criterion k n
exact approx. exact approx.
Loy 2 30 | 0.8074 | 0.8190 (5.53)* | 0.7197 | 0.7357 (1.73)*
Ly 2 62 .9050 .9079 (5.25) .8577 .8619 (1.36)
Loy 2 122 .9513 .9521 (5.13) .9261 .9273 (1.19)
Lo 3 33 .6660 .6828 (5.79) .5811 .6008 (1.88)
Loy 3 63 .8135 .8188 (5.40) L7591 .7658 (1.49)
Ly, 2 30 .8697 .8799 (5.49) .7857 .8016 (1.76)
L, 2 62 .9375 .9399 (5.22) .8945 .8985 (1.37)
L. 2 122 .9684 .9690 (5.11) L9460 |° .9471 (1.20)
L. 3 33 .7326 .7501 (5.82) .6470 .6688 (2.01)
L,. 3 63 .8549 .8602 (5.41) .8029 .8100 (1.55)
L, 2 31 8779 .8835 (5.28) L7987 .8073 (1.43)
L, 2 61 .9375 .9389 (5.13) .8945 .8969 (1.20)
L, 2 121 .9684 .9688 (5.07) .9460 L9467 (1.13)
Ly, 3 31 .9050 .9079 (5.25) .8577 .8619 (1.36)
L, 3 61 .9513 .9521 (5.10) .9261 .9273 (1.14)
L, 4 41 .9372 .9385 (5.19) .9101 L9119 (1.26)
L, 5 31 .9246 .9264 (5.25) .8961 .8984 (1.32)
*The numbers in the parentheses are approximate percentages (obtained by linear
interpolation) to which the approximate percent points correspond.
which should be compared with the g-th moment of L,.. Stated in other words,

Mauchly’s eriterion L, is a test for the hypothesis that contours of equal proba-
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bility density in the multivariate normal population distribution are spheres,
while L,. is a test for the hypothesis that the contours of equal probability are
k-dimensional ellipsoids with £ — 1 equal axes in general shorter than the k-th
axis which is equally inclined to the k coordinate axes of the distribution

function.

1.8. Illustrative Example. As an example to illustrate the use of the test
criteria. Lyve, Lye, Lm , we shall consider data on three forms of a subtest in
verbal aptitude, and inquire as to whether the data are consistent with the
hypothesis of the three forms being ‘“parallel forms”.

A procedure® was used for partitioning the first 60 of an entire test of 80 items
into three sets of 20 items each by using only a “difficulty ’ and a ‘“‘validity”
index on each of the items. A random sample of 100 test booklets was selected
from those in which the first 60 items had been attempted. Total scores were
obtained on each of the three subtests selected in this manner. The question
is this: Does this procedure of selecting items produce “parallel’”’ subtests?
In other words considering the three scores on the three subtests in each of the
100 test booklets as a sample of 100 items from a trivariate normal population
is the sample consistent with the hypothesis § ..,. of equal means, equal variances
and equal covariances? If not, is the sample consistent with the hypothesis H,.
of equal variance$ and equal covariances irrespective of means? If the answer
to this question is no, then the failure of the tests to be parallel is at least partially
attributable to differences in variances and/or differences in covariances. If
the answer to the question is yes, we test H. , the hypothesis of equal means,
assuming equal variances and equal covariances. If the sample is not consistent
with H.,, , then the subtests fail to be parallel because of significant differences in
means.

If we denote the three subtests by Th, T:, Ts, and the scores on the a-th
individual in the sample on the three tests by Zia, %24, 3« respectively (a =

1, 2, --- , 100), the information in the sample needed for computing L.,.,
L,. and L., and testing Hpm,., H,. and H,, is as follows:
# = 10.9900 § = 17.5558
%, = 10.9300 s = 17.5764
- T3 = 11.2600 r = 7963
sn = 16.8451 Ty = 7948
se2 = 18.1099 | s:5| = 545.5308
sis = 17.7124
s12 = 13.5493
Si3 = 14.5826
S23 = 13.8056

3 Devised by Mr. L. R. Tucker of the College Entrance Examination Board. The author
is indebted to Mr. Tucker for the data used in the illustrative example.
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Using formulas (1.4), (1.5), and (1.6), for k¥ = 3, for calculating the values of
Lmvc, ch and Lm, we find

Ly, = 9209
L,. = .9370
L, = .9914

It will be seen from Table III that the 5 9 point of —n In L. for
kE = 3 is 12.5912. Setting —100 In L,,. = 12.5912 and solving we find the
approximate 5% point of L,,. to be .8817 which is considerably less than the
observed value of L., namely .9209. Hence, the sample is consistent with
H..,.. As a matter of fact the observed value .9209 lies at approximately
the 259, point of L. .

In practice, there would be no point in proceeding to test H,. or H,, , because
if Lo is non-significant there is a high probability (not certainty) that both L,
and L,, will be non-significant. But for illustrative purposes, it is perhaps useful
to consider L,. and L, anyway.

The 5% point of —n I L,. for k = 3 is 9.48773 (See Table III). Setting
—100 In L,. = 9.48773 and solving, we get .9095 as the approximate 5%, point
of L,., which is considerably less than the observed value .9370, thus indicating
that L,. is not significant at the 59 level. In fact the observed value .9370
lies between the 259, and 109, point of L,. .

The 5%, point of —n(k — 1) In L, for &k = 3is5.99147. Setting —2001In L,, =
5.99147 and solving we get .9704 as the approximate 5%, point. Since the ob-
served value of L., exceeds .9704, we find L,, not significant at the 5%, level. In
fact, the observed value .9914 lies between the 509, and 259, points.

II. DERIVATION OF RESULTS

In this part we shall derive the criteria Lmyc, Ly and L, for testing H .,
H,.and H,, by the Neyman-Pearson method of likelihood ratios, and determine
the distribution theory of the criteria.

2.1. The test L., for H,,., the hypothesis of equality of means, equality of
variances and equality of covariances.

2.1.1 Derivation of the criterion Ly, . Let II be a normal k-variate population,
in which ; , 2, - -+ , x4 are variables, such that a; is the mean of x; , 0% the vari-
ance of z; and p;joi0; the covariance (p;; the correlation coefficient) between

z,and z;. The distribution law of ; , %, - - - , 2z in the population, is
| 4 |} [_ N A — ) (e J
2.1) W exp 3 i§-:1 Agi(s a;) (x; a;)

where || A:;|| is symmetric and is the inverse of the variance-covariance matrix,
. —1 .
ie. |47 = || pijoiosll, (pis = 1).

Now suppose O, is a random sample of n individuals from population II,
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and let z;, be the value of the z; for the ath individual in the sample. Then,
the probability function for the entire sample (likelihood function) is

_ 4y 5oy
(2.2) P = e exp| —3 0‘21 ME_I Aii(Tia — @) (Tja — a;)). |-

The hypothesis which we wish to test is that the population means a,
@, *- -, aare equal, the variances o} , o3, - - - , o} are all equal and the covari-
aANCes p120103 , P130103 , * * * , Pr-1,k0k—10% are all equal, the test to be made on the
basis of the sample of values z;,. In other words, we wish to test the hypothe-
sis that

’

al = a2 = e =Qr =4
2 2 2 2
g1 pP120102 *°** P1x010k g . po A p0'2
2 2

2.3 4 P210102 a2 tec Pk 020k po g *cc po

(2.3) =
2 2 2 2
PKk1O10k pPk2020k  °°° Ok poc poc 0

Testing the hypothesis that (2.3) holds is equivalent to testing the hypothesis
that

(a=a=: - =a=a
Ay Ay -+ An A B---B

@2.4) J A.21 Az . . B A .--B

U Aw A B B--- A
where

1+ (k—2)p —p
2.5 A= y B= .
®5) @1 — p)(1 + (k — 1)p) (1 — p)(1 + (k — 1)p)

To obtain the likelihood criterion L., for testing the hypothesis Hm,. we
maximize the likelihood (2.2) under two conditions, for the given sample O, ,
and take the ratio of the two resulting maxima. First, we maximize (2.2) over
the set @ of admissible values of the parameters, i.e. with respect to all means
a; and all variances and covariances p;;oi0;, denoting the resulting maximum
of (2.2) by Po. Secondly, we maximize (2.2) over the set of values w of the
parameters which satisfy the hypothesis H..,. ; that is, we replace in (2.2) each
mean a,, @z, -- - , & by a, and each of the variances o}, o3, -+ + , o3 by o and
each of the covariances p;joic;, (2 # j), by po’ and then maximize (2.2) with re-
spect to a, o* , and p, denoting the resulting maximum by P, .
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Maximizing (2.2) under the first set of conditions is equivalent to maximizing
it with respect to the a;, and the A;;, while maximizing (2.2) under the second
set of conditions is equivalent to imposing condition (2.4) and maximizing it

with respect to a, A and B.
The values of the a; and A;; which maximize (2.2) under the first set of condi-

tions are given by solving the following (k* + 3k)/2 equations.
aP

(2.6) 5(-1:—0 1=1,2 .-,k
P .. .
. _— = = e . < .
2.7 oAy 0, Li=12---,k (@<
Expressions for these equations are
k
(2.8) .[nZA;j(:i:i - ai)]P =0, 1=1,2 .-+ k
i=1

(2-9) [gA‘j - %E(xia - ai)(xia - ai)]P =0, 5 =1, 2: R} k,('l, < j))
a=1
where A* is the element in the ¢th row and jth column of || 4;; 17 ie

L _ 1
AY = pijo0;, and T; = - > T

a=1

The solution of (2.8) and (2.9) is
(2.10) a;j=%;, j=12,---,k
AY =g, 0m Ay =457 4j=1,2 -,k (<)

where s;; = l E(x,-a — %)(zja — %;), and where || || = || s:;||". In-

serting the Values of (2.10) in (2.2) and noting that the exponent in (2.2) re-

duces to — - E s*%s;;, which in turn reduces to —3kn, since Z s = 1
1,5=1 =1
for each value of 7, we obtdin
e—-ikn

&1 e

In order to obtain P, , we specialize the a; and the matrix || 4:;|| in (2.2)
in accordance with (2.4), noting that the determinant | A;;| reduces to
(A — B¥ A4 + (k — 1)B), thus obtaining the following specialized form

of (2.2)
(A — B)* (4 + (k — DB)*"
(2,”.)}7»1:

o {-1[A5 N -0+ B3 2 e aG -]

a=1 i=1 a=1 {¥%j=1

(2:12) P =
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The values of a, 4 and B which maximize P’ are given by solving the following
three equations

(2.13)

These equations are respectively

<A —B)ii(xm—a>+Bi:(zk:<x.“—a>)]P'=o

a=1 t=1

1
) [in(k — 1) in 1 :
(2.14) | "A—B t1 ¥ *k — DB "‘..; ;

—ink — 1) nk — 1) .
L=2-B *2+@=nB"~ ..Z_. "Z; (@ia —a ) (@ja — a>]p

Replacing a; by z; in (2.15) puttmg Z Zia — E)(@je — &) = 8i;, and

setting
( n k
z= Z Z Lia
n a=1 i=1
1< _ _ _ N _
Soif = - 2 Z (@ia — T)(Tja — T) = 85 + (& — ) (&; — %)

k

(2.15) ¢ 10 = 2 suj/(k —1) ; Soi

Tpki=1

Zk: 8ij — ZkT @ — i)z]/(k -1 [é 8ii + g & — 90)2]

1ybj=1 i=l

s = Zk:soﬁ/k = [Z sii + Z (% — x)]

t=1 =1

Il

\

we obtain as solutions of (2.14)

a=1=
14 (K — 2)n
(2.16) A=S0 00 + & = Dr)
-7
B —

ss(1 — r)(1 + (k — Do)
Substituting these in (2.12) we obtain

e—}kn

(2.17) Pu = [(sg)k(l _ To)k_l (1 _'_(k_l)ro)]fn(z?r)%kn .
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The likelihood ratio A,.. for testing hypothesis H.,. is given by

L _P
‘m'vc—P'

It will be convenient to use the g th root of An.cas the test criterion for Hpye .
Denoting this criterion by Lyn,., we have

_ | 84 |
(2.18) Linoe = DF(1 — )" A + (b — o)

The use of Ln.. s a test criterion is obviously equivalent to the use of Amsc.

It will be seen that Ly, is equal to unity when and only when the sample
means &; are all equal, the sample variances s;; are all equal and when the
sample covariances si;, (¢ # j), are all equal. The greater the departure of
sample means from equality, sample variances from equality and sample co-
variances from equality, the smaller will be the value of L. , its value, of course,
always remaining between 0 and 1.

2.1.2. Approximate distribution of —n In L. tn large samples. In order to
make use of L. as a criterion for testing hypothesis H,,. we must find its
sampling distribution under the assumption that Hp.. is true, i.e. that our sample
has, in fact, been drawn from a k-variate normal population having equal means,
equal variances and equal covariances. In the case of large samples, it follows
from a theorem on asymptotic distributions of likelihood ratios [5] that —2InAm,.
(i.e. —n In Ly,.) is approximately distributed according to the chi-square law
with 3k(k 4+ 3) — 3 degrees of freedom (obtained by taking the difference be-
tween the number of parameters used in maxnmzmg P to obtain Pg and that
used in maximizing P’ to obtain P,).

Thus, to apply the test, one computes the value of —n In Ly.,. for the given
sample, and sees whether the obtained value is significant at the given probability
level (59, or 1%,) using the chi-square table for 3%(k + 3) — 3 degrees of freedom.

To make a study of how closely the chi-square distribution approximates the
exact distribution of —n In Ly,,. for various values of k and n would be an ard-
uous task in computation. But existing experience with approximations to large
sample distributions indicates that the.approximation in the present problem
would be satisfactory for small values of k£ (say not more than 5) and values
of n not less than 50. Some light is thrown on this question for # = 2 and 3
by Table IV.

2.1.3. Momenis of the exact distribution of Lu,.. In Section 2.1.2 an approxi-
mation is given to the distribution of —n In Ly, for large samples. As a matter
of fact, one can find expressions for the moments of the exact distribution of
Lumse , which for the cases of ¥ = 2 and & = 3 yield simple expressions for the
exact distribution of Lmoe .
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To find the moments of L,,,. it will be noted that if one sets
Nnsi; = Qij
NSo:j = Qoij

in expression (2.18) for L..., the following expression is obtained for L.

_[lasl
(2-19) anc - [R,(;_l SO

where

> 15
Qoii — Goi

ki3 k(k — 1) igim

(Z aoii + E ao.,)

fphjeml

(2.20)

It will be seen that L,.,. depends on the %; and the a;;.. In the case of a sample
from a general normal multivariate population, we know the a;; to be distributed
according to the Wishart (8] distribution function

k
| A P Ly B x| =4 35 Ao ]

(2.21) Waa(ais; Asj) = T
2}&(»—1) T{k(k—l) H I‘(%(‘n - ‘i))
2551

and the means &; to be independently distributed according to the normal dis-
tribution

o4 B
(2.22) f@=iﬁ%uw[L;AM M@-@]

where the A;; and a; were defined in (2.1).
We now define a function ¢(g, u, v) as the mean value of | a;; |° €**°***® when
H,.. is true, ie,

(2.23) (g, u, v) = E(| ai; ["e*™*"%)

where the right hand side denotes multiplication of (2.21) by (2.22) (after im-
posing condition (2.4)) by | ai; |° ¢“****%® and then integration with respect to
the a;;and Z;. This yields

_ o Tr[TGm =9 + )
e(g, u,v) = 2 »I;Il [W]
(2.24) (A — B)h(k—l)(A + (k — I)B)i(n—l)

X 2u $(k—1) (n+g) )
(A - B - — 1) (A 4 (k — 1)B — 20)in—D+s
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Now the gth moment My(Lmyc) Of Loy is defined by

(225) Mﬂ(Lmvc = E[(LmvC)ﬂ]
and is obtained by evaluating the partial derivative
ar(k—l)+a
(2.26) Fw D g (o)
at u = v = 0, and then putting r = —g and s = —g. The validity of this

operation for the range of values of g in which we are interested can be estab-
lished by an argument based on analytic continuation. Alternatively, the same
result can be achieved by taking the indefinite integral of ¢ r(k — 1) times suc-
cessively with respect to n, and s times successively with respect to v (the lower
limit of integration being —  in every case) and then evaluating the final
result at ¥ = v = 0. Accordingly, we obtain for the gth moment of L.,
when hypothesis H,,. is true, the following expression

5T =) +9)
My(Lnee) = 11 [W]

X (k — 1)°*™

[

(2.27)
I'(3(n — )I'(In(k — 1))

rGn — 1) + g)TGnk — 1) + gk — 1))

2.1.4. Distribution of Lmec for k = 2 and 3. For k = 2, the criterion Lm,.
can be expressed as

S Sz

(2.28) Linye = L e ;
3(su + 82) + 1@ — &) sip — (& — Z)

s — @ — &)’ 3(su + s2) + (@ — &)
The gth moment of Ly, for K = 2 (obtained by putting £ = 2 in (2.26) is

F@nr@gin —2) +9) _ G — 2))
(3n + g)T3(n — 2)) (G0 —-2) +9)’

and the distribution function of Ly, is found to be
(2.30) dF (Linee) = $(n — 2)LYe™ dLmse, © < Lm < 1).

For k = 3, Ly, can be written as

(2.29) M;(Lmse) =

S 812 S

(2 31) 81 S22 S

L = 831  S32 8337
(s)*(1 — 1)’ + 2m)
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where s; and 7, are defined in (2.15) for £ = 3. Putting k¥ = 3 in (2.26) we
find the gth moment of L,,,. for this case to be

_ 2o TG0 = 2 + TG — 3) + 9T
@32 Mol = 2 e (G — T T 29)

By using the fact that
re+ pre+n = YIIEED,
it is seen that M,(L,,.) reduces to

_TmI'(n — 3 + 29)

from which we deduce the distribution of L..,.to be

= P(n) T \n—4 _ —_—\2 e
(2.34) dF (L) = T@)T(n — 3) (VL) " (1 = AV Linoe)* 8V Linye »

0 L Lpwe £ 1).

For values of k > 3, the exact distribution of L..,. seems to be too complicated
to lend itself to ready computation.

Thus, relatively simple exact tests of significance of L. can be set up for
k = 2 and k = 3 by using distribution functions (2.30) and (2.34) respectively.
For large values of n» we have pointed out that the significance of L. can be
tested by making use of the fact that —n In L,,. is approximately distributed
according to a chi-square law with 3k(k 4+ 3) — 3 degrees of freedom when H,,,.
is true.

For k = 2, Lu,. is essentially a criterion for simultaneously testing, on the
basis of a sample, the hypothesis of equality of means and equality of variances
of a normal bivariate population.

It should be noted that if H,,. is true, or more realistically, is supported by
the sample as a result of applying test L,..., then population II is characterized
by the three parameters a, o and pin (2.3). The likelihood estimates of these

parameters are &, st and 7.

2.2. The test L, for H,., the hypothesis of equality of variances and equal-
ity of covariances, irrespective of the values of the means.

2.2.1. Derivation of the criterion L,. . If, in testing hypothesis H ... by means
of the criterion L. , at a given level of significance, say ¢, a non-significant value
of L., is obtained, one states that the sample is consistent with the hypothesis
H ... that all the population means are equal, the variances are equal and the
covariances are equal. Consideration of the Neyman-Pearson Type II error
involved in this statement would be very arduous and involved and will not be
attempted. On the other hand, if a significant value of L,,. is obtained, one
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states that the sample contradicts the hypothesis H.,. with probability e of
making a Neyman-Pearson Type I error. In this case it may be reasonable to
inquire whether the sample would support the hypothesis if the variability
due to the means were eliminated. In other words, we may inquire whether the
sample supports the hypothesis H,. of equal variances and equal covariances,
irrespective of what values the population means may have. To obtain the
likelihood ratio criterion L, for testing H,. we maximize the likelihood (2.2)
under the following two sets of conditions: First, with respect to the means a;
and the variances and covariances p;joio; ; and Secondly, with respect to the
means a; and A and B, where A and B are obtained by imposing the condition
on the matrix || A;; || specified in (2.14). The maximum of (2.2) under the first
condition is given by (2.11). Denoting the maximum of (2.2) under the second
set of conditions by P, , it is found, by a procedure similar to that used in finding
P, (given by (2.17), that P, is given by

e—ikn
(2.35) Pu = m@ra = a + G = DoFeo™
where
k k
r = "‘ZZI 8,',' (k -— 1) ; 8is
(2.36) ,

k
&= Zs;;/k.

fm=l

The likelihood ratio A, for testing H,, is given by

_ | is | i
Moo = [(82)"(1 - )1+ (b — 1)7')] )

The test criterion which will be used for testiﬁg H,.is Ly, the ?}th root of

Aoey 1.6,

= | sii |
ad be = @ra =m0+ G- Dp’

2.2.2. Approximate distribution of —n In L,. in large samples.

In‘the case of large samples —n In L, is approximately distributed according
to the chi-square law with 3k(k + 1) — 2 degrees of freedom when hypothesis H,.
is true.

2.2.3. Moments of the exact distribution of Ly.. The moments of L,, when
H,. is true can be found by a method similar to that used in Section 2.1.3 for
determining the moments of Lmy.. For it will be noted that L,. can be written as

(2.38) Ly = [ A,f’_‘f LJ
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where

k 1 k
2 o k(k ) o %

{phjmml

1

k=1

1 k

E [; v‘:-l a,,] ’
from which it is evident that L,, depends only on the a:;, whose distribution in
the case of a general normal multivariate population is given by (2.21). We

now define a function 6(g, ¥, z) as the mean value of | a;; |%"**** under the as-
sumption that H,. is true, i.e.,

(2.40) 0(g, v, 2) = E(| ai;|°e""**)

where the value of the right hand side is obtained by multiplying (2.21) by
| ai, |°¢"®***, then imposing the condition on || 4;; || stated in (2.4) and integrat-
ing with respect to the ai;. Accordingly, we find

k o

fu1
(2.41) (A — B)hk—l)(n—l)(A + (k _ I)B)!(n-—-l)

(2.39)

X $(k—.) (n—1+29) *

(A - B—. k—z_Ll) (A+ (k—1)B — 2z)¥n-V%e

The gth moment M,(L,.) of L,, is obtained by evaluating the partial derivative
ar(k—1)+c

at y = z = 0, and then setting, r = —gand s = - g. These operations yield

_ ETTGm —1) + g)
My(Lyo) = H[ Ti(n — 2) ]

yo—D L@Em — D)ILGEE — D — 1)) .
r@Em—1)+gr@k—1@n—1)+gk—1))

2.2.4. Distribution of Lyc for k = 2 and 3. For k = 2, L,, can be expressed
as follows:

(2.43)

X (k-1

Su 812

S21 S22
$(su + s2) 19

821 F(su + s2)

(2.44) L,. =
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and the gth moment of L, is given by

(2.45) My(Lyo) = FGm — DTG® — 2) +g)
T TEm — 1) + TG — 2)

from which the distribution of L,. is deduced to be

L(G(n — 1)
Val(3(n — 2))

For k = 3, L,. can be expressed as

(2.46) dF(L,.) = L0 = L)V dLe., (0 < Ly <1).

Su 812 Si3

(2.47) S21 S22 Se3
L. = S31 S22 833
(M1 = (1 + 2n)
where s* and r are defined in (2.36) by setting k = 3. Setting k¥ = 3 in (2.43),
we find as the gth moment of L,.

248) M,(L,) = 22 TG = 2) + 9TG(n = 3) + gT(w — 1)
TG — 2)MGn — 3T — 1 + 29)

Following the method by which (2.32) was reduced to (2.33), we find that the gth
moment of L,. reduces to

'(n — 1)T(n — 3 + 2¢)
IT(n — 14 29)T(n — 3)’

and hence the distribution function of L, for k = 3 is

(2.49) My(L,) =

@50 dF() = L= D (VI = VE) &V, 0% LS.

For higher values of & the distribution of L, is apparently too complicated for
ready computation. But distributions (2.46) and (2.50) provide relatively
simple significance tests for the cases k = 2 and 3, respectively. For large sam-
ples, we remark again that a significance test for L,. is provided by the fact
—2 In )\, (i.e., —n In L, is approximately distributed according to the chi-
square law with 3k(k 4+ 1) — 2 degrees of freedom when H,. is true.

For k = 2, L, is essentially a criterion for testing, on the basis of a sample,
the hypothesis of equality of variances of a normal bivariate population.

If H,.is true, II will be characterized by the parameters ai, az, =+ , Gk, o
and p. The maximum likelihood estimates of these parameters are &, &2, -+ -,
&, & and r, respectively.

2.3. The test L,, for H, , the hypothesis of equality of means, when the
yariances are equal and covariances are equal.
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2.3.1. Devivation of the criterion L,,. Suppose L, , described in Section 2.2.1
for testing H,., the hypothesis of equal variances and equal covariances, does
not have a significantly small value, thus indicating that the sample does not
contradict the hypothesis H,.. Then, assuming that the original test L.
of H my. turned out to have a significantly small value, we may inquire as to
whether the significance of L, is due to the inequality of the population means
a;. In this section we shall consider a criterion L, for testing the hypothesis
H,, that the means a; are equal, assuming that the variances are equal and that
the covariances are equal. In this hypothesis we maximize the likelihood (2.2)
under the following two sets of conditions: First, with respect to the a;, A and B,
where A and B are defined by the condition on || 4;;|| given in (2.4); secondly,
with respect to a, A and B where these parameters are specified by (2.4). The
maxima of the likelihood (2.2) under these two conditions are P, and P,,
given by (2.35) and (2.17) respectively. The likelihood ratio A, is therefore

£:=[@ﬂ1_”H“+%k—nﬁT"
Por ” LG = oA+ = D

Now it follows from the definitions of &, , s} and 7o, (2.15) and (2.36) that
f1+ & — Dr) = &1 + (k — Dro)

and hence we may write

(2.51) Am =

(1 — ) P
2/n __ 2N 7
5 =[]
We can also express A2/ " as
2M=19H
(2.53) b4 (Ro

where R, and R are defined by (2.20) and (2.39) respectively.
It will be most convenient for our purposes to use L, , the [2/n(k — 1)]-th
root of A, . as the criterion for testing H,. , i.e.

L, = R/Ro = 21 —7) _ s2(1 1— 7'),c .
fu—ﬁ+ﬁj§@r@’

(2.54) s3(1 — o)

2.3.2. Approxzimate distribution of —n(k — 1) In Ly, in large samples.

In large samples —2 In \,, (i.e., —n(k — 1) In L,,) is approximately distributed
according to the chi-square law with £ — 1 degrees of freedom. However,
the exact distribution of L, is relatively simple and will be derived.

2.3.3. Ezact distribution of L., when H,, is true. 'We shall determine the dis-
tribution of L, by first finding the gth moment of L,, when H,, is true. For this
purpose we set up the function

(2.55) ¥(p, g) = E(e®* ™)
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where the mean value is taken when H, is true, i.e., when the a; and || 45|
satisfactory conditions (2.4). Now R and R, are functions of the a;; and Z; .
Hence, to find E(e?* ") we multiply (2.21) by (2.22) by e®" %% and impose
conditions (2.4), then take the integral over the entire space of the a;; and ;.
These operations yield

_ (A —- B)lu(k-—l)
(2.56) ¥, 9) (A s 200 + q))}(n—l)(k-—l) (A 5 2 )WH) .

k-1 T k-1

The gth moment of L., is obtained by performing the following differentiations
" [o°y

2.1

(@57 0g" 9p*) pmddomo

and then putting h = —g. These operations yield

M,(L,) = r(3(n — )k = 1) + g)T'(3n(k — 1))
TG — 1)(k — 1)TEnk — 1) + g)

from which the distribution of L,, (when H,, is true) is found to be

dF (Lm) = T(En(k — 1)) LA G-
(2.59) rG(» — D — )rGEE — 1)

(1 = La)** 4L, , (0 < L. <1).

Thus, we are able to make an exact test of significance of L., on the basis of
the function (2.59)

(2.58)

2.4. Relations between L,,,., L,. and L., .
It will be seen from the definitions of Lyuy., L, and L, in (2.18), (2.37) and
(2.54) (noting that (1 + (k — 1)r) = si(1 + (k — 1)ro)) that

k—1
Lmvc = ch'Lm .

Furthermore, it will be noted that when H,,. is true, the gth moment of L,,,.
given by (2.27) is equal to the product of the gth moment of L. given by (2.43)
and the gth moment of L%™ (obtained by replacing g by g(k — 1) in (2.58).
Thus, when H .y is true Am,e is composed of the product of two independently
distributed quantities, namely L,. and LE™.
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