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1. Introduction. Let vy < e £ -+ £ 2iny,and 2 S 22 < - -+ = Tog,, be
two random samples (5., and S,,) from populations having p.d.f.’s f(z; A, 8)
and f(x; A,, 8,) respectively, where

1 /
(1 Jla; 4,0) = g exp [~ (x — 4)/6].
Let S,, and S,, be the sets of the first 7, and r, smallest observations of S., and
S.., respectively. Then the p.d.f.’s of S,, and S,, are given, say, by

g(xll y T s ey “11 ) 01) and g(xﬂ y Tty Xorg ‘12 5 02);

where

gy, gy + v+, xr5 4, 0)

] 7
- (—n%)—!;;exp{— HE -0+ - - A)]}.

The likelihood ratio tests based on the complete sets, S., and S,, are special
cases of those obtained by Sukhatme [2], [3]. It can be shown that similar likeli-
hood ratio tests based on S,, and S,, may be obtained by following Sukhatme’s
procedure [2]. In this paper these likelihood ratio tests are reduced to equivalent
tests which are expressed in terms of the well known chi square and Snedecor’s
F distributions. Furthermore, some of the tests obtained in this paper can be
extended to k-sample tests.

Since percentage points for x* and F distributions are tabled, tests involving
these random variables are useful in applications. We remark that the likelihood
ratio test for the hypothesis H; (see Section 3) has been obtained hy Paulson [1].

The results of this paper can be used in the field of life testing. A characteristic
feature of such tests is that observations become available in order of magnitude.
The assumption-of an exponential distribution of life is a reasonable one to make
in some applications (e.g., electron tube life). The parameter A can be interpreted
as minimum life (also called sensitivity limit in fatigue failure problems) and the
parameter 6 is the mean life measured from A4 as a starting point. From the life
test point of view one has a sample of size n, from population 1 and a sample of
size ng from population 2, the two populations one wishes to compare. Procedures

(2
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are given for testing various hypotheses regarding the 4; and 6; (i = 1, 2) based
on information which has been truncated in the sense that one has only the first
r; failure times from the sample of size n; (population 1) and the first r; failure
times from the sample of size n. (population 2). r; and . (as well as n, and n,) are
assumed to be preassigned. *

2. Preliminary lemmas. We give several lemmas which were used to obtain
the distributions of the reduced statistics. Lemmas 1 and 2 can be proved by
the use of characteristic functions and their proofs are omitted. Proofs of Lemmas
3 to 6 are given.

In Lemmas 1 and 2 below, weletz; < 2. < --- =2, < --- = x, bearandom
sample from a population having p.d.f. (1) and we define statistics «, v, and h as,

3) u=§[; (x,-—A>+<n—r><x;—A)].
4) v = g—[; (xi —z) + (n — r)(x, — xl)]-
(5) h= ?01‘ (2, — A).

LeMMA 1. u is distributed as x*(2r).

LeMMA 2. v and h are independently distribuled as xX’(2r — 2) and x*(2) re-
spectively.

Lemmas 3 to 6 deal with the case of two samples. The statistics v, , v, and
U, Ve are defined as in (3) and (4). Three additional variables w, , w,, and w
are defined in (6), (7), and (8).

2

(6) w, = o—nll (T — Za), for Ty > Ty
2722

(7 wy = — (Ta — ), for Ty > Iy

02

8 w=w, when z > 1y and w = wy, when =zy > x;.

Lemma 3, If A, = A,, then

| M/
(9) Pr(zy > zy) = n1/0; + n2/0,
and

. (10) Pi(@n > zn) = ta/h

n1/61 + ns/6;°
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Proor.
N ny107) @11—A D= (2109) 21— 4D)
o A _
Pl‘((l?u > x2l) f [ 1/V1) (Z171 1 na/Vz)(z21 1 dxll dle
0102

_ no/0y

/61 + N2/

Hence,

. n1/6:
n1/61 + na/62”

LemMa 4. If A, = A, , then both w, (given that afi > xn) and w; (given that
T > zn) are distributed as x°(2).
Proor. Since A; = Az, w; can be written as

Pl’(le > xu) =1 Pl‘(xn > 1‘21) =

2
w, = -0—?-1 [(xn — Al) — (xa — 4,)].
Consequently,

—Al—'z——’wl'l'(le—Az)

Let zu — A1 = y1and 2y — A, = ¥, , then the condition that z1 > 2z is equiva-
lent to 41 > - . Since the joint distribution of y; and y; is, say

(11) f, ) = %1'%2 g~ M/l gy >0,
1°02
we have
0
12 Pr(wn = w > =-——7f2—l—’——1—"""".
(12) (wn 10, Y1 yz) /0 + n2/02[ e 2]
According to Lemma 3
(7]

13 Pr(y, > = Pr(zn > = =——&/L—.
( ) (y1 yz) ( 11 21) oy /01 ¥ /02
Therefore,

(14) E Priwy S wp|ya > ) =1 — ¢

which is the cumulative form of the x* distribution with 2 d.f. This completes the
proof of the first assertion in Lemma 4. The proof for the second assertion is
similar.

LemMa 5. If A, = A, , then w is distributed as x°(2).

Proor. Since

(15) Pr(w < wo) = Pr(ws < wo, 41 > %) + Pr(we < wo, 41 < 1)
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then by (12)
(16) Pr(w < wp) = 1 — ¢

which proves Lemma 5.

Lemma 6. If Ay = A, , then (a) v; , V2, and wy (given that £y > ), or (b) vy,
ve , and we (given that 11 < Tz), or (¢) 1, v2 , and w are independently distributed as
x(2ry — 2), X'@r; — 2) and x*(2) respectively.

Proor. By Lemma 2, v; and v, are each independent of both x;; and x,; and the
results follow using Lemma 5.

3. Likelihood ratio tests and equivalent reduced tests. The various hypotheses
and their associated likelihood ratio and equivalent reduced tests are listed below
in Sections A, B, and C. One of the derivations will be given in Section D.
Some properties of the tests are given in Section E.

A. Statement of hypotheses.
a) H1 To test 01 = 02
(assuming A4, and A4, are known).

b) H; : To test 8, = 6,

(assuming A; = A, but that the common value is unknown).

C) H3 To test 01 = 02

d) H4 TO test A1 = A.2

(assuming 6, and 6, are known).

e) Hy: To test 4; = A,

(assuming 6; = 6., but that the common value is unknown).

f) Hg: To test A; = A,.

g) H7 To test A1 A2 B.Ild 01 = 02
B. Likelihood ratio tests.

In a), b) and c¢) below we let

(19) k=11 (" + ”) .

t=1 T

a) For H; :

20 N =K [(1 + o) <1 + é)"]-l

where

= [,.Z’I (Tyj — Ao) + (np — 12) (22r, — Ag)] /

(21) 71
[; (x; — A1) + (m — Tl)(xlr, - Ax)] .
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b) For H, :
1 re -1
A = K[(l + Cz)rl <1 + c—) :l ’ if T < Ty
(22) e M
= K[(l + E‘;) a4+ CQ)TZ:I , if T < ITn
where

¢ = I::é (x5 — zu) + (n2 — 1) (@ar, — x“)]/

[ = a0 + = o, = o0 |
(23) o= [; (= am) + (= (o, — xﬂ):l /

[ = ) + (1 = o, — 200 |-

i=1
¢) For H; : ,
r97]—1
(24) M=K [(1 + c3)”~<1 + g) ]
3
where
72
€3 = [Z; (xzj - Zn) + (n2 — Tz)(xzr,‘— le):l/
(25) - .
[;-21 (x; — zu) + (m — r)(rr, — xu):' .
d) For H, :
(26) N
where
27) = w.
e) For Hy :
28) M= (1 + ¢) 2, if o1 > an
=(1+ C;)_(”-m), if zu <
where

¢ = [m(zn — 2] / (i [El (x5 — za) + (n; — r)(Ter; — xa)])

t=1 | j=ui

(”2 Y cs = [ma(zn — 2u)] / (i [;Z_; (@4 — za) + (0 — 1) (@arg — “’"1)])

=
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f) For Hy :
(30) =1+ ci)"‘, if 2y > 2
= (14 ¢ce), if oy < 2n
where

cs = [m(zn — )] / [g (z; — on) + (m — Tl)(fvlrl - xu)]
3D .
C; = [z — 21)] / [; (X; — 2n) + (o — Tz)(xzr, - x‘ll)] .

g) For H; :

2 é re
- ()
=1 \@
where
b = l[; (@i — a) + (ni — r)(@ir; — xa)]
(33) 1 1 2 T
b= rn+ 7 P‘El [jal (xij - A) + (n,- - ri)(xi”. — A):l

and where A = min (zy , z21).
C. Reduced Tests.

By the use of the lemmas in Section 2, A1, Az, - -+, A¢ can be reduced to the
following equivalent tests having the corresponding distributions (see Table 1).
The authors have not succeeded in reducing A; to an F-test or a x’-test (as was
possible in A\;, Az, - -+, X¢). We should like to mention, however, that in [3]
Sukhatme found a cdf for A; in the special case where 7, = m; and 7. = n, . If
further n; = m, the cdf he obtained involves the inverse hyperbolic cosine. Un-
doubtedly one can obtain a similar result for the cdf of A; especially if r, = 7, .

In Table 1, numbers in the “critical regions” column indicate that the reduced
tests obtained may be either one-sided or two-sided. For example, consider the
case where r;, = r, = 10 and « = .05. Then for the various H; ,7 = 1,2, 3, 4, 5, 6,
we have the following critical regions which are summarized for convenience in
Table 2. ;

It should be noted that under H,, H,, Hs, and Hs the distribution of the
appropriate \ criteria consists of two parts, that is, depending on whether z;; >
Zo1 OF £ < 2 . In order to maintain a \ criterion in the form 0 < N < ¢, for
some appropriate constant ¢, we should use (if », = 7;) critical regions of size
in each of the two parts. If 7, # r,, then, in the case of Hs one has to abandon
the \ criterion in the simple form just given, because Pr(zu > 2») is unknown.
In order to obtain a test which is of size «, the statistician is forced to use eritical
regions of size « in each of the two parts. If r, # r, and one is dealing with H,,
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then it is possible (but not edsy) to maintain the A criterion in its usual form.
However it seems appropriate on practical grounds to use critical regions of equal
size « in each of the two parts.

D. Derivation of the test under H, ,

TABLE 1
Crit-
Hy- ) T ical
poth- Equivalent Reduced Tests Distributions Re-
esis gions
H | fi= ? 1 F(2ry, 2r) 2)
2
H, | f= e r_ 1 ez, if 2y <z F(2ry, 2r, — 2) 2)
2
f2 =1'2: lcé,ifle < zu F(2r1,2r2—2) @)
1
Hy | f3= :l — ics F(2r, — 2,2r, — 2) 2)
, —
H, fi=a x*(2) 1)

Hi f,=?_’i+———-§””4c,,ifxu>xm FQ 2 42m—4 | Q)

=it m ey > | FEQm+2m—4 | Q)

2
Hd f0=2r12—-200,ifx11>$21 F(2,2T1—2) (1)
f; = 21‘22— 20; ’ if 221 > zn F(z, 2ry — 2) (1)

Since the derivations are similar in all cases, it would be sufficient to give one
of them as an illustration. For the case H, , the proof is as follows.
Assuming 4; = A, = A, then the likelihood function is given by

h(xu, cr y Tiryy T2, "'1x2rz;A:01’02)

B _frml 61?;exp {_ l[z (@i — 4) + (n; — r)@ar, — A)]}.

T owr(ng — r)! 6 0;] 7=
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TABLE 2
Critical Regions
1
H1: fl } 2.46 or fl < 2—46
1
H,: f2> 256 or f. < 250 when 2y, < za1
and
1
f2 > 2.56 or fr < 550 when 2z < 1
Hst fa > 2.60 or fa < -—1—-
2.60
Hy: fa > 5.99
Hy: fs > 3.26 when z; > zn
~and
fo > 3.26 when zn > zu
H(s: fs > 3.55 when X > T
and
fe’ > 3.55 when x>

In the whole parameter space Q: A, 61, 6, > 0 we obtain the maximum likeli-
hood estimates

(35) ﬁ = min. (xu » 11321)
A 1< Py o
(36) b= 113 Gy = D)+ (= rdleg - D).
1 L= °
In the subspace w: A > 0, 6; = 6, = 6 > 0 we have

37 A = min (zy , zu)
6 b=t 35 ey~ D)+ = - D

Hence, it can be easily verified that the likelihood ratio is given by Az as in (22).
Further, ) is a function of ¢, (or ¢;), which under H; can be written as

(39) o=2T2 if 2u < 2m
1
(40) ¢ = nt w , if xn <.

Ve
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Consequently, the reduced test given in Table I follows from Lemma 6 and other
standard results on the distribution of the sum and ratio of independent chi
squares. ,
E. Some properties of the varioys tests.

A number of properties for the various reduced tests are of interest. Some of
them are: «

(a) The tests (critical regions on \) for H,, H,, Hs, H;, do not depend on
m and n, . This statement is also true for H, and Hs if 7 = 7.

(b) The power of the tests for H; and H; and also for H, if r, = r; does not
depend on 7, or n,.

(c) The tests are unbiased.

(d) The power of the tests for H, and Hj; is independent of 4, and A,.

These properties are fairly obvious. There are other properties which can be
discovered by a more detailed investigation.
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