APPLICATION OF RECURRENT SERIES IN RENEWAL THEORY

By Auvrrep J. LoTkA
Metropolitan Life Insurance Company

Summary. The application of integral equations to renewal theory in popu-
lation analysis and problems of industrial replacement is beset with certain diffi-
culties which have been particularly discussed by W. Feller (these Annals 1941
vol. 12 pp. 243-267). Some of these difficulties are avoided if the data of the
problem are introduced into the analysis directly in the discontinuous form
(tabulated by class intervals) in which they are usually supplied in a concrete
case. A numerical example based on population statistics is presented, illustrat-
ing how, using discontinuous data, a recurrent series takes the place of the integ-
ral equation, and a finite exponential series appears in place of the Heaviside
expansion of the previous solution. There is close analogy with the procedure
previously presented, but with factorial moments appearing in place of ordinary
moments.

The fundamental data being given for values of the replacement function at
discrete intervals only, some question arises as to the applicability of the solution
as an “interpolation” formula for non-integral values of the time ¢, and as to the
effects of subdividing the class interval of the original data.

In the actual computation of the factorial moments a shift of origin by one-
half class interval becomes necessary. An algorithm for effecting this shift is
presented.

1. Methodology: Alternatives Available.

All application of mathematics to concrete situations involves a greater or less
degree of conventionalisation, a substitution, “in place of intractable reality, of
an ideal upon which it is possible to operate.””*

This conventionalisation may be only such as to do little violence to the con-
crete data, as for example when, dealing with a large population, we treat the
number N (¢) of individuals at time ¢ as a continuous variable, knowing perfectly
well that strictly speaking it varies by jumps of one unit at a time.?

In dealing with any particular concrete case there may be considerable choice
as to the mode in which the conventionalisation or idealisation is carried out,
and the particular place or step in the scheme at which it is introduced. A good
illustration of this is met in the treatment of renewal theory, as applied to human
populations or other biological or industrial aggregates.

The majority of authors who have dealt with the subject have set up their
fundamental equations in terms of continuous variables. Many have gone fur-

1 Nature, Vol. 110 (1922), p. 764.
2If the population is subject to extreme variation in numbers, such that N () passes
through small values, this disregard of their discontinuity may not be permissible.
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ther than this in the process of conventionalisation and have assumed for the
renewal function (net reproductivity) some more or less appropriate mathemat-
ical expression, such as a Charlier or a Pearson [1] frequency distribution, and
have, wherever possible, carried out by standard methods the integrations in-
volved.

Others, while retaining the formulation of the fundamental equations in con-
tinuous (infinitesimal) form, have made no specific assumptions regarding the
analytical form of the renewal function, and have carried out the numerical in-
tegration by one of the established methods available for the approximate in-
tegration of arbitrary functions.

But there has also been a minority of authors who deemed it most appropriate,
since the data of the problem are actually furnished in tabular (and hence dis-
continuous) form, to apply from the start discontinuous methods in formulating
the fundamental equation for the problem. This equation then defines a recur-
rent series.

The most recent and also the most concise exposition of this approach to the
problem is a paper by W. Dobbernack and G. Tietz presented at the Twelfth
International Congress of Actuaries, 1940, Proceedings, vol. 4, p. 233. These
authors, however, do not give any numerical application, and in consequence
certain aspects of the analysis are not touched upon by them. A more detailed
presentation, including numerical applications, was given by the late S. D. Wick-
sell’ who, however, used only roughly approximate data (an over-all average net
reproductivity for ages 20 to 44) and also introduced certain linear interpolations
which would not be appropriate with more exact data, and which become un-
necessary in the numerical operations if moments are introduced as indicated in
what follows.

The purpose of the present paper is to exhibit this modification of the method
of recurrent series, and at the same time to illustrate its relation to the method
which proceeds in terms of a continuous variable, leading to an integral equation.

The B(t — a) women born in the calendar year (¢ — a), that is, between the
times (t — 2 — a) and (t + % — a), will be a years old some time during the
calendar year ¢, that is, between ¢ — % and ¢ 4+ 3. If their births were evenly
distributed over the year ¢ — a, so will their birthdays of age a be over the year
t, and their average age during that year will be a and the average number of sur-
vivors to that age during the year ¢ will be approximately B(¢ — a)p(a), where
p(a) is the probability, at birth, of surviving to age a. If the annual female
reproductive rate, counting daughters only, is m(a) at age a, then the B(t — a)-
p(a) survivors will, during the calendar year ¢, give birth to Bt — a)p(a)m(a)
daughters. If B(¢) is the total number of births of daughters in the calendar
year ¢, then evidently, for positive values of ¢,

W BW) = 3 B — a)p(om(a),

3 |2]; see also [3].
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or, to simplify the notation,

2) B(t) = 2 ¢c.B(t — a).

1

Equation (1) or (2) defines a recurrent series of the general form
@) B(t) =aB(t — 1)+ Bt — 2) + -+ + c.B( — ),

where some of the coefficients ¢ may be zero and where w denotes the upper limit
of the reproductive period.
The trial substitution

@ B(t) = Q"
in (3) gives
%) =cz + e’ + +++ + cz”

The substitution (4) therefore satisfies (3) provided that z is a root of the equa-
tion (5) of degree w for z; and the same is evidently true for the more general
substitution

j=w
6) B() = 2, Q77
=
where z; , withj = 1,2, - - - w, are the  roots of (5).

Equation (5) leaves the w coefficients Q; indeterminate. In general they ap-
pear as arbitrary constants. In any concrete application they may be deter-
mined by “initial” conditions; that is, in order to make the problem determinate,
it is necessary to be given the values of B(f) for w successive integral values of ¢,
or some equivalent daia.

While, for convenience in description, the analysis has been developed in
terms of the year as time unit, the formulae are evidently independent of this
choice of unit, provided that the unit employed is adequate for practical appli-
cation.

Whatever the unit employed, for the direct application of (1) and (3) to a con-
crete case it is necessary to have the data in such form that values of p(a)m(a)
are known for integral values of a. The pertinent statistics do not usually come
in that form, the fertility being usually known only for five year age groups, and
though it may be sufficient for practical purposes to regard these quinquennial
values as representing p(a)m(a) for the midpoint of the group, this yields p(a)-
m(a) for fractional values of a, as measured in five year units. We may then
proceed as follows: putting

) z=1+4y



APPLICATION OF RECURRENT SERIES IN RENEWAL THEORY 193

in (5) this becomes
l=f{a+c+c+- - +ci
+ {er +2c + 3¢ + -+ + wealy

+@+m+m+m+%§ﬁQ¢

®) +{c3 e+ 106 + - 49 2!(“’ —2 c‘.} Y
+ {ca}y”

h=w k=w—h
= Z > <h —";k) Criry
h=0 k=0

In application to a particular population, we shall usually have the condition
=0 for a =12 -+ <a

where « is the lower limit of the reproductive period.

The expressions in brackets (coefficients of successive powers of y) will be recog-
nized as cumulations S of the values of the function ¢, , summed backwards to
the “diagonal” element c; , where & is the exponent of y. In terms of moments
m of the function ¢, , equation (8) can be written

mg — 3my + 2my 3

Y+ ey’

— m 2
T 31

or, using the symbol m; to denote the hth factorial moment, equation (9) takes
the simple form

@ 1=m+my+ 2

h=w
(10) 1=, o iy
oo h!

In these expressions the moments m; and m, are those taken about @ = 0.
Actually, the net reproduction rates are given for “semi-values” of a, that is, for
values of @ which are odd multiples of £ (using five years as the time unit). By
cumulation of these given values moments m; and m(y about @ = —3} are
obtained.! From the latter the corresponding functions of the moments about
a = 0 are obtained by the transformation formulae®

mp _ % (=™ mpn
h! = k! A=k
(11) k=h (_%)[kl ,
Sh = Z 1 Sh_k .
=0 k!

4 In these cumulations zero values of ¢, for 0 < a < a must not be omitted.

8 In accordance with a customary notation the symbol (—34)( denctes the continued
product — 3(—% —1)(—%4—2) ... (-4 — k+1). Inthe computation of successive terms,
in the sums in the right-hand member of (11), by appropriately laying out the work, ad-
vantage is taken of the fact that values of (—%)(I/k! for k = 2, 3. . . are obtained each
from the preceding by multiplying successively by %, £, §, ete., and taking care of the sign,
80 that fractions with complicated numerators and denominators are avoided.
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It will be recalled that in the treatment of the problem of replacement by
means of an integral equation,’® a solution in the form

(12) B() = 2Qja7* = 2Qj'",

is obtained, in which the exponential coefficients r; are the roots of the equation
(13) 1= j; ‘ ¢ “pla)ym(a) da = '/; : z* p(a)m(a) da,

ie. '

(14) l—mo—m1r+—r —Z—‘fr3+ Z( 1)”"""

in close analogy to equation (10) for y, with the distinction however that in (10)
the factorial moments take the place of the ordinary moments of (14), and that
the series in (10) is finite, terminating at the term in ¥ “. There is also an impor-
tant difference between the characteristic equation (13) and its analogue (5),
namely that (5) may admit of negative roots for z, whereas (13) does not admit
negative values for z.

2. The constants Q. These are determined by initial conditions, as follows.
Equation (2) can be written

=W

B0 = & @B~ o +3 @Bl - o

(15) a=t—1
= F@t) + Zl cB(t — a),
with
F() = 3. cB(t — a) 0<t<o
(16) and ‘ a=t
F@® =0 t>w
The values of B(¢) being given for integral values of ¢, from ¢t = —(w— 1) to
¢t = 0, it can be shown that’
t=w
2 F)z}
(17) Q== T
2. acaz}
a=1

¢ For a discussion of the limits of applicability of this method See [4].
7 The reasoning is essentially the same as in the treatment of the problem by integral
equations. See [5] and [2, p. 39 et seq.].
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In the special case that we are tracing the progeny of an initial population all
born at the same time, say B(0) births occurring at ¢t = 0, so that
(18) B(-1) = B(-2) = --- = B(=[o — 1) = 0

the expression for Q;, in view of (5), reduces to a particularly simple form.
For if we write the summation in equation (16) in expanded form, we have

F1) =
aB(0) + eB(—1) + :B(—2) + aB(-3) + --- + cB(—w — 1)’
F@2) = B(0) + e:B(—1) + &B(=2) + -+ + cB(—w — 2),
(19) F@) = ¢B(0) + cB(=1) + -+ + c.B(—w — 3)
Flw) = c,B(0).
If now B(—1), --- , B(— w — 1), all vanish, then
(20) 3 PO = BOlaz +ad +ad + o + )
(21) = B(0) by (5).
Hence,
B(0)
Q= -
(22) | ;1 acx
In particular
23) BO) = X 0= BO % s
so that
e 1
(24) 2 Zac.,:c‘} = 1.

The constant B(0) here evidently functions essentially as an arbitrary unit
of annual births, and may with this understanding simply be put = 1, thereby
simplifying the notation. This has been done in what follows, where con-
venient, especially in the table of constants, Table 3 of the numerical illustration.

The denominator in (17) or (23) can be evaluated for any root z; of (5) by direct
summation if the coefficients c, are given or have been computed (as indicated
below) for integral values of a; or, in a manner similar to that employed in passing
from equation (5) to (8), the denominator can be expressed in terms of the cor-
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responding roots y; = x; — 1 of (8) or (10), the cumulations of ¢, being replaced
by cumulations of ac,. With the denominator so expressed, the constants
Q; take the form, in obvious analogy to equation (9):

t=w
2 @)
(25) Q; = =1
- - 3 2
m1+mzy,-+m‘°'2,m2y2,~+m" 7;?+ e

The alternative procedure, to which reference was made in the preceding para-
graph, is to operate upon the moments mp, (taken about the origin O) by a
process the inverse of cumulation—which we might term decumulation—and
in this way to obtain from them the coefficients ¢c,. The polynomial Zac,z’
can then be evaluated directly.

The decumulation is readily carried out by an algorithm which suggests itself
from the schedule of cumulation. Analytically the relation between the two
processes is expressed by the reciprocal sets of transformation formulae:
Cumulation

k=w—h h k
(26) %= ’;) < ;LI_ )C}H..k=Sh.
Decumulation
et h + k) m
= _1)* [htk]
01)) e = é ( 1)( et

—u-+iy
.

3. Constants () associated with complex roots x = ¢

The complex roots z; give rise to oscillatory terms which, in the special case
of the progeny of a cohort of B(0) births, take the form®

(28) % {G cos vt — H sin vt},
where

(29) G = aif ac.e " cos va

- a

(30) H= % acge ™ sin va.

a=1

These constants may be evaluated directly in this form, or, puttingy = & + <9
in the denominator of equation (25), they can be expressed in terms of the
roots y; and the factorial moments obtained by cumulation of ac, .’

8 The development of these formulae is analogous to that followed in the treatment of
the problem by integral equations. See [6]; for the more general case see also [7].

® The procedure in this case will be analogous to that followed in the development of
equations (90) and (91) in [6].



APPLICATION OF RECURRENT SERIES IN RENEWAL THEORY 197

(a) Numerical Illustration. For convenience and to furnish the opportunity
for comparison, the same data (United States 1920) were here employed as in
the writer’s earlier publications in which the problem was treated by the appli-
cation of an integral equation.

(b) Cumulation for values of my. The two operations, of (1) cumulating the
values of ¢, given for semi-values of a; and (2) allowing in the cumulated results

NET FERTILITY
p@ma)
? : ® pGa)= probability for a newly-born female to
30 1 aftain'age ‘a’
1 m()=probable number of female births to
ﬁ? a female between ages a-3 and ‘a+3’
(age in five year units)
.25}
@
.20 RP
IS5 ®
1o} ?
A
5
.05} |
|
T |7
oL ' L Lo o
4] | 2 3 4 8 9 10 n 12

5 6 7
AGE IN 5 YEAR UNITS
F1a. 1. Net Fertility p(a)m(a) White females, United States, 1920

The verticals drawn in full and centered at mid-ages represent the original data; those
drawn in dashed lines and centered at integral ages are interpolated.

for a shift of origin from @ = —3 to a = 0, can be conducted in one schedule as
in Table 1. Cumulation is first carried out in the usual manner from the bottom
line to the diagonal, with the result appearing immediately below the diagonal.
From here on the procedure is as in the following example: Starting at the lower
right hand corner, we find

00780 X (—3%) = —.00390
12770 X (—3) = —.06385  —.06385 X (—32) = .04789
97395 X (—3%) = —.48698  —.48698 X (—32) = .36254
36254 X (—§) = —.30437.



198 ALFRED J. LOTKA

TABLE 1
Computation schedule for values o 7%['1’ = 8; of net productivity function p(a)m(a) = ca
for integral values of age a.*
R A ¢a mo) an m2l | m/sl m /4l mis) /5!
1) 2) 6] (€] (5) (6) Q)] ®8)
1.16635| 6.64127| 16.64550| 24.34106, 23.16864| 15.05650
—.58318 .43738| —.36448 .31892| —.28703
0-1 .00000 1.16635 7.22445 —3.61223) 2.70917| —2.25764 1.97544
1-2 .00000 1.16635) 6.05810) 19.82035 —9.91018 7.43264| —6.19387
2-3 .00040| '1.16635 4.89175 13.76225 31.90655| —15.95328  11.96496
34 .09630 1.16595/ 3.72540, 8.87050| 18.14430| 33.62800| —16.81400
4-5 .31255 1.06965] 2.55945] 5.14510;, 9.27380| 15.48370| 24.41095
5-6 .31025 .75710|  1.48980| 2.58565| 4.12870 6.20990 8.92725
6-7 .23170 .44685 .73270|  1.09585] 1.54305 2.08120 2.71735
7-8 .15090 .21515 .28585 .36315 .44720 .53815 .63615
89 .05795 .06425 .07070 .07730 .08405 .09095 .09800
9-10 .00615 .00630 .00645 .00660 .00675 .00690 .00705
10-11 .00015 .00015 .00015 .00015 .00015 .00015 .00015
¢ i’;gi'f:ar ms] /6! m[7)/7! ms] /8! m[9]/9! m10]/10! mu)/11! Factor
1) ) (10) (11) (12) (13) (14) (15)
6.72500 1.99717 .36404 .03483 .00127 .00001
.26311  —.24432 .22905| —.21633 .20551] —.19617| —21/22
0-1 —1.77790 1.62974| —1.51333| 1.41875| —1.33993 1.27293] -—-19/20
1-2 5.41964! —4.87768| 4.47121] —4.15184| 3.89235, —3.67611) —17/18
2-3 —9.97080 8.72445 —7.85201| 7.19768] —6.68356 6.26584) —15/16
3-4 12.61050; —10.50875] 9.19516| —8.27564] 7.58600] —7.04414 —13/14
45 —12.20548 9.15411) —7.62843! 6.67488 —6.00739 5.50677, —11/12
5-6 12.38595] —6.19298| 4.64474| —3.87062 3.38679] —3.04811] —9/10
6-7 3.45870 4.31260 -—2.156301 1.61723| —1.34769 1.17923| —7/8
7-8 .74135 .85390 .97395;  —.48698 .36524] —.30437 —5/6
8-9 .10520 .11255 .12005 .12770; —.06385) .04789] —3/4
9-10 .00720 .00735 .00750, .00765 .00780; —.00390; —1/2
10-11 . 00015; .00015 .00015{ ‘' .00015 .00015 .00015

* Figures immediately below the diagonal, obtained by cumulation from the bottom
upward of the data in Column 2, are factorial moments abouta = —%. Figures in the top
line are factorial moments about @ = 0. For use of factors in thelast column see text.

The several columns are thus completed, and by addition, in each column, of
the item immediately below the diagonal, and of all the items above the diag-
onal, the figures in the top line are obtained. These are the coefficients of equa-
tion (10) for y.
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(¢) Decumulation. While it is not necessary to carry out the decumulation, since
the entire computation can, if desired, be carried out in terms of y’s and m’s,
there is a considerable interest in noting the values ¢, for integral values of a
which result from the decumulations of the m’s. These, together with the
original values for semi-values of a, are shown in Table 2 and Fig. 1.

TABLE 2
Values of ¢, = p(a)m(a)
(1) for semi-values of a; original data.

(2) for integral values of a; computed by cumulation of original data, shift of
origin, and decumulation.

a 5-year units Ca a 5-year units Ca @ 5-year units Ca
0.0 0 4.0 .21781 8.0 .10607
0.5 0 4.5 .31255 8.5 .05795
1.0 0* 5.0 .33400 9.0 .02268
1.5 0 5.5 .31025 9.5 .00615
2.0 0* 6.0 .27427 10.0 .00116
2.5 .00040 6.5 .23170 10.5 .00015
3.0 .02073* 7.0 .18963 11.0 .00001
3. .09630 7.5 .15090

*The value of c; came out negative, namely —.00570, and the value of ¢; came out
+.00014. In the computation of Zac,z* these two values were arbitrarily adjusted to

11

zero, and ¢; was diminished from .02118 to .02073 to make the total Z ¢, = 1.16635, sum-
i=1

ing only for integral values of a.

4. The roots of equations (5) and (8).

From the prior study already cited, the real positive and three pairs of complex
roots for r of the characteristic equation

[

(31) fm 2 playm(a) da = fw ¢ “playm(a) da = 1

were known. These were used to indicate the approximate location of the roots
of (5) or (8), and more exact values were then obtained by Newton’s method of
successive approximation. Table 3 shows the values of %, v, ete., corresponding
to the new roots
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obtained through equations (8) or (10); and, for comparison the corresponding
values obtained in the previous publication from equation (13).® The same
table also exhibits the remaining roots and values of the constants Q, G, H.

TABLE 3
Constants of the series solution (6) of equation (3), corresponding to the five real and
three pairs of complex roots of the characteristic equation (5)
(United States, white females, 1920)

Constants(1) Five Real Roots i Three Pairs of Complex Roots

A. Computed on basis of recurrent series

u .02714*|—1.764t —3.8121 [—-17.1% —94.31"— .19800| — .44720|— .47587
v 0. 0. 0. 0. 0. 1.06498| 1.57000| 2.40490
G 5.64467 | 7.73354|—1255.04 @ @ 5.28093| 10.45809| 7.73103
H 0. 0. 0. 0 0 3.03239|—3.66726| 2.00874
G/(G?+H?) .17716 .12931 —.00080; @ @ | 14241 .085151 .12117
H/(G*+H?) (0. 0. 0. 0 0 i .08177| — .O2986l .03148
B. Computed on basis of integral equationi
u .02714 |- 1030 | —.43655—.4902
v 0. ! ‘ 1.0724 | 1.5771 | 2.44245
G 5.64514 ; ‘ 5.15351 10.22495I 7.40154
H 0. ! } 2.98757|—3.72741| 3.45312
G/ (G*+H?) | 17715 ’ .14525 .08620] .11095
H/(G*+H?) l'O ; .08420l —.03135| .05175

@ tin five year units

@ Not computed

*u, = log, =, = —log, 97322 = .02714
t Values of z

1 See [6, p. 899]

To determine the remaining four roots, the product of the factors (y — 1)
(y — y2) -+ (y — y7) was divided out of the polynomial of equation (10), re-
jecting the remainder and leaving a fourth degree equation

v+ 120 ¥° 4+ 2590 y* + 14617 y + 23118 = 0

In the subsequent work it turned out that the roots of this were all real, and
they were computed by obvious methods. Their values are also shown in
Table 3. For the two numerically largest roots great accuracy was not at-
tempted. They introduce terms with very rapid damping and presumably
very small values of Q.

10 The divergence is due in part to details of computation. In the earlier publication
the curve of fertility m(a) was smoothed by the method of translation, with a Gaussian
distribution as basis. In the method here presented the raw data were used without
smoothing, except such as is inherent in the process of the calculation described.

1 At any rate, Qi + Qu: must be small, since @, + . . . + Qs = 1.00313, and according to
(24), with the convention that B(0) = 1, the sum of all the @, must be equal to unity.
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As a check, in order to be assured that no serious error was introduced in neg-
lecting the remainder after dividing out the factors (y — ¥:) up to (y — ¥1),
the product [ ] (y — y:) was computed and, after multiplying by a factor to
make the absolute terms agree (.16635), was compared with the polynomial of
(10). As a further indication, the coefficients of the product II were ‘“‘decumu-
lated” to obtain values of coefficients of the corresponding polynomial in z, to

TABLE 4

- 11
Coefficients of Powers of y in Egquation (10) and in the Product H(y DR
1
Also Coefficients of Powers of x in Equation ()

Coefficients of y* o und by Decumaation
a
In Equation (10) In -illl(y - Yi) Of Column (2) Of Column (3)
1) 2 (3) (€] ®)
0 .16635 .16635 —1.00000 —.99915
1 6.64127 6.64072 +.00014* - .00065
2 16.64550 16.64782 — .00057* —.00432
3 24 .34106 24 .24197 .02118* .02398
4 23.16840 23.18070 .21781 .21774
5 15.05650 15.07338 .33400 .33354
6 6.7250 6.73812 .27427 27474
7 1.99717 2.00316 .18963 .18882
8 .36404 .36555 .10607 .10641
9 .03483 .03501 .02268 .02276
10 .00127 .00128 .00116 .00117
11 .00001 .00001 .00001 .00001

* In computing the denominator of @ according to (22) the values of the coef-
ficients ¢; and ¢, were arbitrarily made zero and the value of ¢; (age 15) was ad-

justed to .02073 to retain the total Z ¢; = 1.16635.

compare with values of ¢, . The results are shown in Table 4. In view of the
fact that the (numerically) highest roots were determined only in first approxi-
mation, the agreement is satisfactory.

It is to be noted that instead of applying the solution (6) to compute values of
B(t), these latter can, of course, also be obtained directly, by carrying forward
step by step the original recurrent series; or, alternatively, the births in suc-
cessive generations can be computed step by step and the total births obtained
by addition. The advantage of the solution (6) is that it enables one, if desired,
to obtain B(t) for any value of ¢ without having to compute B(t) for all inter-
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vening values of ¢; also, the solution in an exponential series gives a better idea
of the general nature of the process, as well as a direct indication of its asympto-
tic course for large values of ¢, when the first term Qoz, ‘ with the positive real
root z, dominates all others.

TABLE 5

Synopsis of Results of Computation of B(t) as = Qx—t, Column (8), and a8
ZB.(t), Column (9), where B.(t) = Births per Unit of Time in nth

(Time Unit = 5 years)

Generation at Time t.

However this may be, it is interesting to compare.

A=Qx“=x“é A=Ff9_i—_u—;l——z{6cosvt-Hsinvt}
&
z*oru¥ | .97322* | —1.764* % —.19800 # |—.44720 % | — .47587 ¥ ZA
™
|
\\\ v
t >~ 0 0 0 1.06498 | 1.57000 2.40490
~
(6] 2) ® “) ®) (6) O] ®)

0 17,716 | 12,931 —80] 28,482 17,030 24,234 100,313
1 18,204 |—7,330 21 —415 3,828 | —13,781 527
2 18,704 4,156 —6| —19,498/—6,959 3,329 —274
3 19,219 |—2,356 1} —15,222/—1,572 2,256 2,326
4 19,748 1,336 1,022 2,844 -3,362| 21,588
5 20,291 —757 11,057 646 2,223| 33,460
6 20,850 429 8,102|—1,162 —749| 27,470
7 21,423 —243 —1,001] —265 —169| 19,745
8 22,013 138 —6,248 475 445 16,823
9 22,619 —78 —4,294 109 —344| 18,012
10 23,241 44 792 —194 145 24,028
11 23,880 —25 3,519 —45 -1} 27,328
12 24,538 14 2,265 79 —55 26,841
13 25,213 -8 — 568 18 51| 24,706
14 25,907 5 —1,976 —32 —26| 23,878
15 26,519 -3 —1,188 —8 4 25,424
16 27,352 1 ' 385 13 6| 27,757
17 28,105 -1 1,106 3 -7 29,206
18 28,878 1 620 -5 4| 29,498
19 29,673 —251 -1 -1 29,420
20 30,489 —617 2 —-1] 29,874
21 31,328 —321 1 1, 31,008
22 32,191 160 -1 —-1| 32,349
23 33,076 343 33,419
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TABLE 5—Continued

Bu(‘)

t Generalions, n

ZBa(t)

) 2 3) @ ®) )

) (10) ) (12) (13) (14) (15)
0 100,000
1 0
2 0
3 2,072 | 2,072
4 21,781 | 21,781
5 33,398 | 33,398
6 27,472 | 27,429 43
7 19,866 | 18,963 €03
8 16,735 | 10,607 | 6,128
9 17,954 | 2,268 | 15,685 1
10 24,033 116 | 23,889 28
11 27,361 1| 27,022 338
12 26,878 24,905 1,973
13 24,696 18,481 6,214 1
14 23,851 10,980 12,858 13
15 25,410 5,345 19,941 124
16 27,759 2,050, 25,030, 679
17 29,219 526 26,316, 2,377
18 29,506 76| 23,527, 5,897 6
19 29,414 5 18,092, 11,271 46
20 29,862 | 12,041 17,579 242
21 31,000 6,906, 23,191 903
22 32,348 3,381| 26,442 2,523 2
23 33,423 1,397 26,426 5,583 17

the result of the computation by means of the exponential series, carried out as
set forth above, with the corresponding results of the computation of births in
successive generations. This comparison is exhibited in Table 5.

It will be seen that the agreement is good except for the second to fourth
items, where perhaps the omission of the terms contributed by the numerically
highest roots makes itself felt.

5. Discussion.

(a) The real roots of the characteristic equation (5). It can be shown [8] that only
one of the real roots for z can be positive, and that the absolute value of any
other root must be greater than the positive real root.
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The negative real roots which make their appearance in the numerical
example call for special comment. Practically, the “higher” negative roots are
of little importance, at any rate in this example—first because the constants Q
with which they are associated are relatively small; second because large absolute
values of negative roots imply rapid damping, so that corresponding terms Qz~*
very soon become negligible as ¢ increases. Thirdly, the determination of these
roots would be subject to a wide range of uncertainty, corresponding to the large
percentage fluctuations or errors of determination of the values of the functions
p(a)m(a) = c, at the upper end of the reproductive period.

But in theory these negative real roots suggest some pertinent questions.
One wonders what would happen to them if the data were given, say, for single
years of age, instead of 5-year groups. Instead of an equation of eleventh degree
we would then have one of 55th degree. Furthermore, in those cases in which it
may be permissible to pass to the limit, so that an integral equation takes the
place of (2), negative roots for z would seem to be excluded as they would make
the integral in (13) meaningless.

A problem of perhaps little practical importance but of some theoretical in-
terest may arise here, to which reference has also been made by P.H. Leslie in a
recent article in Biometrika,” in connection with a different procedure.

(b) Effect of finer subdivisions of histogram of p(a)m(a). The effect of this on
equation (5) for = is not obvious at sight, since new coefficients would be in-
serted between previous terms. The effect is more easily understood from a con-
sideration of equation (8) for y. Here finer subdivisions would introduce new
terms only beyond the last term originally present. The original terms would
not be changed at all n form, and those involving only lower moments would
be changed but little in numerical value, provided that the original histogram were
not so coarse as to give inappropriate values even for these lower moments.

The result, then, of finer subdivision of the histogram, would be to change the
computed values of the lower roots only in minor degree. But the four negative
real roots, depending in considerable measure on the higher terms of (5) or(8),
would presumably be materially altered, and might perhaps give place to further
complex roots. In any case they would be followed by new roots even more
remote from practical significance than the original eleven.

(¢) The result as an interpolation formulg. Strictly speaking, the solution (6)
of (2) is applicable only for integral values of £. In particular, terms arising
out of the negative real roots of (5) for = are obviously not adapted to furnish
interpolated values of B(t) for fractional values of ¢, since fractional powers of

12 See [9] and [10]. For a brief summary and analysis of Leslie’s paper [9] see a review
signed with the initials WGB in the Jourl Inst. of Actuaries Student’s Soc., Vol. 4 (1946),
Part II. The first application of the matrix method to these problems seems to be due to
H. Bernardelli, “Population Waves,”” Jour. of Burma Research Soc., Vol. 31 (1941), Part I,

p. 1.
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negative quantities in general are complex. Over the range of ¢ where the first
real root together with the three parts of complex roots adequately describe the
process under discussion, these terms alone are, in this sense and to this extent,
suitable for interpolation, disregarding the terms corresponding to the other nega-
tive roots.

Even less suitable for interpolation purposes, it would seem, would be terms
arising from further negative roots that might be introduced by a finer sub-
division of the histogram of original data. If we suppose this subdivision carried
to great lengths, and if negative roots still appeared under these circumstances,
they would give rise to rapidly oscillating positive and negative terms for even
and odd integral values of ¢ respectively (the time unit now being a subdivision
of the original time unit) with no appropriate interpolation between these
integral values.

One further point calls for comment. In the process of idealization of the
problem discussed, it has been assumed that p(e) and m(a) are independent of
time, and the conclusions reached must be construed in the light of this assump-
tion. In itself this would hardly call for comment, as it is a matter of common
understanding. But the question does arise whether the assumption itself is
free from implied internal contradictions.

In a recent publication, P. K. Whelpton' has drawn attention to the fact that
in times of rapid changes in the birth rate, the assumption of age specific fertilities
being held constant at the values observed in a given calendar year may imply
that some of the women had more than one firs¢ child, a logical impossibility.

The data used in the present numerical example are derived from a period of
relatively undisturbed birth rate (1920), and do not involve any such conflict.
But, in the light of Whelpton’s contribution one may ask the broader question
whether the computation of an intrinsic rate of natural increase and related
parameters based on age specific fertility as observed in one calendar year
retain any practical value at all.

In answering this question, two considerations will be weighed. First, that
ordinarily the rates computed in the usual way differ but little from those ob-
tained by taking into account order of birth as in Whelpton’s procedure. Sec-
ondly, that the computation using over-all values of m(a) for all orders of birth
combined is a relatively simple matter based on data commonly available;
whereas the more complete treatment of the problem taking into account order
of birth is considerably more complicated and often not possible at all for lack
of detailed data.
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