ON THE CHARACTERISTIC FUNCTIONS OF THE DISTRIBUTIONS OF
ESTIMATES OF VARIOUS DEVIATIONS IN SAMPLES
FROM A NORMAL POPULATION

By M. Kac
Cornell Unaversity

1. Summary. An explicit formula for the characteristic function of the
deviation

Iy X -2, «>0,
N kel

is derived for samples from a.normal population. For @ = 1 one can calculate
the probability density function but the result does not seem to be in complete
agreement with a recent formula of Goodwin [1].

2. Introduction. Let X, X, ---, X. be independent, normally distributed
random variables each having mean 0 and variance 1.
Let, as usual,

g_Xi+Xit - +X,

n

and denote by Y.(a) the deviation
1< «
(1) Yol@) =~ 2 [ X=X T, a> 0.
The purpose of this note is to show that
@) F.(§) = Elexp (Y a(a))}
_ —1_____. ® ® —z2/2 i/ n(¢lzla+9z) ]"
- v L L[ e ]

It is easy to check that for @« = 2 one obtains the well known expression

o\ —(n—1)/
<1 B 2_1%) 1/2
n

Moreover, if « = 1 one can actually find the probability density of Y.(1). The
resulting expression is fairly complicated and it strongly resembles an expres-
sion recently obtained by Goodwin [1]. Except for the relatively simple case
n = 3, it does not seem easy to verify that our formula is equivalent to that of
Goodwin.

Although deviations corresponding to values of « different from 1 and 2 are of
little practical value the explicit formula (2) may be of some interest. It is
also hoped that the method of derivation may prove useful in other cases.
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3. The derivation of (2). We start with the observation that
X and Y,(a)

are statistically independent (see e.g. Daly [2]).
Denote by
E*{| X | < ¢ exp (#£Ya(a))}

the integral of exp (i£Y.(a)) extended over that portion of the sample space in
which | X | < e. Thus the conditional expectation E{exp (i£V.(a) | | X | < €}
is given by the formula

Blexp @eX,(@) | | X | < o = TLXL< o op @)}

Prob { | X | < ¢}
Because of the independence of X and Y,.(a) we have
. E* | X | < ¢ exp (1Y .(a)))
3 E Y. = .
3) {exp (Y x(a))} Prob [|X| < ¢]

For the sake of simplicity we assume now that o > 1 and note that

o @era(@) —om (¥ | X ) [ <ES i xpr- 10 - X

<2LAS (x4 12

n

Thus, on the portion of the sample space where | X | < ¢, we have

exp (i£Y(a)) — exp (:—f i | Xi !"> < 3:—6 }:: (| Xe |+

and consequently

B | X | < o exp @Yae)} — E{ | X <eex (%g >ix ‘)} [

gi"‘i‘E*{[Xl<e,$(lel+e)“"l}.

n

Clearly E*{ 1Rl < 62 (| Xi| + o } , approaches 0, as e approaches 0,
1
hence by (3)

E*{ | X | <e,exp(§z::|Xkl“)}

E EY (@)} = 1i
(4) {exp (i£Y n(@))} pey Prob { | X | < ¢}
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Using the fact that

=1 [ X|<g¢
% .[ sxx:,ﬂ, exp(@X)dnp =13 |X|=¢
=0, |X|>€,

we obtain easily
p 1% <oem(¥3 | x 1))

=1 SIT"E{eXp:—LZI:(Elel“+nXk)}dn-

T -

(%)

The justification of interchanging of the order of integration (from -« to «) and
the operation E can be made quite simply (see e.g. Kac and Steinhaus [3]).
Notice now that

E{expgimxkl“ﬂm}

and that ¢, (¢, #) is absolutely integrable in (— e, «) as a function of 7.
Thus, as ¢ — 0, '

®) [ BT e ma~t [ enan
Furthermore (as ¢ — 0)
(7 Prob{|X|<6}~2€://—;—r

and combining this with (6), (5) and (4) we get
1 0
® Blew @Ya@)) = 5= [ eutim dn

This, of course, is equivalent to (2).

4. Density function of the mean deviation. If @ = 1 one can obtain an ex-
pression for the probability density f.(8) of Y.(a). We note first that

© z* i
Lem(—§>e><p;b(£lxl+nz)dx
o 2 2
=nj; exp <-— ?%) exp (¢ + n)x dx

@ 2.2
-{-nj; exp —’%’-)expi(g—n)xdx=n{R(£+n)+R($—11)}
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where
® n® 2? .
R(u) = j; exp (— —§—> exp (1ux) dx.

Using (2) (with @ = 1) we obtain

O = o |5 () Be+ 0r6 - » | in

Let us first look at the summands corresponding tok = 0 and ¥ = n. We have
[ R'(¢ — n) dy = [ R'(n) dn = [ R*(& + n) dn.

Now, R(7) is the Fourier transform of

0, <0,

) = 22_'
t@ exp (—%), z > 0,

and hence R"(n) is the Fourier transform of the convolution
CHE* kg = ().
—_——————
n

It is easily seen (using integration by parts) that

o= ()

for large | n | and hence for n > 2, R"(y) is absolutely integrable in (— », «).
It follows (classical inversion formula) that

[” R™(y* dy = 2x¢(0).

Since for n > 2, ¢™(z) is continuous and () = 0 for z < 0 we
have {™(0) = 0. Thus

n—1

- n a— n—k
R = ey o, (1) [ BE R — )i
Tt is fairly easy to check that
[ RE+ DR~ dn == [ exp Gieai® (“-2‘) £ (g) da

so that
n—4 © n—1
i i Lo B () () ()
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_mt = Lw (B o (8
50 = e 2, () ¢ (B) s (5).
I have not been able, except for n = 3, to verify directly that this formula is
identical with that of Goodwin.

Finally,
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