ON THE EXACT EVALUATION OF THE VARIANCES AND COVARIANCES
OF ORDER STATISTICS IN SAMPLES FROM THE EXTREME-VALUE
DISTRIBUTION'
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Summary. This paper develops explicit closed formulas for the covariances of
order statistics in samples from the extreme-value distribution which involve
only tabulated functions. Such results do not appear to have been given pre-
viously. They have been used in an investigation of the estimation of extreme-
value parameters by means of order statistics which will be presented in a fuller
report to be submitted to the National Advisory Committee for Aeronautics.

1. Problem. We are concerned with random samples of size n from the “ex-
treme-value” distribution whose cdf is

(L.1) F(z) = exp(—e™), y= , — <z < .
(This distribution was derived as a limiting form of the distribution of the
largest value in a sample by Fisher and Tippett [1] and has been extensively
studied by Gumbel (e.g. [4], [5]). However, this paper is not concerned with the
extremal properties of this distribution.) If the »n values after ordering in size
are denoted by

Ty, Ta, * *, Tn, =S ST,

then we seek the second-order moments of the z;, x;, namely, the variances
o: and covariances oi; . The first moments have been tabulated [6] for samples
of n = 100.

The second moments involve integrals which at first sight look more difficult
than the corresponding ones for the normal distribution, which latter have
required a very extensive amount of numerical integration. In this paper a
method is shown for evaluating the extreme-value integrals in closed form
((3.10) below) involving only tabulated functions. Thus, the extreme-value
distribution is brought into the select circle, which previously included only the
normal (at least for n < 6—see [3]), exponential, and rectangular distributions,
and perhaps some others, for which the second moments of the order statistics
can be evaluated explicitly without quadratures.

2. Theory. The density function of the ith order statistic, z;, from the distribu-
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tion (1.1) is

_ n! -1y n—ig _
@1 @) = i PN - F@I@), - <z <,
where z = z;, f(z) = F'(z). The joint d.f. of the ¢<th and jth order statistics
Zi, ;, 18

_ n! i-1 _ j—i—1
22) p(z, y) = DG =7 =D =1 [F@)]™[F(y) — F(x)]
‘1= FQI" (2)f(@y), - <z=Zy< =,

wherez = z;,y = z;,1 < j,¢,5 = 1,2, --- , n. Without loss of generality, we
shall henceforth refer only to the standardized or “reduced” extreme-value
distribution, with the parameters § = 1, v = 0, :

(2.3) P(y) = exp(—e™"), —x <y < o,

and denote its variable by y.
From the density functions (2.1) and (2.2) we obtain

3 n! ? e D P ot e
o (‘rm‘n‘——)[ (hmem e de

(1———1-)-|—(_n——17i Z( I)Tcn-i[ xke_’-“'i-r)e-z dx’

n!
E(yy) = G—DIG—:¢—Din—!

® v = ie~%, —e™ —e T Ty j—i— —e ! —J
. [ [ zye VT e T (e — e )T — e ) T da dy
00 00

(2.5)
- n!
E—=—1DUj—2—Din —5!

j—i—1 n—j

Z Z (=)0 G 41— i — 1 + ),

where the function ¢ is the double integral
© py -
(2.6) ot u) = f f xye =" eV dx dy, tLtu>0
N —00 ¥Y—00
whose evaluation is the main point of this paper.

3. Evaluation of the integrals.
3.1 Variance-type integrals. These integrals are of the general form

gilc) = [ e de, c> 0.

The evaluation given here is not new, but is presented for completeness.
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The change of variable e~ = v gives
gi(c) = f (—log v)*e™ dv,
0

which for k a nonnegative integer’

( l)k dk t—le—cv dv
(3.1) d" -
= 0 & woe|
The needed first two values are
(3.2) glc) = —[%l) - P(cl) log c] ='% (v + log ¢),

where ¥ = —TI"(1) is Euler’s constant, .5772156649 - - - . Likewise,

(33) (o) = 1 [’-;- + (v + log c)z] .

.32 Covariance integrals. An integration by parts applied to the inner integral
in (2.6) with “dv” equal to the exponential factor gives

[ —z—t6T% = t_ —u v t— [ —te—z

Hence from (2.6) and (3.1),

(3.4) o, u) = go(t + u) — Y(t, u),
where
(35) v = [ g [ [ e d:c] dy.

The function y regarded as a simple integral containing a parameter (¢ > 0)
may be differentiated under the integral sign, giving, by (3.2),

"is_g,(t+u) —= [y +logt+wl, tu>0.

at ) + u)

Before integrating this equation, it is convenient to make the change of variable

= 1 4+ (t/u). After the substitution integrate (3.6) with respect to w from
w = 2 to w = w, and replace the upper limit w in the resulting expression by
its value in terms of ¢, noting that the corresponding limits for ¢ are ¢ = u to
t = t. The result is

ulp(t, ) — Y(u, w)] = vlog (1 + u/t) + 3log(t + w)]*

(3.6)

3.7)

14¢/u logw dw

— log u log t/u — v log 2 — }(log 2u)* — j; P
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The integral on the right is immediately expressible in terms of Spence’s integral
(or function)

(3.8) LA +2) = f 198—'—"— -3

n=1

(__ )ﬂ+1

Several tables of this function are cited in [2]. The most extensive of these is
given by F. W. Newman [7] to twelve decimal places.
It remains only to evaluate ¥(u, u). From (2.6) and (3.2),

o(u, w) = _[ ye ' ( [ I )dy
= L’o 3 o ( [w ze " dx) dy

'—152‘3(‘7+10gu)~

This value when substituted in (3.4) gives ¥(u, ). Combining this result with
(3.7) and the easily obtainable value L(2) = x°/12 gives, after a little algebra,
the following formula:

2tu ¢(t, u) = (u — Og(t + u) + t”[gl(t)l’ + 2L (1 + )

t\*
- (o) - 5

where the functions gi(t), g2(f) are given by (3.2), (3.3). This may be simplified
a little by use of the following property of Spence’s function:

(3.9)

L0 +2) + L1 +§) - Jloga) + T,

giving the result

2

(310) 2t 9t w) = (u = Dgalt + w) + Pl — 2L (1 + 1‘) T

The above results (3.9), (3.10), together with (2.4), (2. 5), make possible the
evaluation of all the variances and covariances. This requires the calculation of
n values of gy and of g;, and 3n(n — 1) values of ¢.

The calculation may be simplified with the aid of the relatlon

8.11) o, w) + o(u, 1) = g()g(w),

which nia.y be derived from (2.6) and (3.2) by means of a change in the order of
integration. Thus (3.10) need be used only for ¢ = u, so that (3.11) reduces the
number of values of ¢ by almost half, unless n is small, say n < 10.

" 4. Nlustration. The above formulas have been used by the author in an inves-
tigation of estimation of extreme-value parameters by means of order statistics.
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The results of this research, including a table of the first two moments for small
samples, will be reported elsewhere.

The following computations for n» =.3 illustrate the procedure described in
this article.

I}

From (3.2),
n(l) = v = 0.57721 57
n(2) = 0.63518 14
a3 = 0.55860 93.

The means are then given by (2.4) and (3.2) as
E(y) = 3[g(1) — 261(2) + ¢:(3)] = —0.40361 4
E(y) = 6[0:(2) — 9:(3)] = +0.45943 3
E(ys) = 3:3) = +1.67582 8.

As a simple check, these three values sum to 3y to within six decimal places,
and also agree with those in [6]. (The notation in the table cited differs from
that used here: E(y;) in this paper corresponds to F(y.—.) in the table.) Next,
from (3.3), we have

2
ga(l) = % + 9% = 1.97811 2

9(2) = 1.62937 8
9:(3) = 1.48444 4,
The mixed function ¢(¢, u) is then given by (3.9) and (3.10):
o(1,1) = 3¢y = 0.16658 9

o(1, 2) = 1g:(3) + v + 2L(13) — (1n2)* — 7%/6] = 0.14726 6
62, 1) = H{—¢0) + 4n@)® — 2L(13) + »°/6} = 0.21937 1.

Newman’s table [7] provides the value of the function L(1}) = 0.44841 42069.
Finally, equations (2.4) and (2.5) give, for the moments about the origin,

0.61140 0.11594 —0.43263
| Egsy) || =| 0.11594 0.86960  1.31622
—0.43263 1.31622  4.45333
whence the moments about the mean are given by
0.44850 0.30137 0.24376
|| o(yiy;) || =10.30137 0.65852 0.54629
0.24376 0.54629 1.64493 |.
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The final results are correct to about four decimal places. (One additional place
is shown for checking purposes.)

As a check, we should have

3.3 * 3 2

22 olyy) = (2 yi) = 9%y =30, = T,

=1 =1 =1 2
since o, the variance of the distribution P(y) in (2.3), is known to be /6.
The left side of this equation is found to be 4.93479; the right side, 4.93480.
This type of check cannot be considered to be very effective, however, as only
gross errors, and not compensating ones, will ordinarily be revealed.

The reader should be cautioned that, unless # is fairly small, it may be neces-
sary to carry out the calculations to a considerably greater number of places
than is desired in the results. This results from the presence of binomial co-
efficients and alternating signs in formulas (2.4) and (2.5), both of which operate
to reduce accuracy rapidly as » increases.
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