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1. Summary and introduction. For testing the hypothesis that successive
members of a series of observations are independent J. von Neumann [5]
(see also B. I. Hart [4]) and R. L. Anderson [1] have proposed test statistics and
tabulated their significance points. von Neumann’s criterion seems well designed
to detect deviations from the null hypothesis which might be encountered in
practice but its exact distribution is unknown. On the other hand Anderson’s
statistic, while it has a known distribution, is based on a circular conception of
the population which is rarely plausible in practice.

In the present note certain noncircular statistics are proposed for which exact
distributions can be obtained from Anderson’s results. The statistics are derived
from the usual noncircular statistics by sacrificing a small amount of relevant
information. Their application is noted to certain regression problems for which
no satisfactory tests are at present available. Finally, some general remarks are
made about the choice of best statistics for the problems discussed.

2. Proposed statistics. Consider the ratio
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where x = {aw@; - - - x,} is a column vector of independent normal variables with

zero means and constant variance and 4 is a real symmetric matrix. Then the
exact distribution of r is at present known only when the characteristic roots of
4 all have the same even multiplicity except at most two of arbitrary multi-
plicity. Thus in particular the distribution of 7 is known if A can be written as
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where B is a real symmetric I X I matrix with distinet roots vy > va > -+ > vy,

I, is the unit matrix of order p, and A satisfies cither A < »; or A < »,. Using
the results of R. I.. Anderson [1], we give the distribution of » when X is not equal
to vy or vy;. For A < v,
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where
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If A equals »; or », the distribution of r may be obtained from (3) or (4) by a
renumbering of the roots. These expressions remain correct for p = 0 or

(4

The probability densities can be derived by differentiation.
For testing the hypothesis of serial independence in a set of observations with
a zero (or known) mean we propose the following statistics:
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1t is easily seen that these statistics can be written in the form (1) with 4 having
the form (2). Here
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and X = 1. Thus the distribution of ¢, is given by (3) and (4) with these »/’s, [ = m
and p = 0. The distribution of ¢, is given by (4) withl = m, p = 1,and A = 1.
In ¢; , my1 has merely been omitted altogether so that ¢, has the same form
and therefore the same distribution as ¢; .
An alternative set of statistics is
(-T'l - x2)2 "_ te + (xm—l - xm)2
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As before these may be thrown into the form (1) with

dy = n =2m + 1).
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which has characteristic roots »; = 4 sin =1,---,m). Here A = 0.

Thus the distribution of d; and dj is given by (3) and (4) with these »’s, I = m

and p = 0, while the distribution of d, is given by (8) withl = m — 1,p = 3,
and A = 0.
For the case of an unknown mean we propose the statistics
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ordy (n = 2m + 1) which is of the same form as d; (the central observation in a

series of 2m 1 being omitted). The distribution of d; and dy is given by (3)

with

(m — )r .
2m @

The distribution of d, is given by (3) and (4) with

v; = 4 sin® =1---,m—1),l=m—1, p=1, and \ = 0.
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The distinction between the above statistics, exemplified by c; , and the related
circular statistics, exemplified by

1T+ o0 Taaa + el
n
2
1

is now clear. In each case the numerator quadratic form has been modified from
the obvious form to take, namely Z; z.x: , to a form giving a statistic with a
known distribution. In ¢, this is done by throwing out the relevant term 2 Tm41 ,
whereas in ¢; an extraneous term, z,r; , is included.

v; = 4 sin f=1,---,m)l=m and p=0.
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3. Application to regression problems. Suppose we have the sample correspond-
ing to the regression equation

Ye = Pt + - +BrTue + € t=1,---,n),

and we wish to test the e, for serial correlation. Exact tests are at present avail-
able only for cases in which the characteristic roots of 4 in (1) occur with certain
multiplicities mentioned in Section 2, and the regression vectors x;, - - ,a
are linear functions of a suitable set of k& of the characteristic vectors of A.
(T. W. Anderson [2].) Such cases are rare in practice. For other cases the general
problem has been discussed elsewhere (Durbin and Watson [3]). We suggest
here an approach that will give an exact test when the x vectors are the same in
different applications, as for example in polynomial regressions and analysis of
variance models.

Forn = 2m or n = 2m + 1 suppose that separate least squares regression
analyses are carried out on the first m and the last m observations. We shall
confine ourselves to cases in which the regression vectors are the same in the
two analyses. We may, for instance, have fitted a parabolic trend separately to
each of the two sets of observations. Consider

2, Bz, + 2Bz,
r=
2121 + 292,
where 2; and 2. are the two sets of residuals from regression, and B is a real
symmetric matrix with distinet roots. It has been shown (Durbin and Watson
[3]) that r is distributed as

m—k m—k

> wilnis 4+ 3o Z; (15 + 2,

b

=



450 G. S. WATSON AND J. DURBIN

where the 5’s are independent normal variables with zero means and unit vari-
ances and p;, - -+, un—x are the characteristic roots other than & zeros of the
matrix (I — X(X’X ")X’)B. X here is the m X k matrix of independent variables
used in the subanalyses. Either of the two forms of B given in Section 2 may be
used. If the roots are known the distribution of 7 can be obtained from (3) or (4).

These results have applications to a number of problems in time series analysis.
It is proposed, for example, to calculate the characteristic roots, and hence con-
struct an exact test, for the residuals from a polynomial trend. Other regression
models that could be treated in a similar way are one- and two-way classifications
and periodic regressions.

We might mention that the fitting of separate regressions to the two halves of
the series will often be less artificial than might at first sight appear since it is in
any case a common practice to break up time series into two or more parts for the
fitting of trends.

4. Powers of the statistics. T. W. Anderson [2] has discussed the Neyman-
Pearson theory for testing the hypothesis of serial independence of the error
terms of a regression equation. In testing for serial independence against the
alternative that the errors follow a stationary (normal) first order autoregressive
scheme

€ = péry + ¢,

he nas shown that no uniformly most powerful or type B; test exists. From his
arguments it appears that, of the statistics whose exact distribution is known, the
statistics ¢; and d; should be most suitable respectively for series with a fixed
mean, known and unknown.

As has been noted elsewhere (Durbin and Watson [3]), Anderson’s results give
us very little guidance for testing in a general regression model. Consequently the
statistics suggested are justified only by their intuilive reasonableness. On the
same intuitive grounds it is evident that the device of fitting two separate re-
gressions is likely to bring about a substantial loss of power if the number of in-
dependent variables is not small compared with the number of observations.

The foregoing discussion of power has been conducted in terms of stationary
Markov alternatives, partly because this is the case that is usually discussed,
and partly because of its relative simplicity, not because we consider it to be of
outstanding practical importance. For many cases found in practice the hypoth-
esis that the errors follow a stationary stochastic process seems to us unrealistic.
More usually, serial correlation of the errors will be due to systematic behaviour
arising from the inadequacy of the theoretical model to represent the true re-
lationship. This is a commonplace in econometrics, where tests of serial cor-
relation are now often used as a routine procedure in the construction of models.
In such situations the inappropriateness of a statistic which treats the products
&1 and 21z, on the same footing is evident on intuitive grounds. On the same
grounds the statistics proposed above might prove to be more acceptable in
many such cases.
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5. Significance tables of the statistics ¢,, d;. In Section 4 the statistic ¢;
was suggested for a test of randomness in a sample of an even number of ob-
servations from a population of known mean. A small table of the significance
points of this statistic is given below. If the observed value of ¢; is greater than the
tabulated wvalue, the null hypothesis of randomness will be rejected at the
5% level of significance in favour of the hypothesis that positive serial correla-
tion is present. As the distribution of ¢; is symmetrical about zero, a test for
negative serial correlation may he made by considering —e¢; . If the sample size
is odd, the central observation could be dropped and the tests made as above
with ¢; .
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For a test of serial independence in a series of unknown mean, the statistic
d3 has been suggested when the sample size is even. If the observed value of d;
is less than the value tabulated below, the null hypothesis is rejected at the
5%]level in a test against the alternative of positive serial correlation. For samples
of odd size, the middle observations may be omitted so that d, is still applicable.
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