INVERSION FORMULAS IN NORMAL VARIABLE MAPPING

By JouN RIORDAN
Bell Telephone Laboratories, New York

1. Summary. The two inversion formulas considered here arise from study of
G. A. Campbell’s work on the Poisson summation, which is described more fully
in the introduction and in the main consists of finding a function or mapping of
a variable connected with the summation in terms of a normal (Gaussian)
variable g. More generally, this last is a process often called ‘“normalization of
the variable” and associated with the names of E. A. Cornish and R. A. Fisher.
The mapping is two-way and the main inversion formula determines co-efficients
for one way from those for the other, both sets of coefficients being descriptive
of their mappings. More precisely if = is a given variable, g a Gaussian variable,
y a parameter of the mapping, and the two mappings are

z =g+ 21: Ga(9) ¥"/n,

g=2z+ i X.(2)y"/n!,

the formula expresses G.(z) in terms of X(z), ¢ < n, and vice versa.
The second formula is more particularly related to the Poisson summation
and relates coefficients p, = p.(g9) and ¢, = g.(g) in the pair of equations

0
a=c, g.c"/nl
0

0
c=a 2 p,.a'*"/n!
0

Both formulas, which are necessarily elaborate, are given concise expression
by the use of the multi-variable polynomials of E. T. Bell.

2. Introduction. In 1923, in a paper little known in statistical circles, G. A.
Campbell [2] gave as the basis for his extensive tabulation of the Poisson summa-
tion an asymptotic series expressing the average a in terms of a normal variable
g, corresponding to the probability of at least ¢ occurrences, and c itself. That
is to say, he associated with the Poisson summation

P(a,c) = 2 € a’/x!

a normal variable g, defined by

g

. 1
P(a,c) = —\/2——_” [ e dx
417
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and inverted the summation (which, as is well known, is equivalent to the in-
complete Gamma function ratio) to give a series for a in terms of g and ¢. The
series, which is carried to 11 terms, starts as follows:

a~c|:l+gc_1/2+g 1 _1+g 6796—3/2+"']

If = (@ — c) ¢ " is introduced, this becomes

g-1 Rl g -1 e
T~g+ + 55 +
and z is seen to be, like g, a standardized variable of mean 0, variance 1.

It seems to have gone unnoticed that this result includes the x® distribution
through the transformation: 2a = X%, 2¢ = n and it has been rediscovered by
A. M. Peiser [7] (4 terms) and by Goldberg and Levine [4] (6 terms).

It is possible also to express ¢ in terms of a and g, and a formula of this kind
with fewer terms which appears in a footnote in Campbell’s paper is as fol-
lows:

C'\/a[l— —l/2+g +2 —1+g;|;2g _3/2+”.]

Finally there is a third possibility of expressing g in terms of the remaining
variables, preferably x and c¢; though unnoticed by Campbell this has since been
brought to prominence by Cornish and Fisher [3], Hotelling and Frankel [5]
and Kendall [6].

The idea behind the first expansion appears most clearly in the second form
and is that for ¢ large the variable x behaves nearly like g. The third possibility
reverses this expansion and gives a function of x and ¢ which behaves like g;
hence if this function is first evaluated, reference to the normal integral table
gives an immediate evaluation of the probabilities in question. Put in another
way, the expansion widens the scope of the normal integral table and for this
reason has been called “normalization” of the variable (but this term seems pre-
empted by its use in another sense for orthogonal functions, and has been re-
placed in the title by normal variable mapping).

From the point of view of statistical theory, the three expressions are different
versions of one relationship, which suggests that there should be general rules
for transforming a series of one type into that of another. The two inversion
formulas given below supply these rules in what appears to be as compact a form
as the problem allows. It will be noted that the proofs given suppose convergent
series, a case which leads to clarity and brevity and is interesting in itself. Ap-
plied to Campbell’s series, they give the known results so far as the latter go,
but of course for other asymptotic series they need independent verifications.

3. First Inversion Formula. This relates coefficients in series like Campbell’s
first and its reverse as in Cornish and Fisher. More precisely
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If Gi(g), Ga(g) - -+ are assigned polynomials and if

¢) z =g+ 2 Glo)y/nl,

defines z in terms of g and a parameter y, then

(2) g=1x+ 21: X.(z)y"/n!,

where

(3) _Xn(x) = ,Yﬂ(aGl(x)7 an(x)) ] aGﬂ(x))’
TABLE 1

Bell Polynomials Y, (fg1, g2 * + * fgn)

Y, = f1g1
Y, = fig: + fzgl
Y3 = figs + f2(3g291) + fsgl
Yy = figs + fo(4gsg1 + 392) + fa(ﬁgzgl) + f4gl
Yy = figs + fo(5gsgn + 109392) + fi (109391 + 159291)
+ f2 (10g:1) + figt
Ys = fige + fz(ﬁgsgl + 159492 + 1093)
+ f3(15g4g1 + 60939291 + 1592)
+ fu(20g;91 + 45g2g1) + fs(15g2g1) + fogi
Y7 = figi + f2(7gegl + 21gs9: + 359493)
+ f3(2lgsgl + 10594{]291 + 709391 + 105gsg2)
+ f4(35g4gl + 2109392571 + 1059291)
+ f5(35gag1 + 105g3g3) + fo(21g:91) + fogt
= figs + f2(8g7g1 + 28gege + 569593 + 359%)
+ f3(289691 + 168959291 + 280949391 + 2109402 + 28093(]2)
+ f4(569591 + 42094(]291 + 280(]391 + 840g:959: + 105¢3)
+ fs(7094g1 + 060939291 + 4209291)
+ fo(56gs93 + 210g2g1) + f2(28g:91) + fugl

Y, being the multivariable polynomial of E. T. Bell [1], in the variables Gi(x) to
G.(x) and the symbolic variable a which is such that

o =a;= (-D)7', D =d/da,

with differentiations on all products of Gi(z) to Ga(x) associated with it in the poly-
nomstal.

Note the symmetry of z and g, which allows the transformation to go either
way, the inverse of (3) being

4) —Gn(g) = Ya(aXi(g), aXa(g) -+ - , aXa(9))

Table I gives explicit expressions for polynomials ¥, to Ys. It will be noted
that the number of terms in Y, is the number of partitions of n and that f; , the
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variable replacing a; in the table, is associated with terms corresponding to
partitions with ¢ parts; that is to say, if Y,,; designates such terms

Y, = ; fi Vs

The verification or extension of the table may be accomplished by the formulas
and relations given by Bell (l.c.) or more directly by those modifications of Bell
given by myself in [8].

The first few instances of (3), dropping the common variable z for brevity,
may be read off from Table I (with appropriate changes of notation and inter-
pretation of a;) as follows:

-X, =G
-X; = G; — D(G)
—X; = G5 —3D(G:G)) + D*(G1)
—Xi = G —4D(GsGY) — 3D(G3) + 6D*(G:G1) — D*(GY)
Applied to Campbell’s first formula in its second form with y = ¢
Gix) = (" — 1)/8, Gi(x) = (—6s" — 142 + 32)/270,
Go(zx) = (2° — T2)/18,  Gu(x) = (92° + 2562° — 433z)/1680,

these show e.g.

and

x’—7x_2(x2--1) .2_17_ -7 +z
18 3 3 18’

and similarly for the others, resulting in
X, = —-@* -1)/3
X, = (72° — )/18
Xs = —(219z* — 142° — 13)/270
X, = (3993z° — 1522° + 119z)/1680

-X, =

These determine a calculation formula for the Poisson summation, which is
a refinement of the normal approximation. That is to say

1 g
P(a,c) = ®(g) = \/_ﬂ [ e dt

with
2—-1 703 —xr  219z* — 14x2 — 13
9=%~ 36 36c 1620cy/c
4 3993" — 1522° + 119z _
40320c?

andz = (@ — ¢)/Vc.
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For the {-variate, the formula is applied in the reverse direction since Hotelling
and Frankel supply the first four values of X, , that is, in present notation, the
series

~ — i + 13.'1{:5+8:41;"+3:1r:y_2 _ 352" + 192° + #° — 1591;:113
g z Y 8 2 64 6
4. 62712° + 32240 — 102" — 1680 — 945z y' |
3840 24

The reversed series (obtained by (4)) is

5¢° + 16g° + 3¢ ¢ " 3¢ + 19¢° + 174" — 159 ¢
48 2 64 6
4

79¢4° + 776" + 14824° — 19204° — 9459
3840

The first three terms are checked by Goldberg and Levine (l.c.).

Another application worth noting is to the formulas of Cornish and Fisher
which give Gi(g) and X (z) in terms of the relative cumulants of the distribution;
to save space these are omitted.

The derivation of the formula may be indicated most easily by Lagrange 8
formula for the expansion of one function in powers of another in the following
form':

Let C be a contour in the complex z plane enclosing the point z = z, and let
f(z) and ¢(2) be analytic on and inside C. Let y be such that | y¢(2) | < |z — « |
when z is on C, and ¢ be that root of the equation:

(5) g =1z + yo(g)
which lies inside C. Then

3
z~g+ ! Igy+

+ z+-

© @) = g [ ) & llogle — 7 = g6 (@) dz = $&) + 2 Xr()y"/n

where

@ X@) = d" A @@

The contour integral in (6) appears, slightly disguised, as a problem in Whit-
taker and Watson [Modern Analysis, Cambridge, 1920, p. 149]. The evaluation
(7) is given for completeness, though no use is made of it in this section, the
derivation proceeding directly from (6).

First notice that by (1) and (5)

~u(e) = 3 G/,

1 The author owes the suggestion for this to 8. O. Rice, who also simplified the derivation
of the second inversion formula given later.
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so that the logarithm in (6) may be written

log (z — @ + i Gy /n),

or
log (z — z) + log [1 + ; Ga(2)(z — x)_ly"/n!],

or

8) log (z — z) + log exp by,

with b a symbolic variable such that
b =0 =1
b" = b = Ga(2)(z — 7).
Now if
) log (exp by) = By + Buy’/2! + ~e+,
= exp By,

B being another symbolic variable, By = 0, B" = B, , it follows from equation
(5) of [8] that

B, = [Dy log (exp b)ly—o, Dy = d/dy,
= Yﬂ(ﬁbl ) by y ° ﬁbn)
= 21: Bi Yn.i(bh b2’ te bn)’
with 8; = (=)"'(¢ — 1)! and Y, the part of polynomial ¥, having i parts,
as defined above. Moreover, each factor by of terms in Y, contributes
Gi(2)(z — z)™" so that
(11) B, = }; Biz — 2) " Vai(Gr(2), G2(2) +++ Gal2))

Then, by (5)

fl@) = 2%%../;]'(2) (z 1 x+d%exp By)dz
= f(x) — —z-l—ﬂﬁf’(z) exp By dz

— @) = ok [0 S LAY G,

(z2 — z)°
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_ _ o yn n (_)t‘—l(i _ 1)! ) ,
= f(x) ; nl =, m Yai(Gi(2) -+ Gu(2))f'(2) dz
= f(x) — z‘:: %1: 2:: (=D) ' [f' (@) Yni(Gr(2) -+ Gal))]

with D = d/dx. The evaluation in the last line is by the Cauchy formula for
derivates; the second line is derived by an integration by parts.
" Equation (4) follows from this and the substitution f(g) = g.

4. Second Inversion Formula. This gives the interrelations of coefficients of
series like the two Campbell series mentioned in the introduction. It runs as
follows:

If qi(g), q2(g) - - - are given polynomials and if

) —in
(12) a=c E qﬂ(g)c
0 n!
defines a in terms of g and a parameter c; then
00 —in
(13) c=a Po(@)a””
0 n!
where
(14) —Pa(9) = Yalaqi(g), ag:(g), -+, agn(g))

withad' =ay = l;o' =a; = (0 —4)(n — 6) --- (n — )2~

Equation (14) is formally similar to (3) and by symmetry as before, ¢.(g) is
readily expressible as a Y, polynomial in pi(g) to p.(g)..

The first five instances of (14), dropping the argument for brevity, are

-0 =q
D= q — Qf
—ps =g — $ou + 141
—Ds = qa
—p = g + § (@ + 20502) — & (20591 + 3gig)
+ gt — B¢
Applied to Campbell’s first series where
al@ =g 0:(9) = (¢ — 79)/6
2@ =3 -1  alg) = (—12¢' — 28¢" + 64)/135
gs(g) = (36¢° + 1024¢° — 17329)/1296
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these show that
pig) = —g pa(g) = (¢° + 2¢)/12
Pg) = (" +2)/3  pulg) = (124" + 285" — 64)/135
ps(g) = (207¢° 4 2596¢° — 6148¢)/1296

The proof of (14) is as follows. First, for brevity introduce symbolic variables
p and ¢ with the usual interpretation p" = pa(g), ¢" = ¢a(g) so that (12) and
(18) read

a=cexpgc’}
c=aexppa?
Now write a = 1/2°, ¢ = 1/y’ changing these to
z =y (exp gy)”
y =« (exp pz)”
and note that
(15) &y = (exp qy)”' = exp pz
which shows that p, is the coefficient of z"/n! in the expansion in powers of z
of (exp qy)~’. Lagrange’s formula gives at once (D = d/dy):
19) 1) = £ 01 G)exp )l
so that

(exp qy) ' = Zl: ,% D[~ (exp gy)*™ ™ D(exp gy)ly~o

5 x_ a-1| _ $(n—2)
=250 [ n—— D(exp gy) :L_o
=Y i”f [D"(exp o) K
1 n!
or
—p, = _2 (D" (exp )™ >lymo
v n—2 v

Yﬂ(aql y QQ2, ,QQn)
with ; as in (14), by equation (5) of [8].
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