TESTING ONE SIMPLE HYPOTHESIS AGAINST ANOTHER

By LioNeEL WEIss
Um’ver§ity of Virginia

1. Summary and introduction. For the problem of testing one simple hypothe-
sis against another, of all tests whose probabilities of incorrectly accepting the
first hypothesis and of incorrectly accepting the second hypothesis are bounded
from above by given bounds, the familiar Wald sequential probability ratio test
gives the smallest expectation of sample size under either hypothesis. In this
paper, a ‘“‘generalized sequential probability ratio test” is introduced which
differs from the Wald test only in that the same limits (4, B in the usual nota-
tion) are not necessarily used at each stage of the sampling, but at the sth stage
A; and B; are used, where these numbers are predetermined constants. It is
shown that for any given test T, there is a generalized sequential probability
ratio test G whose probabilities of incorrectly accepting either hypothesis are no
larger than the corresponding probabilities for 7', and such that the cumulative
distribution function of the number of observations required to come to a
decision when using G is never below the corresponding distribution function
when using 7', under either hypothesis. We may then say that “G is uniformly
better than T'.”

2. Assumptions and notation. In this paper we deal with the problem of test-
ing one simple hypothesis H, against another simple hypothesis H; . We assume
that under H; the chance variable X has a distribution with density function
fi(z). Both fi(x) and fo(x) are everywhere bounded and have at most a finite
number of discontinuities. We make the test by means of a sequence of inde-
pendent chance variables (X;, X,, --- ), each having the same distribution
(the density function of each is fi(x) under H;). We assume that for any n and
any finite nonzero c,

/j---*ffo.-(x,«)dx,-—»O as Ac—0, for i =12,
j=1
the region of integration being

e @) oy 0
11 itz

The only tests we shall consider are those not involving randomization, and
such that in the space of the first n chance variables the regions where H, is
accepted and H, is accepted are Borel sets, for any n.

We define a “generalized sequential probability ratio test” as follows. There
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are two sequences of predetermmed nonnegative constants (4,, Az, --- ) and
(By, By, - --)such that A; = B, for all 7. The value = is not excluded. As long as

B, <11t /T e < 4

we continue sampling. The first time that this does not happen, we accept H:
if the upper bound was violated, accept H; if the lower bound was violated.
If A,, = B,, while for all { < m we have 4; > B; , the test is truncated at the
mth step. In general, any test is said to be truncated at the mth step if the
probability of continuing sampling beyond the mth observation is zero under
either hypothesis when using the test.

We use the following notation.

T:D;(n) is the probability that the sample size required to come to a decision
is less than or equal to n, when the test T' is used and H; is true.

T':Ai(n) is the region in the space of (X;, Xz, -+, X.) where we accept H;
when the test T is used. To be in this region, we must have taken an nth observa-
tion.

T:A; is the region in the o -dimensional space where we accept H; when
using the test T

T: C'(n) is the reglon in the space of (X 1, X2, --+, X,) where we continue
sampling when using the test 7.

P (R) is the probability of falling in any region R when H; is true.

PR | 8) is the conditional probability of falling in R, given that we are in S,
when H; is true.

Q(X, n) is [ ~ife(z,)/ 1= fi(z;). In specifying that we are using a certain
test T, we shall not keep repeating the symbol “7:” throughout an expression,
but shall use it once at the beginning of the expression and understand that it
modifies everything coming after it, until we reach a symbol denoting another
test. Thus if T and T” are two tests, the inequality T:Pi(4:1(m)) + Pi(Az(m)) >
T':Py(A;) means that the probability of coming to a decision at the mth step
when using T and H, is true exceeds the probability of accepting A, when it
is true and 7" is used.

3. Existence of a sequence of generalized sequential probability ratio tests
uniformly better than a given test in the limit.
Turorewm 1. If T is any test of Hy against H such that

lim T:D{n) =1 fori = 1,2,

n —»o0

there is a sequence (G, Gz, --- ) of generalized sequential probability ratio tests
such that

G;j:D(n) = T:Dy(n) for all n, all j,and © = 1, 2; and
lim G,:Pl(A,) _2_ T:Pi(A.’) fOT’L. = 1, 2.

J=ro0
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Proo¥. (At certain points in the proof, our statements should really be modified
for certain sets of probability zero under both H, and H, . The fact that we have
neglected to do this in no way affects the proof.) To prove the theorem, we form
a sequence of tests (T, T, --- ) as follows. T'; coincides with T until the jth
observation. If a jth observation is taken, T'; says accept H: if Q(X, j) = 1
else accept H; . Then we have

T;:Din) = T:Di(n) for all n,all j,and ¢ = 1, 2; and
l.lm Tj:P,'(A,') = T:Pi(Ai) for 7 = 1, 2.
J—o

Now for each 7, we will replace 7'; by a generalized sequential probability ratio
test G;, such that

(4.1) @;:Di(n) = Tj:Di(n) for all n, all 7, and ¢ = 1, 2; and
(4.2) G;:Pi(4:) = T;:P«(Ay) for all j and for ¢ = 1, 2.

This, with an obvious application of the Bolzano-Weierstrass theorem, will
complete the proof of our theorem. Whenever two tests T and 7” stand in the
same relation to each other as do G; and T; in (4.1) and (4.2) we shall write
T*D*T’. Thus we can state (4.1) and (4.2) more concisely as G%D*T; for all j.

Take any integer 7 and hold it fixed. Let us assume that for some integer m
above 1 but not exceeding 7 we know that for any given test T'; truncated at the
jth step there is a test T;(m), also truncated at the jth step and commdmg with
T; before the mth observation, such that T;j(m)*D*T;, and also Tj(m) has the
property W (m) defined as follows:

Tj(m): Ai(n) is given by Q(X, n) < By;
and
T(m): As(n) is given by Q(X, n) = A

for all n between m and j inclusive. We shall then show that all this is true for
m — 1. Since it is certainly true for m = j (with 4; = B}, since a decision must
be reached by the jth step), by working back to m = 1 we will obtain Gy and
thus complete the proof of the theorem.

If in the space of the first m — 1 chance variables we consider only those
points for which we stop sampling at the (m — 1)* observation, we can always
transfer pomts so that in T;:4;(m — 1) we have Q(X, m — 1) =< ¢, while in
T;:As(m — 1) we have Q(X, m — 1) > c, for some nonnegative ¢, without
making the distribution of the sample size or the probability of accepting a true
hypothesis less favorable in any respect. This simply requires the application
of the Neyman-Pearson.lemma to the set of points under consideration. We shall
assume that this is done. Suppose that we then find that there is a number r
_such that the subset S; of T;:C(m — 1) where Q(X, m — 1) > r and the subset
Sz of Tj:As(m — 1) where Q(X, m — 1) £ r are both nonempty. We assume
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that P(S;) > 0, else we would incorporate S; into T;: A2(m — 1), which could
not make the situation less favorable. Similarly, we may assume Py(S;;) > 0,
and hence P1(8;1) > 0, else we incorporate S;; into T;:A;(m — 1). With these
assumptions, ¢ < r < . Then we can find a number R, with ¢ < B < «,
such that if s; is the subset of T,-:C'(m — 1) where Q(X, m — 1) > R, and s, is
the subset of T';:A;(m — 1) where Q(X, m — 1) £ R, we have Py(s;) =
Pi(s;;) > 0. It is clear that s; and s;; are Borel sets. From now on, when we
write X we shall understand the generic point (z;, z2, -+, Tma) of m — 1
dimensional space. To each point X, of s;; we assign a nonnegative number
r(X 1) as follows: 7(X ;) is the greatest lower bound of the set of numbers » such
that Pi[X in s;and Q(X, m — 1) £ v] =2 PfX insyand QIX, m — 1) =
QX,m — 1)].

Now let us assume that we are using a test T;(m) defined above, where the
acceptance and continuation regions from the first to the (m — 1)t observation
are given by T;. We modify this test into T (m) as follows. Transfer s; into
T7(m):As(m — 1), 857 into T (m):C(m — 1), and for any X in s;;, we act in
the. future as though Q(X, m — 1) were equal to 7(X). In all other respects,
T7(m) coincides with Tj(m). We shall show that T7 (m)*D*T;(m). Note that
T7 (m) does not in general have the property W (m).

We need the following lemma. For any given u,

PiX in s;and Q(X, m — 1) £ u] = Py[X in s;r and 7(X) < u).

It clearly suffices to prove the lemma for u between g.lb. @(X,.m — 1) for
X in s; and Lu.b. Q(X, m — 1) for X in s; . The proof of the lemma is given in
five short sections.

(1) Given any point X’ in s;; , we have from the definition of »(X’):

PiX in s;and Q(X, m — 1) < r(X")]
= P[X in s;;and Q(X, m — 1) < Q(X/, m — 1)].

(2) Pi[X in s;; and »(X) = u] = 0. For suppose 7(X’) = r(X”) = u, and
QX', m — 1) < QX”, m — 1). Then we must have Py[X in s; and
QX' m - 1) 2QX,m — 1) £ QX”, m — 1)] = 0, else we could not have
r(X'") = r(X"), by (1). We define

Q= glb. QX,m — 1) for X in s;; and r(X) = u,
'Q. = Lu.b. Q(X, m — 1) for X in s;; and r(X) = u.
Then Py[X in s;;and @ < Q(X, m — 1) £ Q] = Py[X in sy and r(X) = u].

Since Pj[Q(X, m — 1) £ ¢]is a continuous function of ¢ for ¢ in the open interval
(0, »), and we can clearly assume that we accept H, as soon as Q(X, n) = o
and accept H; as soon as Q(X, n) = 0, we have Pi[X in s; and @1 =
Q(X,m — 1) £ @;] = 0, which proves the first sentence of (2).

+ (8) r(X) is a nondecreasing function of Q(X, m — 1), and therefore if X’
is in s;; the set of points in s;; such that @(X, m — 1) < Q(X’, m — 1) is the
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set of points in s;; such that r(X) < r(X’) (ignoring sets of probability zero
under H,).

(4) If there is a point X’ in s;; such that 7(X’) = u, we have Py[X in s; and
Q(X,m — 1) £ u] = Py[X in s;rand r(X) = u], by (1) and (3). By continuity,
the same thing is true if there is a sequence of points (X1, Xz, -+ ) in s such
that lim r(X;) = u.

(5) For any u not of the type discussed in (4), we define B(x) = lu.b. r(X)
for all X with »(X) < u, b(w) = g.lb. 7(X) for all X with 7(X) > u. We have

PiX in s; and Q(X, m — 1) < B(u)] = Py[X in s;; and r(X) = B(u)],
and
Pi[X in s; and Q(X, m — 1) < b(x)] = Pi[X in sy and r(X) < b(w)].
But
Py[X in sy and 7(X) < B(u)] = Pi[X in s;; and 7(X) < b(w)],

and therefore our lemma, is proved.

First we examine what has occurred when H is true. Since T’ (m) and T’ 3(m)
coincide until the (m — 1)® observation is taken, we start our investigation at
the (m — 1)* observation. Also, T'j(m): Ay(m — 1) is the same set as
T (m) Ay(m — 1). Since Py(sy) = Pi(si), we have Tj(m):Pi(d:(m — 1)) =
T’(m):Pi(A2(m — 1)). Now choose any number k between m and j inclusive.
We shall show that T (m) Py(A; (k)) = Tj(m):Py(Ayk)), ¢ = 1, 2. This will
complete the proof that T (m)*D*T;(m) when H, is true. For any set S, we
denote the complement by S. We have

T (m): Py(4:(K))

= Pi(3-C(m — 1))Pi(Ai(k) | 5ir-C(m — 1)) + Pi(su'C(m — 1)-A(K)),
and
T;(m):Py(A(k))

= Pi(s-C(m — 1)Py(Ai(k) |5-Clm — 1)) + Pi(s;-Cm — 1)-Ai(k)).

But corresponding terms in the expressions on the right of the two equations
are equal to each other, therefore the two left sides are equal. The only terms
on the rlght for which equality is not obvious are T';(m): P1(81 C(im — 1)-A.k))
and T7 (m):Pi(srr-C(m — 1)-Ai(k)). These are equal to T(m):Py(A(k)-s;) and
T’ (m):Py(A(k)-s;:) respectively. To show that these two latter expressions
are equal to each other, we define Yi[u, A:(k), V] to be the probability when H,
is true of falling in V:4 (k) when we arbitrarily assume that Q(X, m — 1) = u
and then start sampling, using the test V as thotgh the first observation were
the mth, the second were the (m + 1), ete. Clearly, Yilu, A(k), Tj(m)] and
"Yi[u, Ai(k), T7(m)] are equal to each other for all u in the open interval (0, =),
and are continuous on this interval. We also define Fi(u, s;) as Pi[X in s; and
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Q(X,m — 1) £ u], and G1(u, s1;) as P1[X in s;; and 7(X) = u]. We know from
the lemma that Fi(w, s;) = Gi(u, s;;) identically in u. We can assume that
Tj(m) is such that the sets [X in s; and Q(X, m — 1) = 0] and [X in s; and
Q(X, m — 1) = =] are empty. Then F;(u, s;) is continuous at 0 and =. We
have

Ty P4 0) = [ Vifu, A, Tim)] aFita, 5,
and
T3 (m):Py(A(k)-sn) = j; ) Vilu, A:(k), T;’(m)] dGy(u, sir).

From the considerations above, we know that these Stieltjes integrals exist and
are equal to each other. Thus we have shown that T (m):Py(4.(k)) is equal to
T(m):Py(A:(k)) for ¢ = 1, 2 and for any k between m and j inclusive.

Now we examine the situation when H: is true. Once again, we can start our
investigation at the (m — 1)t observation. We have Ti(m):Py(C(m — 1)) =
Py(s;) + Pu5-Cim — 1)), and T7(m):Py(C(m — 1)) = Po(su) +
Py(811-C(m — 1)). But the second terms on the right of these two equalities are
equal, while Pa(s;) > Ps(s11), since Py(s;) = Pi(si1),and ins;, Q(X, m — 1) > R,
while in 87, Q(X, m — 1) £ R. Now we take any k between m and j inclusive,
and examine the expressions

Tj(m): Po(C(k))

= Py(s;-C(k)) + Po(8;-C(m — 1))Py(C(k) | 8;-C(m — 1)),
T (m): P(C (k)

= Py(s11:C(k)) + P2(81:-C(m — 1))Po(C(k) | 511-C(m — 1)).

The second terms on the right of these two equalities are equal to each other.
We investigate the first terms on the right. In a notation that will be recognized
by analogy with that already used, we have

Tim): Pals C®) = [ " Vil C(k), T)(m)) dFsu, 1),

.T;"(m):Pz(su'C(k)) = jom Y[u, C(k), T;’(m)] dG(u, sy).

But dF.(u, s;) > dGs(u, s;r) for all u, because dFi(u, s;) = dGi(u, si1), while
dFy(u, s;) > RdF(u, s;) and dGo(u, si;) £ RdGi(u, sy) for all w. Also,
Yalu, C(k), Tim)] = Yiu, C(k), Tj(m)] for all u. Therefore we find that
Ti(m):Py(C(k)) > Tj(m):Py(C(k)). To complete the proof that T (m)*D*Tj(m),
e have to show that T'; (m):Py(4s) = Tj(m):Py(As), or that

T;!(m):Pz(§1'§11'A2) + Pz(st) + P!(sll'A2)
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= T;(’m):Pz(§1‘§n'A2) + Py(si1) + Po(sr-As)

or, since the first terms on the two sides of the inequality are equal, that P.(s;) —
Ti(m):Py(si+ As) Z Pa(sur) — T7(m):Pa(sys- As), or

.{;w ng(u, 81) o [:b Yz[u, A2 ) T;(m)] dFﬁ(u; 31)

»

2 [ dostun 5 = [ Vi, Ay, )] d6iu, ),
0 0
or that
| "1 = Vilu, Ay, Tim)]) dFs(u, ) 2 [ (1 = Vi, 4y, TIm)]) dGalu, o),

and this last inequality is immediately seen to hold.

By the assumption made above, there is a test T';(m) coinciding with T (m)
before the mth observation, having the property W(m), and such that
’f’,~(m)*D*T§'(m). Now we transfer points between Tim):4:(m — 1) and
T;(m):C(m — 1) so that after the transfer, for any X left in Tim):4,(m — 1)
we have Q(X, m — 1) £ S, and for any X left in T;(m):C(m — 1) we have
Q(X,m — 1) > 8, where 0 < S < ¢. Then, when S8 is properly chosen, we can
show exactly as above that we can define a test 7';(m), coinciding with T ;(m)
before the mth observation, such that 7";(m)*D*7T';(m). Using the assumption
made above again, there is a test 7';(m) having the property W(m), coinciding
with Tj(m) before the mth observation, and such that T ;(m)*D*T(m). But
then we have T;(m)*D*Tj(m), and also T;(m):A;(m — 1) is of the form
QX,m — 1) £ 8, Tj(m):As(m — 1) is of the form Q(X, m — 1) = R, and
Ti(m):C(m — 1) is of the form S < Q(X, m — 1) < R. Thus the existence of
T ;(m) shows that if our assumption holds starting from the mth observation,
it also holds starting from the (m — 1)*t. Since it holds at the jth observation,
the theorem is proved. (Note that-we were able to carry out the proof no matter
what the acceptance and continuation regions were before the (m — 1)* ob-
servation).

4. Existence of a generalized sequential probability ratio test uniformly better
than a given test.

TreEOREM 2. If T is any lest of H, against H, salisfying the assumpticns of
Sections 2 and 3, then there is a generalized sequential probability ratio test G such
that G*D*T.

Proor. We start with the sequence of generalized sequential probability
ratio tests (Gi, G., --- ) of Theorem 1. From this sequence we can choose a
subsequence so that the sequence of A; associated with the subsequence of tests
converges (convergence to « is allowed throughout this proof). From this sub-
- sequence of tests we choose a second subsequence so that the associated sequence
of B, converges. From this second subsequence of tests we choose a third sub-
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sequence so that-the associated sequence of A, converges. We continue- this
way in an obvious manner, Then we form a new sequence of tests consisting of
the first test in the first subsequence, the second test in the second subsequence,
---, the 7th test in the 7th subsequence, - -- . Denote this new sequence by
(81, 82, - -+ ). Define G to be the generalized sequential probability ratio test
given by the two sequencés of bounds (45, 45, ---), (BT, Bt , -+ - ), where
AT = lim;., (4; associated with S,), Bf = lim;.., (B; associated with ;).
By our construction, these limits exist. To see that G*D*T, it suffices to note
that S;:D;(n) =. T:D;(n) for all n,.all j, and 7 = 1, 2; and lim;_., S;:P;(4;:) =
T:Pi(A4;) for ¢ = 1, 2; and also that for any generalized sequential probability
ratio test, the probabilities of falling in the various acceptance and continuation
regions under -either hypothesis are continuous functions of the associated
bounds in the two sequences which characterize the test. (Note that any general-
ized sequential probability ratio test accepts H; as soon as Q(X, n) becomes
zero, accepts H, as soon as Q(X, n) becomes infinite).

5. Relation of results to decision theory. The relation of the results of this
‘paper to general decision theory is fairly clear. In decision theory we are given
a loss function, which we shall assume depends only on the true hypothesis, the
hypothesis chosen as correct, and the number of observations required to come
to a decision. We shall write this loss function as W(H, D, N), where H is the
true situation and can equal either 1 or 2, D is the decision as to which hy-
pothesis is correct and can also equal either 1 or 2, and N is the number of
observations required to come to a decision. We also make the following reason-
able assumptions about the loss function: W (1, 2, N) = W(l, 1, N) for all N,
W2, 1, N) = W(2,2, N) for all N, and W(z, j, N) is nondecreasing in N for
any fixed ¢ and j. Then the discussion of the previous sections shows that if T'
is any test, there is a generalized sequential probability ratio test G such that

G:P(W(, D, N) < w) = T:P(W(, D,N) <w) forall wandfori =1, 2.

6. Concluding remarks. The restriction to tests not using randomization that
we made above is not necessary. For suppose R is any test, with or witkout
randomization, such that lim,., R:Di(n) = 1 for ¢ = 1, 2. Truncating R at
the mth observation in the usual way, we get a test R(m) such that

R(j):Didn) = R:Dy(n) for all », all j, and 7 = 1, 2; and
lim R(j):Pi(4.) = R:P(4,) fori =1,2.
j—s0

Theorem 5.1 of [1] tells us that there exists a nonrandomized test T'(j) such
that T(j):Pr(A:(n)) = R(j):Pr(A;(n)) for all n and for ¢ = 1,2, k = 1, 2.
From this, it is easy to see that Theorems 1 and 2 hold if we consider randomized
tests.

Also, the restriction that the density functions be bounded can be dropped,
and the results still hold.
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Finally, similar results hold in those cases where the observations are not
taken one at a time, but in groups of predetermined size.
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