SOME LOW MOMENTS OF ORDER STATISTICS
By H. J. GopwiIN

University College of Swansea, Wales

1. Introduction. In a paper on order statistics from several populations
[1], there were given, among other results, the means, variances, covariances, and
correlations of order statistics in samples of ten or less from a normal population.
These were obtained by numerical integration, and on account of the difficulties
arising therefrom, some results were given to only two decimal places. More
recently, Jones [3] has shown that some of the integrals, for sample sizes not
greater than four, can be evaluated explicitly.

In this note these results are supplemented in two ways. For a paper which
the author has recently submitted to Biomeirika integrals were evaluated which
can be used to give some of the results in [1] to more places of decimals. It is
also shown that the table of explicit values can be extended.

2. Approximate values. Let the population studied be normal with mean
zero and variance unity, and let the members of a sample of n be z(1 | n) >
2(2|n) > --- > x(n|n). The integrals available are

vi) = [ P - F@) de <i<5), and

v, = [ 7@ [0 = Fa) dsay <5 +5 < 10)

where

z z 1 "
Fl) = L 1) dt = L T

These were evaluated to ten places of decimals, the last place possibly being in

error by one or two units.
For the purpose in hand we define also

aG,) = [ & F@)(1 ~ F@) do = ~a(j, ),

and

86, = [ & S@P @0 — @)Y dz = 66, .

Now, on integrating by parts, we have

[ @~ ra)dy = ~att - Fe) + [ viw) d,
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and for f(z) as defined above (so that in what follows we restrict ourselves to the
normal distribution only), the second integral is f(z). Hence ¢/(7, 1) + a(, 1) =
1/(¢ + 1) and we can construct a table of o’s by using also the relation

a(,§) — a@@ + 1,j) = a@,j + 1).

Again, on integrating by parts, we have

coN * FH-I(QJ) .2 i—1 < .
B, 1) = B {ir’ fl@)(1 — Fx))"™" — 22(1 — F(x))'} dz(G > 0)
=z+1{zﬁ(z—1,i—1)—6(i,i)} +1a(t+11)

using the fact that, in this particular case, 2F — 1 is an odd function and
F(1 — F) an even function of z.
Hence (2, 1) = ICTE) Bt — 1,7 —1) — 5 + i

8@, j) — BE + 1,7) = B, 7 + 1) we can find the fs.

a(t 4+ 1, ), and using

Finally we put v(z, 7) = 7 which can be shown by
an integration to be equal in this case to v (j, 7).

Now
(1) E@@|n) — 2@+ 1|n) = "Ce_[ F*™(@)(l = F(z))" de,

as was proved by Irwin [2]. By the symmetry here this integral is the same
if 4, n — © are interchanged, and since F*(1 — F)° 4+ F°(1 — F)* is a polynomial
in F(1 — F) (as may be seen by putting F = 3 + @) the integrals (1) can be
expressed in terms of the ¥ (7). Using the fact that the expected value of the
median is zero the E(x(z | n)) follow.

The frequency function of x = z(¢ | n) is

== /@1 — PP,

and so
(2) E(x(i|n))’ =i"Ci G — 1,n — 1).

The joint frequency function of z; = 2(¢ | n) and z; = x(j | n) is

T =T @ (1~ Fa) e — Fa)Y )

(taking § > 1), and to find E(x; z;) we multiply by x; z; and integrate, x; going
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from —w to o, and x;fromz;to ©. On expanding (1—F(z;)— (1 —F(z;))) "
by the multinomial theorem a typical term is

®) [ [ wwii@ia)a - Pe)™ 7+ () v, de..
o Jz;
TABLE 1
Means and standard deviations

Statistic Mean Sg%?ggg% Statistic Mean Bg%?gggi
x(1)2) .5641896 .8256453 z(1]8) 1.4236003 .6106530
z(13) .8462844 .7479754 x(2/8) .8522249 .4892862
x(2/3) 0 .6698292 x(3|8) 4728225 .4480723
x(1[4) 1.0293754 .7012241 z(4/8) .1525144 .4326503
z(2[4) .2970114 .6003793 z(1]9) 1.4850132 .5977903
x(1/5) 1.1629645 .6689799 z(2|9) .9322975 .4750755
z(2]5) .4950190 .5581388 z(3]9) .5719708 .4317205
z(3|5) 0 .5355685 x(4|9) .2745259 .4129877
z(1]6) 1.2672064 .6449241 z(5)9) 0 .4075553
z(2|6) .6417550 .5287511 z(1/10) | 1.5387527 .5868083
x(3]6) .2015468 .4961981 z(2[10) | 1.0013571 .4631674
z(1|7) 1.3521784 .6260334 x(3|10) .6560591 .4183339
x(2[7) .7573743 .5066882 x(4/10) .3757647 .3974153
z(3|7) .3527070 .4687447 z(5|10) . 1226678 .3886565
x(4|7) 0 .4587449

We integrate by parts with respect to z; and then with respect to z; : the integral
(3) is then seen to be y(¢ + r,n — 7 + s + 1), and

n! j—=i—1 j—i=l1—r

C=—DIG—7—Dln—H)! = =
(=)™ — i — 1)!
risl{(j —i1—1—1r—yg)!

E(xiz;) =
4)

ye+r,n—j54+ s+ 1).

Using (1), (2) and (4), the values in Tables 1, 2, and 3 are obtained. The
values are estimated to be correct, except for sample sizes 9 and 10, for which
there may be errors of one or two units in the last place given. Missing values
are filled in by considerations of symmetry.

3. Exact values. All the integrals occurring for ¢(2) or ¥(z, 7) can, by suitable
transformations, and the integration of one variable over the range —w to o,
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TABLE 2

Variances and covariances

j

1 2 3 4 5 6 7 8 9 10
2 | 1/.68169|.31831
3 | 1].55947|.27566|.16487
2 .44867
4 | 1].49172|.24559|.15801|. 10468
2 .36046) . 23594
5 | 1{.44753|.22433|.14815(.10577|.07422
2 .31152(.20844/.14994
3 .28683
6 | 1{.41593|.20850|.13944|.10243|.07736(.05634
2 .27958|.18899|.13966/. 10591
3 .24621|.18327
7 | 1/.39192].19620].13212|.09849|.07656|.05992|.04480
2 .25673|.17448|.13073|.10196|.07998
3 .21972|.16556|.12960
4 .21045
8 | 1{.37290|.18631|.12597.09472|.07477|.06021|.04830|.03684
2 .23940].16320|.12326|.09757|.07872.06325
3 .20077|.15236|.12096|.09782
4 .18719|.14918
9| 1|.35735(.17814|.12075|.09131|.07274|.05948|.04908|.04009|.03106
2 .22570|.15412|.11701|.09345|.07655|.06324|.05171
3 .18638|.14208|.11377|.09336|.07723
4 .17056).13699|.11267
5 .16610
10 | 1|.34434|.17126|.11626|.08825|.07074|.05840|.04892|.04108|.03404|.02675
2 .21452|.14662|.11170].08974{.07420|.06222.05232| .04336
3 .17500(.13380|.10774|.08923|.07492|.06302
4 .15794(.12751}.10579|.08895
5 .15105{. 12560
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TABLE 3
Correlations between order statistics
; :
n 1
2 3 4 5 6 7 8 9 10
2 1 .4669
3 1 .5502(.2947
4 1 .5834|.3753|.2129
2 .6546
5 1 .6008|.4135|.2833|.1658
2 .6973|.4813
6 1 .6114{.4357|.3201/>2269|.1355
2 .7203|.5323|.3788
3 .7444
7 1 .6185|.4502|.3429|.2609|.1889|.1143
2 .7346|.5624|.4293|.3115
3 .7699|.5899
8 1 .6236.4604,.3585|.2830|.2200/.1617|.0988
2 .'7444].5823|.4609|.3591|.2642
3 .'7859].6240|.4872
4 .7969
9 1 .6273(.4679|.3699| . 2986 .2409 .1902.1412{.0869
2 .7514|.5964|.4827].3902|.3083|.2291
3 .7969|.6466).5236|.4144
4 .8139|.6606
10 1 .6301|.4736/.3784|.3102(.2561|.2098|.1674|.1252| .0777
2 .7567|.6068|.4985|.4122|.3380|.2700|.2021
3 .8048;.6627|.5488|.4507|.3601
4 .8255|.6849|.5632
5 .8315

be represented as multiples of f R f e %dxdy ---, where Q is a positive-

definite quadratic form in the variables of integration.
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Now if Q is aa’, the integral is 4/ 7/a (this is, in effect stated by Jones)

By elementary integration we have also that if Q = a2’ + 2hzy + by, the
integral is

1 h
\/ab = h2{ — arc tan \/ b — hz}

TABLE 4

Ezact expected values
2(1]4): vz [(2/5)a + @/5)]
z(2[4): V' [(2/5)a — (6/5)c]
z(15): V' [(1/3)a +c]
z(2/5): V7 [(2/3)a —2]
z(3]5): 0
z(1]5)%: 1 +b +d
x(2/5)2: 1 —4d
x(3]5)2: 1 —2b +6d
z(1]5)x(2(5): b +d
z(1|5)z(3|5): 2a —2b —2d —f
2(1|5)z(4/5): —2a +3f
z(1|5)z(5]5): —-2f
x(2|5)x(3|5): —2a +3b —d +f
2(2]5)x(4]5): 4a —4b +4d  —4f
z(16)2: 1 +b +3d
2(2]6)2: 1 +b —9d
(3]6)2: 1 —2 +6d
z(1|6)x(2]6): b +3d
2(1]6)x(3/6): 3a —2 +3¢ —6d —3f
x(1|6)x(4]6): —3a . —9c +9f
z(1]6)z(5/6): 12¢ —6f
x(1|6)2(6]6): —6¢
x(2]6)x(3]6): —3a +4b —-3c +3f
2(2/6)x(4/6): 9a —6b +9¢ +6d —15f
x(2/6)x(5]6): —6a —18¢ +18f
x(3]6)x(4]6): —6a +6b —6d +6f

and if Q is az’® + by’ + cz2 + 2fyz + 2gzx + 2hxy, the integral is

1 T )T " af ¢ hf " f_Ch}
4,‘/5 §+arc an\/ -+ arc tan \/b —l—arcan \/A

Where A = abc + 2fgh — af’ — bg® — ch’.
The author has not succeeded in obtaining similar results with a higher
number of variables—it is possible that elementary functions no longer suffice

then.
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Using these results we can obtain exact expressions for ¥(1), ¥(2) and ¥(¢, )
for1 < 7,737 + 5 < 6, which give, in addition to Jones’ results, the exact expected
values in Table 4, wherein

a = 15/4x = 1.19366 20732,
b = 54/3/4r = .68916 11193,
¢ = (15/27%) arc sin (1/3) = .25824 50843,

.11085 93167,
.63913 55493.

(54/3/27") arc sin %
f = (15/7°) arc sin (1/4/6)
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