ESTIMATION OF THE PARAMETERS OF A SINGLE EQUATION IN A
COMPLETE SYSTEM OF STOCHASTIC EQUATIONS'?

By T. W. ANpERSON® AND HERMAN RubIn'
Columbia University and Institute for Advanced Study

1. Summary. A method is given for estimating the coefficients of a single
equation in a complete system of linear stochastic equations (see expression
(2.1)), provided that a number of the coefficients of the selected equation are
known to be zero. Under the assumption of the knowledge of all variables in
the system and the assumption that the disturbances in the equations of the
system are normally distributed, point estimates are derived from the regressions
of the jointly dependent variables on the predetermined variables (Theorem 1).
The vector of the estimates of the coeflicients of the jointly dependent variables
is the characteristic vector of a matrix involving the regression coefficients
and the estimate of the covariance matrix of the residuals from the regression
functions. The vector corresponding to the smallest characteristic root is
taken. An efficient method of computing these estimates is given in section 7.
The asymptotic theory of these estimates is given in a following paper [2].

When the predetermined variables can be considered as fixed, confidence
regions for the coefficients can be obtained on the basis of small sample theory
(Theorem 3).

A statistical test for the hypothesis of over-identification of the single equation
can be based on the characteristic root associated with the vector of point
estimates (Theorem 2) or on the expression for the small sample confidence
region (Theorem 4). This hypothesis is equivalent to the hypothesis that the
coefficients assumed to be zero actually are zero. The asymptotic distribution
of the criterion is shown in a following paper [2] to be that of x*.

2. A complete system of linear difference equations. In many fields of study
such as economics, biology, and meteorology the occurrence of values of the
observed quantities can be described in terms of a probability model which, as a
first approximation, is a set of stochastic equations. Consider a (row) vector y.
of quantities which are observed at time t. Suppose that these quantities are
jointly dependent on a vector z; of quantities “predetermined” at time ¢ (i.e.,
known without error at time ). Some of the coordinates of z, may be coordinates

1 This paper will be included in Cowles Commission Papers, New Series, No. 36.
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of y:—1, Y12, etec.; other coordinates of 2, are quantities which are assumed given
constants. The set of vectors y.(t = 1,2, ---, T) are called endogenous. The
part of the set z; which does not consist of lagged endogenous variables is called
exogenous; these are treated as “fixed variates.” For convenience we shall
think of ¢ as indicating a point of time, although it may in many cases indicate
the ordering of a sample in another dimension, or, indeed, the ¢{ may indicate
simply a numbering of the observations (if z, is entirely exogenous). In a
dynamic economic model the endogenous variables are economic quantities
such as amount of investment, interest rate, amount of consumption, etc. The
exogenous variables are those quantities which are considered to be determined
primarily outside the economic system, such as amount of rainfall, amount of
government expenditures, time, etc.

A simple probability model may be set up on the assumption that these
quantities approximately satisfy certain linear equations. Specifically the model
is
(2.1) Buy: + Tuzi = e
where ¢ is a (row) vector having a probability distribution with expected value
zero and By, and Ty, are matrices, the former being non-singular. Primes ()
indicate transposition of vectors and matrices. If there are G jointly dependent
variables, there are G component equations in (2.1); that is, there are as many
equations as there are variables depending on the system. The fact that y.
and z; do not satisfy linear equations exactly is indicated by setting the linear
forms not equal to zero, but equal to random elements, called disturbances.
We will call the component equations of (2.1) structural equations, for they
express the structure of the system. For example, one equation involving the
amount of goods consumed, the prices of these goods, the size of the national
income, etc., might describe the behaviour of the consumers. Another equation
involving interest rate might relate to the behaviour of investors.

It has been shown [7], [11], that in general one cannot use ordinary regression
methods to estimate the matrices B,, and Ty, and the parameters of an assumed
distribution of the disturbances. Mann and Wald [9], for a special class of
systems, and Koopmans, Rubin, and Leipnik [11], in a more general case, have
obtained maximum likelihood estimates of all of the parameters for the case of
the ¢; having a normal multivariate distribution.

Since B,, is non-singular, we can rewrite (2.1) in a different form, called the
reduced form,

(2.2) y: = =By Ty2: + Byet,
or as

(2.3) ye = Izt + n:
where

(2.4) M, = —B, T,

(2.5) 10 = Bpe:.
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If ¢, has a normal distribution, so does n:. For a given ¢ then, we can consider
the model as specifying a distribution of y. with conditional expected value zI,, .

It is clear that we can multiply (2.1) on the left by any non-singular matrix
and obtain a system of equations which defines the same distribution of y. .
On the other hand, it has been shown that the only transformations of (B,,Ty)
which preserve the linearity of the system of equations are multiplications on the
left by non-singular matrices. If there are a priori restrictions on (By,I'y),
the set of matrices which result in new coefficient matrices satisfying these
restrictions is correspondingly decreased. If the set of admissible matric
multipliers includes only diagonal matrices the system of structural equations
is said to be zdentified. In this case only multiplication of all coefficients by a
given constant is permitted.

Knowledge of the distribution of y, given z, is obviously equivalent to knowl-
edge of II,, in (2.3) and the distribution of n.. When the system is identified,
the matrix B,, and
(2'6) Ty = _Bwnul
are determined uniquely except for multiplication on the left by a diagonal
matrix. Thus identification of a system is equivalent to the possibility of

inferring the structural equations from knowledge of the distribution. The
estimation of all coefficients of By, and I'y, has been considered in [11].

3. A single identified equation of a complete system. In many studies the
investigator may be interested only in a specific equation of the system, say,

(3.1) ﬁuy: + 'Y:z: = {e,

where ¢, is a scalar disturbance. The investigator may not be interested in the
entire system (2.1) of which (3.1) is one component. Since a considerable
amount of computation is necessary to estimate all parameters of a complete
system, there arises the problem of estimating only the coefficients of a single
equation. It is desirable to do this with the least possible restrictive assumptions
about the part of the system which is not the selected structural equation. In
order to treat the selected equation at all, we require that it is identified; that is,
that there are certain restrictions on (8, , v,) such that no linear combination of
rows of (B,,Ty,) satisfies these restrictions other than a constant times (8, , ‘vs).
It is not necessary to assume that every ¢component equation is identified ; that is,
that the entire system is identified.

We shall suppose that the restrictions imposed are that certain coefficients
are zero. We can arrange the components of the vectors so that the restrictions

are
(32) (Bﬂ ’ Ys) = (13, 0,7, O):
where

(3.3) B=(, 6%
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has H coefficients not assumed to be zero and
(34) vy=O 7

has F coefficients not assumed to be zero.

49

It will be convenient to divide the G components of y. into two groups (in
number H and G — H, respectively), and the K components of z; into two groups
(in number F and D respectively) according to whether or not the components

enter into (3.1) with coefficients not assumed to be zero.
3.5) Ye = (e, 1),

(3.6) 2e = (us, ),

where

3.7 ze = (Ta, -+, Tem),

3.8) re = (ra, -+ ,7,0-n),
3.9 U = (Ua, **+ , Uer),

(3.10) v = (va, ‘-, vm)-

Then the selected equation is

(3.11) Br: + yui = {0

Now let us see how the identification is accomplished.

H and G — H rows and F and D columns as
Iz, Iy
o = (o2 ),

we can write the reduced form (2.3) as

(3.12) zt = Moyu; + Mw; + o1,
(3.13) re = Omue + Moy + &,
where
ne = (8, &).

Multiplying the above equation with (8, 0) we obtain
(3.14) Bzt = Blzyu; + Bl + B3; .
Since this must be identical to (3.11) we must have
(3.15) y = —BI.,
(3.16) 0= —pL,.

Let

Partitioning II,, into

The matrices I, and II,, are defined by the distribution of z. given . and v,
(for at least K = D + F linearly independent values of ., v;). The equation



50 T. W. ANDERSON AND HERMAN RUBIN

(3.11) is identified if and only if the solution of (3.15) and (3.16) for 8 and v is
unique except for a constant of proportionality. This depends on the rank of
II., being H — 1. Thus a necessary and sufficient condition that (3.11) is
identified is that the rank of z; on v, be H — 1. In particular this implies that
the number of coordinates of v; (the number of zero coefficients in v,) be at least
H — 1. It can easily be shown that this condition is equivalent to requiring
that the rank of the matrix obtained by selecting the G — H_columns of B,
and the D columns of T, corresponding to the coefficients assumed zero in the
selected equation is @ — 1. This is the condition given by Koopmans and
Rubin [11]. Other homogenous linear restrictions can be put in this form.

If the vector e, is normally distributed with mean zero the vector 7, is normally
distributed with mean zero. Let the covariance matrix of 8; be Q... Then
the variance of ¢, = B6; is

(3.17) o = BB

The constant of proportionality in 8 may be determined by setting the variance
of ¢, 6%, = 1; another normalization is

(3.18) g =1,

where 8 is the ith coordinate of 8. In general the normalization can be written as
(3.19) B8 = 1,

where &, can be either a known constant or can be a known function of unknown
parameters.

As an estimation procedure for 8 and v and D = H — 1, M. A. Girschick
suggested in an unpublished note that one solve equations (3.15) and (3.16)
with (I3, , II,) replaced by (Pr.P..), the sample regression of x on w and ».
By these means Girschick found confidence regions (see section 8) for the
parameters of a two equation system. A similar idea lies behind a method of
O. Reiersgl [10].

The present paper develops a method for handling the case of D > H. In
this case the rank of P,, is usually H, thus giving no admissible estimate of 3.
The proposed method follows the approach used in discriminant problems.

In a second paper [2] the present authors shall give asymptotic properties of
these estimates that give a certain justification for the use of them. Under
very general assumptions concerning the v; and the ¢; we prove that these
estimates are consistent. These hypotheses permit the investigator to neglect
some predetermined variables absent from his particular equation. Alternative
assumptions include the case of the other G — 1 equations being non-linear.
Finally, it is shown that the estimates are asymptotically normally distributed.
For this result it is not necessary to assume that the disturbances are normally
distributed, or even that they have identical distributions.

4. A description of the estimation procedure. In a sense the dependence
of the endogenous variables z; on the predetermined variables u; and v, is given



ESTIMATION OF PARAMETERS 51

by the matrix (I3, II.,) of regression coefficients of z; on u, and »,. The
interdependence of the coordinates of z, indicated by the selected equation
nullifies the dependence on »; ; that is,

(4.1) Bl = 0.
Suppose we wish to estimate 8 and v from a sample of T observations:
(x1 ), (x2, #), -+ (@r, 2r). The information we need can be summarized

in the second order moment matrices

T
(4.2) Mzz = '%‘-,Z x:xty

t=1

(43) M.,

t=1 t=1

Ut U UV

(4.4) M = Muu Mm, - l t=1 % = tUe
22 Mm‘ Mvv T\ T , T ,

thutzvgfh

t=1 tm=1

) 1 T T
‘(Mzusz) = ’T Ex:utz x:v,),

Since one coordinate of u; may be unity there is no advantage in taking these
moments about the mean. We shall find it more convenient to use instead of
v; the part of v, that is orthogonal to u, ; that is, we shall use

(4.5) st = vy — Mo Mosus.

The moments are then M., , M., , Mo, ,

(4.6) Mu = Mo — MoM7AM,

and

4.7) M, = My — MMy M,,.
We can express the reduced form as

(4.8) zy = Mout + st + 8%,

where

IL. = H:u + HnMvuM—o;t )

4.9

(49) I, = I

An estimate of II., is the regression of z on s,
(410) P, = MstTJI .

To estimate 8 we take the 8 that makes BP,, smallest in the metric determined
by the moment matrix of the residuals

(411) Wee = Moy — PzaMuP::a - quMuuP;u ’



52 T. W. ANDERSON AND HERMAN RUBIN

where

This is the natural generalization of least squares; the greatest weight is given
to the component with least variance. This estimate is the vector satisfying

(4.13) (PeM o Pzy — vWo2)b' = 0
which is associated with the smallest root of
(4.14) IPﬂM“P;‘ bt VW@; I = 0.

This is normalized and the estimate of v is —bP.,

In section 5 we derive these estimates by the method of maximum likelihood
under certain assumptions. Although it is assumed that the disturbances are
normally distributed for this derivation, the estimates can be used in more
general situations. This theory is in one sense a special case of the theory of
estimating a matrix of means of a given dimensionality which is an extension
of the discriminant function theory [5]. For an application of this method of
estimation see [6).

6. Derivation of maximum likelihood estimates. We derive the estimates of
8, v, and ¢” under the following assumptions:
AssumpTION A. The selected structural equation

(3.11) Bry + yui = ¢

18 one equation of a complete linear system of G stochastic equations. The equation
is identified by the fact that if H s the number of coordinates in x. there are at least
H — 1 coordinates in v, , the vector of predetermined variables not in (3.11) but
in the system.

AssuMpTION B. At time t all of the coordinates of z, = (u., v:) are given.

AssumpTiON C. The coordinates of z, are given functions of exogenous variables
and of coordinates of ye—1, Y2, -+ . If coordinates of yo, y—1, --- are involved
in 2., they will be considered as given numbers. The moment matrix M,, is non-
singular with probability one.

AssumpTION D. The disturbance vectors &, are distributed senally independently
and normally with mean zero and covariance matrix Q..

We shall consider normalizations (3.19) where &, may be a function of other
parameters, but

(5.1) 0%../98 = 0.

We can state the results in a theorem:
TreoreM 1. Under assumptions A, B, C, and D the maximum likelthood

estimate of B vs
(5.2) B = b/ '\/b@,,bl,
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where b is the solution of
(4.13) (PasM P2y — yWo)b' = 0
corresponding to the smallest value of v and P, is defined by (4.10), M,, by (4.6),

and W, by (4.11). An estimate of v based on the mazimum likelihood estimate
1. s given by

(5.3) 4 = —BP.,
where P, 1s given by (4.12). The estimate of o° is
(5.4) 8 = (1 + »)/bd.b
if

(5.5) WY = 1.

‘We apply the method of maximum likelihood to
T
(56) L= 20|02} exp { —32 (@ — 21.)0% (vt — Hazt)
=1

under the restrictions (4.1) and (3.19). Replacing v. by s. and adding (4.1)
and (3.19) multiplied by Lagrange multipliers A (a vector of D, coordinates) and
¢ respectively to the logarithm of L we obtain after division by 7'

A = —3Hlog 2r + } log | 927 | + BILN + ¢(8%..8" — 1)

T
(57 — L3 (@ — il — sTIL0EN ) — M) — Musl).
2T =1
Differentiating (5.7) with respect to 8, we obtain
(5.8 %‘3— = IL.\ + 2¢28'.

Setting this equal to zero and multiplying by 8, we have
BILA" + 2¢6®,.8" = 0.

By virtue of (4.1) and (3.19), the Lagrange multiplier ¢ must be zero. Hence,
as far as the derivarives of (5.7) are concerned the restriction (3.19) does not
enter. The setting of the derivatives of (5.7) equal to zero and (4.1) will define
B except for a constant of proportionality which is finally determined by (3.19).
For convenience in deriving the estimates we shall use the normalization

(5.9) B8 = 1.

The derivatives of (5.7) with respect to the coordinates of Q.. , IE;. , II,. , and
B are set equal to zero, resulting in

sz = Mzz - Mzaﬁ;a - Mzun;u - ﬁstQz

5.10
( ) - zuM uz + ﬂzuM tmn::u + ﬁzaM uﬁ:l ’
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(5.11) O (M — NoML) + A =0,
(5.12) Qe (M, — M.uM,) = 0,
(5.13) LN =0

Solving (5.12) for I, , we obtain
(5.14) .. = P..
defined by (4.12). Solving (5.11) for 1., , we obtain
(5.15) 0., = P, + Q..M.
Multiplying (5.15) by 8 and solving for A, we obtain
(5.16) A = —pP.M,,.
Substitution into (5.15) gives
(5.17) . = (I — Qef'B)Pus .

In view of (5.14) and (5.17) we can write (5.10) as
(5.18) Qoo = Weoo + Qof'AP..M.P.BA0 .
Let
(5.19) BP.M . P = p.

Then multiplication of (5.18) on the right by A’ with use of (5.9) gives

’

sz,é’ = szﬁ' + Qnﬁ’ép ﬂMuP zlﬁl

= Wb + uf,
that is,
(5.20) Dol = 1—1‘-‘ Wb
Equation (5.13) can be written as
(5.21) PuMuPof — B = 0

by substitution from (5.16), (5.17) and (5.19). Combining (5.20) and (5.21) we
obtain

(5.22) (PaM Py — wWa)B = 0,
where

(5.23) v =/l — p).

For (5.22) to have a solution, » must be a root of
(4.14) | PeuM Pz — vWa | = 0.

Substituting from (5.20) into (5.18) we obtain
1 2 A, A AL A
(524) Qo = Wae + I (].T;) WeB'BWo = Wee + v(1 + VWl BWes .
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To determine which root of (4.14) to use we shall compute the value of the
likelihood function when these estimates are used. It will be convenient to use
the solution b of (4.13) with normalization (5.5). Thus b is proportional to §;
in fact, since

from (5.20), we see that

B=0bv1—=p=0b/A/1T+Fy.

Let the other solutions of (4.13) be by, <++,bs, with corresponding roots
”2 ’ e o0 N yu N and

b
be
B*= |’
bz
Since
(5.25) | Qoz | = | Waz + vWob'dWos |,
we have .
(5.26) | B¥ || @z || B¥ | = | I + vB*W..b'bW,.B* |.
Since
bW..B¥ = (1,0, --- ,0),
and since

| B*|* = | Wa: | 7,
we deduce from (5.26)
| Qe | = | Weae | (1 + 9).
Multiplying (5.10) by {z; , taking the trace, and substituting in (5.6) we obtain
(5.27) L = @re)™™ | W | (1 + o).

This is a maximum if » is the smallest root of (4.14).
The theorem now results. The expression for &° follows from

& = BB = b0 /bbb .

If &, is a known constant mat-ix, $, = ®,.; if ®,, is a function of the param-
eters, &, is the same function of the estimates.
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If we define

(5.28) $ = -0z,

we have by (4.9)

(5.29) § = —B(lle — N MuML).

Since § annihilates 11, , (5.3) results.
The estimate of II,, is given by (5.17) and the estimate of Q,, is

(5.30) oz = Woo + vW bW, .

6. The likelihood ratio test of restrictions. It has been assumed that the
selected structural equation is identified by imposing the restrictions that certain
coefficients are zero. It was noted in Section 3 that at least G — 1 such restric-
tions are necessary. If D, the number of restrictions on the predetermined
variables, is more than H — 1, we can test the hypothesis that these D coefficients
are zero against the alternative that only a smaller number are zero. This is
equivalent to a test that II., is of rank H — 1 against the alternative that the
rank is H.

It can be seen intuitively that the smallest root » of (4.14) indicates how near
P, is to being singular. This statistic can be used to test the hypothesis that
I, is of rank H — 1. The test is similar to the test of rank suggested by P. L.
Hsu [8]. The test is stated precisely in the following theorem:

THEOREM 2. Under assumptions A, B, C, and D the likelihood ratio criterion
Jor testing the hypothesis that I1,, is of rank H — 1 against the alternative that it is
of rank H 1s

6.1) 1+,
where v vs the smallest root of (4.14).

Proor. If there is no restriction on II, , the maximum likelihood estimate of
I, is P, , of II;, is P, and of Q,, is W,,. Then the likelihood function is

(6.2) @re) 1 | W, | 7.

The ratio between this and the likelihood function (5.27) maximized under the
hypothesis that the rank of II,, is H — 1 is (6.1).

It.is proved in the paper following the present one that under certain conditions
(more general than those of Theorem 2)

(6.3) —2log [(1 + ») ¥ = Tlog (1 + »)

is distributed asymptotically as x* with D — H 4 1 degrees of freedom. Thus
an approximate test of significance is given by comparing (6.3) with a significance
point of the x’-distribution with degrees of freedom equal to the excess number of
coefficients required to be zero (i.e., the number beyond the minimum required
for identification).
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7. Computational procedure. The estimation procedure in sections 4 and 5
does not indicate the wost efficient method for computing those estimates. The
procedure given here is believed to be efficient for ordinary computational equip-
ment and can easily be adapted for sequence-controlled computing machines.

Let us see what expressions occur in the estimation procedure for 8 and .
We find that we must first know P, M,,P;,, W.., and P., ; these will suffice
if &, is constant or Q., to estimate B, v, and ¢°. In what follows, we shall
assume the normalization is 8 = 1, as the results for other normalizations
follow immediately. Examining the estimation equations, we see that we may
use any matrices proportional to the moment matrices. If equation (3.11)
has a constant term, it is better to use moments about the mean and estimate
the constant term by setting the calculated mean of the disturbances equal to
zero. One possible method of correcting for the mean is to calculate

T T T
@) =T X e - (Sn)(Te)-

=1 t=1 t=1
The estimation procedure for 8, ¢°, and the remainder of v is not affected by
correcting for the mean. The computational procedure indicated here is
unchanged except for a factor of proportionality in the equation for ¢ if a
different form of correction for the mean is used.

7.1.  Calculation of M M, M,. and W.,. It is known that

(72) sz = Mzz - leM:leu .

We shall use (7.2) to compute W,,. We shall compute M., M;.M,. by the
method given by Dwyer [4]. Let us denote the element in the ith row and
jth column of M,, by a;;, and the element in the ¢th row and jth column of
M., by b;;. Let us construct the following array
CuCp *** Gk €un €2 *** €ig
dlldm et dlx fll f12 Bl flE
Cp **° Ok €16 *°° €25
dp - axfufe -+ fom

CEKK €K1€x2 *** €KH

dxx lefK2 s fxn

where
Cij=aij"‘kz:.dks'0kj, 1<:i<j<k,
<t
eij = bij — ), duew, 1<i<kl1<j<H
k<1
dei=2—:j, 1<i<j<K,
fi= 2, 1<i<K1<j<H

Cii



58 T. W. ANDERSON AND HERMAN RUBIN

Then the element in the ith row and jth column of the symmetric matrix
M ZGM Z_ZIM T is

K

2 ewifii-

k=1

If we wish to estimate several equations in the system by this method, this
step need only be done once, as M. M7+ M,. and W.. do not depend upon the
equation (except that z would be enlarged).

7.2. Computation of P., . We shall compute P, by the abbreviated Doolittle
method. Let us now denote the element in the ¢th row and jth column of
M., by ai;j, of M., by b;;. Then let us perform the previous operations, not
including the last step. We may arrange the work, if only one equation is to
be estimated, so that this is already done. Then define

i = fii — 2 daugn, 1L5i<F1<j<H.

i<k<F
Then the element in the tth row and jth column of Py is g;i .
7.3. Computation of P..M wPz: . We know that
(7.3) Pz:Man’n = leM_;slMu - MzuMZl{cMuz .

Let us compute P..M, P2, , using (7.3). We must first calculate M. M. .
We may do this either by the method of section 7.1, or as PzuMu. .
7.4. Computation of v, B, and 4. We shall use

(5.3) ")\f = - 3 P zU
to compute f} after hasf been computed.
Case 1) H = 1. In this case the vector § = (1), ¥ = PuM.Pi/Wo..

Case 2) H = 2, D > 1. Let a;; denote the element in the <th row and jth
column of P..M,,Ps,, wi; the element in the 7th row and jth column of W, .
Define

ko = IstMuPa'n | ’

kl=|sz|

k2 = 3(auwz + axwn — 2a1w).
Then

b= Vi~ khk
T :
Let ® = PuM, Pl — vW.s. Then

g =1,
[32__5_“=_é£
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Case3) H =2,D = 1. Inthiscase » = 0. Then § = P, M,P., , and B
may be computed as before.
Case 4) H > 2,D > H — 1. Using the procedure of section 7.2, compute

A = (PuM.P)L"'W.,. Let us multiply equation (5.22) by — - (PuM.PL)™,
14

and set 1/» = X. We obtain

(7.4) (A - =0,

where A is the largest characteristic root of A. Then we may employ the
method of Aitken [1] to estimate A and 3. Let go be an approximation to j.
The column of A with largest absolute values is generally a satisfactory
approximation. Define

qi = Agi,
i
Ni= &
qi—1

The quantities \;; approach \ as ¢ increases, and the normalized vectors Qi
approach . The convergence may be accelerated by the methods given by
Aitken. The normalization should not be carried out until the \;; are sufficiently
close for different j.

Case5) H > 2,D = H — 1. Let us go through the procedure of section 7.2
with A = P.M,P;,, and with no matrix B. Then cax = 0. Set gz = 1,
and compute

g = - 2 dags,

i<k<H

Then

7.5. Computation of 8*. We have
(7.5) & = BB = (1 + v)BW.B.

If we use the m*’s instead of the m’s, we must divide by T? and if other factors
of proportionality are used, we must divide by them. o is in general biased,
but the bias depends upon the nature of the complete system, and is not easy to
calculate. The bias is of the order of 1/7.

8. Confidence regions based on small sample theory.® If all of the pre-
determined variables in the system are exogenous (i.e., “fixed”), we can obtain
confidence regions for the coefficients of one equation on the basis of small sample
theory. To do this we require only that the disturbance of the selected equation
be normally distributed; that is, the linear form in the observations Bz: + vu:

5 We are indebted to Professor A. Wald for assistance in simplifying our approach to this
problem.



60 T. W. ANDERSON AND HERMAN RUBIN

is normally distributed with mean zero and variance ¢*. The regression of this
on fixed variates is normally distributed and certain quadratic forms in these
linear forms have x’-distributions. On the basis of this we can set up confidence
regions for the coefficients.

In addition to assumptions A and B we use the following:

AssuMpTioN E. All of the coordinates of z: = (u. ve) are exogenous. The
moment matriz M, is non-singular. The disturbances of the selected equation are
distributed independently and normally with mean O and variance o

Suppose we have a set of observations (z1, w1,v), -++ (¢r, ur, vr). If
we know 8 and ¥ we can obtain T values of

(8.1) we = Bzt + yur, t=1,.--,T.

The sample regression coefficients of w. on u, and s, are

(81) T 2 weus My uh = BMWM_Q:}‘ + 7
t=1

(8.3) 1 Z w, s May = M. M.,
c=1

The two vectors ¢ and e are distributed independently and normally with mean 0
and covariance matrices

(8.4) &(cc) = o’ Muu,
(8.5) &(e'e) = ’M,, ,

Hence (by usual regression theory)

(86) C= ;1'_20Muu0' = o,lzlﬂMwM:tMuzﬁ’ + BMzu'Y' + 'YMuSB’ + 7M“‘“'7]’
8.7 E = lz eM e’ = —lé BMHMTOIM«:BI

g g
= %6(Mw - MzuM:tMuv)(Mw - M'uM:}‘Muo)_l(M'z - MwM:hMuz)B"

(8.8) A= (T‘Z_)l w:— C — E) = gzew,;a',

are distributed independently as x° with F, D, and T — K degrees of freedom,
respectively. The ratio of any two has an F-distribution.
On the basis of these considerations we can obtain the desired confidence

regions.
THEOREM 3. Suppose assumptions A, B, and E are true. If the normalization

18

8.9 BE..A = 1.
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where ®., s a given matriz, (a) a confidence region for B of confidence e consists of
all B* satisfying (8.9) and

B*M . M, M., 5% T'-K
B*W .. 8 D
where Fp r_x(e) s chosen so the probability of (8.10) for B* = B is e. (b). A
confidence region for B and v simultaneously consists of all B* and v* satisfying

(8.9) and
B Mo Mo M8 + B*Mav™ + v*MauB* + v*Muuv* + B*M. M M 8%
B*W .. 8%

(8.10) < Fpr—x(6),

8.11
(8.11) ok

K

(c) If the normalization is ¢ = 1, then a confidence region for B of confidence
ae consisis of all B* satisfying

(8.12) ﬁ*Msz:thnzﬁ*, < xz(el)y
(8.13) l(zr-x (52) < B*WB* < Xr—x (52)’

where x»(e) ts chosen so that the probability of (8.12) is & when 8* = 8 and x?r_x(e)
and x*r—x(e) are chosen so that the probability of (8.13) is e when 8* = B8 and

SFx,r—x(f)-

(8.14) x(a) £ 1L %(e)

(d) A confidence region for B an vy stmultaneously consists of all B* and v* satisfying
(8.13) and

(8.15) B*M . MoiM 8% + B*My® + Y*MuB* + v*Mouy*
+ B*MaM—;alMads*' S Xi (61).

Region (c) is the interior of an ellipsoid and an ellipsoidal shell in the 8*-space;
region (d) is similar in the 8* y*-space. Region (a) consists of the intersection
of the quadric surface (8.9) n1d the interior of a cone in the 8*-space; region (b)
is similar in the 8*, y*-space.

It is clear that there are many other ways of constructing confidence regions
by taking regression on other fixed variates. Of these the best seem to be those
of theorem3. It has been proved [2] that the regions of theorem 3 are consistent
in the sense that for sufficiently large T' the probability is arbitrarily near 1 that
all of the confidence region is within a certain distance of 8 or 8, v. For an
application of this technique to :conomic data see a paper by Bartlett [3] who
suggested this method independently.

9. An approximate small sample test of restrictions. When g* = g3, the
prokability of (8.10) is e. If 8* is replaced by 3 which minimizes the expression
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on the left, the probability is at least as great; it is, say, 1 — 8. This ratio is A,
the smallest root of

1 by _ T _
(9.1) 1—) Mz.Mrg 3z k m sz = 0,
Since
92) k=£%£m

where » is the smallest root of (4.14), the probability of

TD
. >
93) v 2

F D.T—K(e)

is6 < (1 — ¢). We summarize this as follows:

TueoreM 4. Under assumptions A, B, and E, the inequality (9.3), where v s
the smallest root of (4.14), constitutes a test of the hypothesis that the coefficients of
v, tn the selected structural equation are zero of significance less than 1 — e.

This test is simply an approximation to the test given in section 6. The
exact probability, 8, of (9.3) is unknown; in fact the distribution of » depends on
II,, and the distribution of §;. However, since § lies between 0 and 1 — ¢, we
know that if the test is used as though the level were 1 — ¢, the test will be
“conservative.”

Another approximate test of the restrictions can be obtained from the in-
equality (8.11). If the hypothesis is rejected on the basis of one of these tests,
the corresponding confidence region (for 8 or for 8 and v) is imaginary, for all
B8 or 8 and v are excluded. It should be noticed that the use of a given ratio
to test the hypothesis at significance level (<1 — ¢) does not affect the con-
fidence coeflicient e of the confidence region when the hypothesis is true.
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