THE BEHRENS-FISHER PROBLEM FOR REGRESSION
COEFFICIENTS

By D. A. S. Fraser
Unaversity of Toronto

1. Summary. For two normal populations with unknown variances and means
depending linearly on p + ¢ regression variables, a Behrens-Fisher generaliza-
tion is to test the equality of ¢ regression coefficients in one population with a
corresponding set in the second population. When ¢ = 1 a general class of similar
regions is obtained for the hypothesis, and for regions restricted to this class a
most powerful or most powerful unbiased test is found. When ¢ > 1 several
tests are presented and discussed.

2. Introduction.
2.1. The problem. Let U be a normally distributed random variable with mean
ZLI Bz, + Z"},l T.y, and variance ¢°; the location of the distribution depends

linearly on the ‘“factors” @y, -+, p; ¥1, -+, yq .- The regression coefficients
B, forr =1,---,pand T, for s = 1, -- - , ¢ are unknown but fixed constants
while the factors x;, ---, p; 1, -, Ye can be fixed or recorded for each

observed value of U. Similarly let U* be normally distributed with mean
ZL, o+ E‘Ll Tryry and variance o** . The problem is to test the hy-
pothesis H, = {T, = T ;s =1, ---,q}.

Consider a sample of size m from the distribution of U; we have

{Ua;xla;""xpaleay"',yqa:a:"1;"’;m}~

Letting the observed values of U and of the factors be column vectors in m-
dimensional Euclidean space R™, the sample yields {U; &, -+, Zp; §1, - -,
#4). For given values of the factors, U is distributed in a spherically symmetric
normal distribution about the point Y, 8,% + D T.§, with variance ¢°. Similarly
a sample of size n from the distribution of U* is given by {U*; %t , -+, &3 ;
g¥, -+, §¥) which is a set of vectors in R". U* has a spherically symmetric
distribution about Y 8¥% + > T, with variance ¢** . We assume for each
sample that the vectors representing the factors are linearly independent.
Consider the following orthogonality conditions on the vectors which record
the observed values of the different factors: 7, - - - , §, are mutually orthogonal
and orthogonal to & , +-- , %, ;J1, -+ , Ja are mutually orthogonal and orthog-
onal to ZF , - -+, &3 . The problem can always be put in this form by replacing
the given factors by suitable linear combinations thereof. For consider a set
of independent vectors i, -+, &, ; 1, -+, Jo . By using instead the vectors
Ey,, &p; Gz, ", oo Where §,, is the regression residual after fitting
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BEHRENS-FISHER PROBLEM 391

&, - -, &p, we have orthogonality between the &, set and the §,.. set. Doing
similarly for the ¥, §* we have

Zﬁrfr +ZTaga =Z‘Y1jr +ETaga.z
SBFE + 2 T = vrEr + 2 T

for suitably defined y,, yF; and the hypothesis H, remains unchanged.
Now replace the vectors 7. (7r:) by linear combinations thereof, say
D e Gtalfs 2 Z auisz), Where the transformation matrix || a, || is chosen so
that both || y,.,y.., || and || 7i%g¥. || become diagonal matrices. The vectors
Z Alsz, (t = 1, , q) are then mutually orthogonal and orthogonal to the
Z, ; similarly for 2 auire and the & . Also the hypothesis H, is unchanged
since the same linear combinations are used for the vectors ... as for 7i .

For our problem P,, we summarize the notation and structure as follows.

I. U is normally distributed in R™ with

(1) E{ (7} = Z:—l B.z, + 22-1 TsFs ,

and
(2) Covariance Matrix = oI (I is the identity matrix),
where
3) 41, -, §J, form an orthogonal set and each is orthogonal to the space

~ generated by &1, -+, Tp.
U* is normally dlstrlbuted in R™ with
(1) E{ U*} = 7“’=l rxr + Z:=l Taya .

and
(2) Covariance Matrix oI,
where .
(3) 77, -+, §s form an orthogonal set and each is orthogonal to the space
generated by Zy , -+ -, p .
The hypothesis to be tested is H, = {T, = Ty ;s =1, -+, ¢}.

2.2. Examples. The following examples of the above structure have been
treated in the literature.

ExampLE 2.1. The original Behrens-Fisher problem [3]. This case is charac-
terized by p = 0,¢ = 1,5 = (1, ---, 1) and §* = (1, ---, 1). Within each
sample the mean is constant and the hypothesis to be tested is that the samples
have the same mean. The solution in this paper reduces to that given by Scheffé .
[2].

ExampLE 2.2. The problem proposed by Barankin [1]. For this problem we
havep =1, ¢ = 1,z = (17 yl)’ y = (El - ZE-’/m, ce sy Em — ZE:/M)'

=(1,---,1)and 7 = (m — Swi/n, e — >~ #:/n). The hypothesis
H is that the regression coefficients on £ and # are equal. The test proposed re-
duces to that given by Barankin; however the properties proved are different.
In this paper the test is shown to be most powerful or most powerful unbiased
in a general class of similar tests. Barankin showed the test was most powerful
among tests based on certain linear combinations of the variables (see [1]).



392 D. A. S. FRASER

Exameie 2.3. Problem discussed by Chand [4]. We have p = 0, ¢ = 2, and
T, o, J1 , o are respectively the vectors Z, 7, &%, §* given in the previous
problem 2.2. T; and T, are « and 8 in the notation used in [4]. The hypothesis to
be tested is Hy = {a = o*, 8 = B*}. It is a different problem to test the hy-
pothesis H = {o/ = of*, ' = §*}, where

E{U} = o + 8%, E{U* = o* + g*z*

This can be treated in the present formulation by finding au , @12, @, a°
such that au(l, ---, 1) 4+ awf, an(l, ---, 1)’ 4+ axf are orthogonal and
on(l, - -+, 1) 4+ aF* an(l, ---, 1)) + axnE* are orthogonal.

3. Structural simplification.

3.1. Linear transformations. Assuming that we are dealing with samples of
size m and n and with given observed values of the factofs involved, we introduce
the following transformations in the sample spaces. These transformations con-
siderably simplify the formulation of the problem.

In the space R™ of the first sample, we introduce an orthogonal transformation
with matrix A. Let the components of a vector in the new m dimensional space

be Ly, -+, Ln; then L = AU = (Ly, ---, L»)". We impose the following
conditions on the transformation. ‘

(i) The space generated by &, - - - , T, is mapped into the space generated
by the coordinate vectors corresponding to Ly, ---, L,.

(i) The space generated by 4, - - - , ¥, is mapped into the space generated
by the coordinate vectors corresponding t0 Lpi1, -« + , Lpiq . We require further

that the vector #, is mapped into [N(7)]! = m times the coordinate vector of
L1, 2 is mapped into [N(g2)]! = n. times the coordinate vector of L4z, and
so on for all the vectors ¢, - -, ¥, . This can be done since the vectors are
mutually orthogonal and orthogonal to all the vectors £. We use N(7) for the
norm of a vector ; that is, N(7) = 7'9.

These conditions on A are equivalent to the following equation.

} 1 1

|
4'(121, crry Zpy Yuy v ,'!74) = i
| ! P
|
!
|
i

M p+1
nq;p+q
i m

where all elements of the matrix except those in the indicated diagonal are zero.
This can be satisfied by replacing the vectors Z by an orthogonal set, normalizing
all p + ¢ vectors, and using transposes of these p + ¢ vectors as the first p + ¢
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rows in the matrix A. Complete A by adding m — p — ¢ normalized orthogonal
row vectors.

The original assumptions and structure of the problem are transformed by
4 to the following.

II. T is normally distributed in R™ with

(1) E(Ll) =Y, E(Lp) = Yp
E(LPH) =T, -, E(Lp+q) = Tgng,
E(LP+q+i) = 077’ = 1’ e, M —p —4g,

and

Q) Covariance Matrix ¢°1I.
The constants v1, - -+ , v, are independent linear functions of the constants
B1, -, Bp. Since the B’s are unknown regression coefficients in this problem,
so also are the coeflicients v1, - -+ , v, .

Similarly we introduce a transformation A* in the space R". The new structure
for LY, ---, L7 is given by the above equations where each T, v, n, L is given
an asterisk.

The hypothesis to be tested is H, = {T, = TF¥;s=1,---,q}.

We further transform the problem by the following transformation of the
variables.

* *
T, = Lp+1___Lp+l e T __Lp+q___ p+q
1= —— — —, y Tg = — — —,
m niy nq nq
* *
S —L"""-|— g _Lp+¢_|_Lp+q
1= — ) y Rg = —— %
m ni Ng Nq
V,-=L,- "'=1y » P
* *
V,--——Lr 7-=1’...’p
2i = Lpigssi i=1,---,m—p—gq

z?=L2+q+i j=1,---,n—p-—q.

The formulation of the original problem P, in terms of these transformed
random variables T, S,, V., V¥, 2, 2} is:
III. 2,; 2 = 1, --- ; m' are normally and independently distributed with
means 0 and variances o”. .
2f;j = 1,---, n are normally and independently distributed with
means 0 and variances o 2.
V.;r =1,-+-, p are normally and independently distributed with
means v, and variances o
V¥;r = 1,---, p are normally and independently distributed with
” means y; and variances ¢ 2.
(T, S) is normal with mean (d;, a;) and covariance matrix
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4 2 % 2 2 % o2
;' aoc + cio o’ — o
; 2 % 2 2 * s2 |)°
|! Cioc — Ci0 Cio + c1o !

(Ty, S,) is normal with mean (d, , a,) and covariance matrix

~ 2 *2 2 * *2
;i ceo’ + c¥o Cq0 — Cq0 !

.
2,|

L, * %2 2 * *
I cqo” — cjo cqo” + cjo !

A pnou Hypothesus ¢i,¢, -, cq,cr are known positive real numbers;
o e v, Y, Ve, Ve, a1, -+, a, are real numbers with values
unknown. '

Hypothesis H, to be tested: {dy = d = --- = d, = 0}. Alternative
Hypothesis: {(dy, ---,d,) e D < R% (0, ---, 0) 2 D}.

Note that m’ =m — p — ¢,n’ = n — p — q. Also the v’s, ¥*’s, a’s, and d’s
are simply related to the original regression coefficients ’s, 8*’s, T’s, T*’s in terms
of constants which depend on the values of the original regression variables.

3.2. Reduction of the class of similar regions. We look for a general class of
similar regions under the hypothesis H,. The following theorem allows us to
restrict our choice.

THEOREM 1. Any region in R™*" sumalar of size a under variation of Tiy cc o,
Yo, VT AR v has almost everywhere condutional size gwen Vi, -+ V,, VT,

S

The proof follows immediately from the completeness of the multiple La-
place transform.

Under the hypothesis H, and its alternative the conditional distribution
given the V’s and V*’s is independent of the V’s, V*’s and v’s, y*s. Thus any
similar test most powerful against a simple alternative can be chosen independent
of the V’s and V*%s.

3.3. The principle of tnvariance. The reduction obtained from Theorem 1 can
also be obtained on the basis of the principle of invariance, which in fact provides
an additional reduction. Consider the following linear tra. formation

Vr = Vr + A1‘
pr _ kg ak rT=1L-,p
Sc = Ss + Hs
This induces, the following transformation on the parameter space:
Yr = Yr + X
r=1--,p

¥ o=+

Qy = o +Ilra

S=1,"',q )

It is easily seen: that the problem is invariant under such transformations since
the values of the parameters {d.} are unaffected. Thus on the basis of the prin-
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ciple of invariance we look for a test which is independent of the values of the
V’s, V*%, and S’s.
Our problem has now been considerably simplified; it can be sumniarized as

follows. .

IV. Ty, -, Ty; 21, ,2m ; 21, -, 2% are normally and independently
distributed with means dy, -+, d,; 0, ---, 0; 0, ---, 0 and variances
act + o, e Fene 6, o, 06, -+, o The values
¢,ci, -+, ¢q, s are prescribed, and ¢*, ¢* are unknown. The hypothe-
sis to be tested is: H, = {dy = --- = d, = 0}.

4. Test for H, . In this section the Scheffé test [2] is shown to be most power-
ful or most powerful unbiased in a general class of similar tests.

4.1. The class of sumilar regions. The problem P; may be slightly modified
by changing the scale of the 2’s by a factor ¢! and the z*’s by a factor c*'. Letting
co’ and c¢*s"? be respectively o and ¢**, we have Py : Tz ; 27(6 = 1. -+, m/;
Jj =1,---,n) are normally and independently distributed with means d; 0; 0
and variances ¢° + ¢ ; ¢’; ¢ . The hypothesis is H; = {d = 0}.

We now define a class of regions similar of size « for the probability distribu-
tions of P; assuming H, ; the distributions have d = 0 ard no restrictions on
o and ¢ . Assume m’ < n’ without loss of generality. Considering (T'; z; ; 27)
as a point in (m’ 4+ n’ + 1)-dirensional Euclidean space R™ **'*', we form
hyperspherical cylinders of the following form:

m’ n’ 2
®p (r) = {(T; z; 2 | 2 (z,' + > aE?z’}‘) + 7= r2}.
=1 =1

Here || i}’ || is an n’ X n’ orthogonal matrix and P indexes it within the class
@® of all orthogonal n’ X n’ matrices.

On the hyperspherical cylinder ®g(r), consider hyperplanes of the following
form:

Bp(ct, *** s Cmr37) = {(T; 25 2)) i’zi + Zla.‘f)z? =, Z;ci + T° = rz}.
We construct a class @7 of regions in R™ ™', @, consists of all sets S having
the following structure: S = U, .z Um(p. S, , where the sets S,r satisfy

1. S;r C ®p(r) is measurable in the space ®R(r).

2. 8,0 Svp = ¢unlessr =1, P =P’

3. ®*is a countable subset of ®.

4. If Upeps [Srp 0 Bo(cr, -+, €mr 5 )] # ¢, then using Lebesgue measure
A over the Euclidean spaces 3Cp(c1, « -+ , Cm ;7T)

porih = [ pa,
Pe®* Y3CP e

ahere p is the given probability density function, and ¢p is the characteristic
function of the set S,r . The integrals exist for almost all values of .
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‘5. If m is the uniform normalized measure over the sphere §, =
{lery, s em, T |20+ T = %} in R™™, then m(S,) = a for almost
all values of r where

S, = {(Cl, ety Cpy T) l L!Pe(P* [SrPn SCP(CI’ R ’I')] # ¢}.

Let @, be the sets S & €% for which Sp = U,.z S,» is measurable for P ¢ ®*,
and let @, be all sets which differ from those in € by sets of measure zero.

4.2. Proofs concerning similarity. Theorem 2 in this section establishes that
C. is a class of similar regions. Theorem 3 shows that any similar region satisfy-
ing Condition 4 above satisfies Condition 5. Also for any measurable region
there is a region differing by a null set for which sets S,» can be defined satisfying
Conditions 1 and 2. Thus, if @, is the class of all similar regions of size «, a proof
of this would only need to show that for each S the sets S,» can be chosen to
satisfy Conditions 3 and 4.

TueorEM 2. Each region belonging to @, is stmilar of size a with respect to the
measures of Pi(Hy).

Proor. Since the measures of P; are dominated by Lebesgue measure, we
need only establish that € is a class of similar regions.

Let Se @, and let ¢s be its characteristic function over R™ **'*. Since 8
also belongs to € , let S,» and ®* be as given in Conditions 1-5. Define Sy by
Sp = U,»Sr, and let ¢r be the characteristic function of Sr. Since
S = UP;(P&SP , we have ¢ = Zpg(p. ¢r . We also define a characteristic function
pler, -+, cw ; R) as follows:

eler, * yew s R) = 1 it U [Spndee(er, -, Cm;m)] 5 ¢
PeP*
=0 if. U [S,rnde(er, - -, cm;7)] = &
Pep*
We calculate the probability measure of the set S, letting p stand for the p.d.f.
under Pi(H,).

= * . *
ws)= [ ewar IaaTlast = [ (S en)par I da L iz

=2 [ ...opdT [z I ast
P Rm! tnr+1 N 7

- Zf drf A(r) dm por d\
P JR’ v JCp(er,eeiemeir)

= [ a[ A anZ [ per dN
R’ 8r P J3Cp(er,cciemrir)

=[ drf A(r) dme(ey, -+, Cnr 3 7) P d\
R’ Sr JCpley,oe-, Cmir)

= ‘/‘;, dr L A(T)¢(01, Tty Cm’ ) r) p‘l»”"cm;' dA’
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where A(r) is the area of 8, and where we let
Degyereremrir = p d\,
epler, e omeir)

that is, the marginal probability density of ¢;, -+, ¢m , T. This density is
easily seen to be a spherically symmetric normal density centered on the origin
with variance o* + o2 . Since it is constant valued over spheres centered at the
origin, let T'(r) = A(r)p.,.....c,,..»r and we obtain

WS = [ 20 dr [ oo o0 in) dm

= [ rom©) dr = [ r@adr =

Hence the probability measure of S is «, and is independent of the parameters
o and o2 of the distribution. This completes the proof.

TueOREM 3. If the region S is similar of size a and satisfies Condition 4, then
S satisfies Condition 5. )

Proor. Using the notion of Theorem 2, we have

a=#(S)=me,

All steps in the previous theorem remain valid under the assumptions of this

o, osp AT 1T dz; IT a5
® J

+n’+

theorem except the last two. The value of the integral f eler, -, Cum 37)dm
8r

may now be a function of r, say v(r). We have therefore o = f T'(r)o(r) dr.
Rl

Since the Gamma densities form a complete system of functions, with param-
eter o> 4 ¢ 2, v(r) must be equal to o almost everywhere. But since-this implies
the fulfiliment of Condition 5, the theorem is proved.
4.3. Choice of the test. From the class @, of similar regions, we wish to choose
an optimum test of the hypothesis H; . For this we require the following theorem.
THEOREM 4. For any region of the class Ca , there corresponds a region in C,
with the same power function and having the structure

S = UrtR’ U(cl ..... em*; T)eCy JCP(CI sttty Cm? )T)

where C, is a subset of S, for each r.

Proor. Let 8’ ¢ @, . From the definition of @, , there exists a measurable set
S” & % which is essentially equivalent to S’. $” satisfies Condition 4, which is
a relation to be satisfied for each ¢;, -+, ¢, 7. But ¢, -+, cw , being fixed
implies T is fixed.

Under an alternative hypothesis the p.d.f. “p” is changed by a factor depend-
ing only on ¢® + ¢, T, and d. This factor is a constant over all points in the
ranges of integration in Condition 4. It follows then that Condition 4 being
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true on the hypothesis H, implies that it is true under any alternative hypothe-

sis.
To construct S we arbitrarily choose a P ¢ ®* and using the structure of S”

given by Conditions 1-5, we choose
Cr = {(cly 4y C s 7v)l;}J [S:‘,P n JCP(CI) ctt y Cpt ;T)] 7= 4’}7
PeP*
S=u U Kp(er, =y Cmr 57).
reR’ (c1,°+cpm?;T)eEC,

It follows easily that Conditions 1-5 are fulfilled for the set S. Therefore S € Cp .
To show that S ¢ @, we must prove that S is a measurable set. S is a cylindri-

cal set with a cross section or base set S defined in R™ ™, the spaceof ¢;, -+ ,
Cm, T.
S=uS&s:
reR’
Sr = {(017 MR ;T)|Sn3CP(cl7 ety Cme 17) > ¢}-

It therefore suffices to show that this base set § is measurable. This can be estab-

lished by the following simple argument.
For the region S”, define as in Theorem 3 regions S» and characteristic func-

tions ¢” and ¢p . Then

f o, qo”p dT H dz; H dz}
rm +n'+1 s 5

w(S”)

)3 f . oipar T dz I] dz
Pe@* JR™ +n’ +1 i 7

j drj A@r) dm D, f ¢r P d\.
reR’ Sr Pe®* JICp(cr,eeriemrir)

Then applying Condition 4 we have

u(§8”) = f d:rf A(r) dm (e, 5 Cmr 5 7) P dA
reR’ Sr JCpCer,r - riemrir)

= f df‘f A(T)(p(cl, crr , Cpy ;T)Pcl,---.cm;r dm
reR’ Sr

' m
= f , ¢(Clx oy O 77') Der,ooeremeir dTHdC,.
Rm' +1 1

But since u(S”) is equal to this last expression, it follows that ¢,.....c,.;n 18
measurable. However, (¢, -+, ¢m ; 7) is the characteristic function of the
set S and therefore S is measurable and S € €.

We have now only to establish that the power function for the region S is
identical to the power function of S”. We shall need to know that Condition 4
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is fulfilled under alternative hypotheses; this we have already shown. Letting
P be the p.d.f. of P,(H, or H,), we have

ws = [ .. ¢pdr [ldsT] azt
=fdrf A@) dm T
R Sr

Pe@®* jSCP(cz.m.cm':r)

= fdrf A(r) dmo(er, -'-,cm;r)f yX2N
R Sr JCe(eresiemir)

= f drf A(r) dm or(S)p dA
R Sr JCEP(crsessemeir)

orp A\

= f or(S)p dT II 4 11 dzf = u(S).
Rm!4n’+1 r |

This completes the proof.
Thus for tests of size « with critical regions chosen from the class €., we can
get as good tests by confining our attention to critical regions of the form
S= U U CdCper, v, Cme 3 T).
reR’ (cp,c*em,T)eECr

Regions of this type are cylindrical with base in the space R™ % ofe,, -+ ,em, T

and axes the coordinate axes of the remaining variables. Whether a sample
point in R™ **'** belongs to S can be ascertained by observing whether

iy, yCm, T

falls in the base set in R™ *'. It is worth noticing that the size and power of
regions of this type are independent of the particular P used in the defining
equation above.

Our problem has thus been reduced to the following: PiT,c, +, Cu are
normally and independently distributed with means d, 0, ---, 0 and common
variance o® + o> . The hypothesis is H; = {d = 0}. This is the simplest ‘Stu-
dent’ problem.

The choice of a similar test for this problem P, depends on whether the al-
ternatives are one- or two-sided and will be the usual i-test, one- or two-sided.
Thus among similar tests of H, with critical region restricted to the class €.,
we have found a most powerful or most powerful unbiased test. This test is
identical to that proposed by Barankin [1].

5. Calculation of the Test Criterion for P; . Rather than give an explicit ex-
pression for the test criterion, we describe in terms usual to the analysis of
variance the procedure for determining it. This will avoid errors in substituting
in an unwieldy expression and the possibility of typographical errors in such ex-
“pressions (for example, in formulas (37) and (39) in [1] the sign of the second
term in the denominator should be negative).



400 D. A. 8. FRASER

We need first the linear function contained in the numerator of the ¢-criterion.
This is to- within a constant factor. the difference between the regression coeffi-
cient for 7 in the first sample and the corresponding coefficient in the second
sample. These coefficients are independent of whether the 7 vectors have been
orthogonalized to the corresponding & vectors: we need only the coefficients in
the joint regression. Calculate the variance of the difference between these two
coefficients: it will be of the form ac® + bo™* .

For the calculation of the denominator, we distinguish two cases. In each
delete n — m members of the second sample.

I. The vectors §, &1, - - - , &, generate the same space as §*, & , -+, 3. In
the two samples of size m fit by regression the vectors §, &, - - - , &, (or equiva-
lently §*, &1 , - -+, »). Proceed as in the analysis of covariance; calculate the
sum- of squares (8S) of the U’s, the sum of products (SP) of the U’s and V’s,
and the sum of squares of the V’s. Then using the regression coefficients as ob-
tained from the samples of size m, calculate SSy, SPyv , and SSy for residuals.
The denominator of the test criterion will be:

6. Vass,, + 2(ab)’SPyy + bSSy
. m—p—1 .
II. The vectors §, &1, - - - , &, do not generate the same space as §*, & , - -+ , &»

do. Choose a linearly independent set of vectors @, , - - - , W, which generate the
space spanned by the combined set of vectors 7, *, &1, - -+ , &, , &» and which
in addition satisfy the conditions:

Wy, -+, Wps generate the space spanned by 4, &, - - - , &,

— L e ok _%
Wi—p, *++ , W; generate the space spanned by 7*, & , - -« , T, .
As a consequence of these conditions W, , - - - , Wp41 generate the intersection

of the spaces mentioned in the two conditions above. Calculate the regression
coefficients obtained from fitting the vectors @, --- , W, to the first sample.
In doing so, fit the first (p + 1) w’s and then record I , - - - , ;_,_; , the succes-
sive amounts by which the sums of squares of residuals is reduced by fitting in
addition ®@,4s, - -+, W, one by one. Let SSy be the final sum of squares of re-
siduals. Repeating the above procedure for the second sample of m, but using
the @ vectors in the order @, W¢., -+, W , obtain L2 e, 1, SSy.
Calculate the overall sum of products and using the two sets of regressian co-
efficients on all the @’s, obtain SPyy the sum of products of residuals. The de-
nominator of the test criterion will be

t—p~—~1
(5.2) / aSSy + 2(ab)!SPyy + bSSy + 2; ('l + )’
m—p—1

where I; , IF are given the signs of the corresponding regression coefficients.
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It is easily seen that formulas (5.1) and (5.2) give the denominators for the
optimum test criterion as described in Section 4.

6. The problem P,, ¢ > 1. No attempt has been made to obtain a general
class of similar regions for P,(¢ 3 1) except in a very particular case described
below. The asymptotically best test in the sense that the F ratio is best in the
analysis of variances (see Wald [6]) is, however, immediately available. To ob-
tain this, calculate a t-criterion for each of the g regression coefficients, in each
case putting the remaining ¢ — 1 vectors with the & vectors and proceeding as
in Section 5. Each ¢ has asymptotically the x} distribution and is asymptotically
independent of the other #’s. Combine the ¢ s to obtain a criterion having
asymptotically the x} distribution under H, . Use large values of x° to form the
size « critical region. . ’

In small samples a similar procedure is available if each numerator for the
t criterions has the same ratio b/a = k where a and b are given in Section 5.
Divide each numerator by the corresponding a*, and square and add to obtain
the numerator of an F-ratio. For the denominator use the square of the ¢-ratio
denominator where a¢ and b are given the values 1 and k. This F-ratio will have
the Fy,m—_pq distribution under H, and the usual power function under the al-
ternatives. The procedure in Section 4 extends immediately; a general class of
similar regions €, exists and its construction is almost identical to the P, con-
struction. Among tests having regions belonging to €., a best test in the Wald
sense [6] exists and is the one described at the beginning of this paragraph.

If the ratios b/a are not constant corresponding to the ¢ pairs of regression
coefficients, the following procedure gives an exact test for small samples. Calcu-
late the numerators for the ¢-ratios as described in Section 5. Also calculate the
sums of squares and products as used in formulas (5.1) and (5.2). Partition these
sums of squares and products into ¢ sets having n; , - - - , n, degrees of freedom
(3oni = m — p — g). Next evaluate ¢ t-ratios using for the 7th denominator the

expression

/‘/ a;88 U(ni) + 2(az’bi)*SP UV(ni) + b:SSv(ni) .

n;

From each £; using F tables with 1 and n; degrees of freedom, calculate p; the prob-
-ability of a larger value of ¢ under H, . Under H, each p; will be uniformly and
independently distributed [0, 1]. x* = >3 — 2In p; can then be used as a test
criterion; under H, x” has a x” distribution with 2¢q degrees of freedom and under
alternative hypothesis large values of x° become relatively more likely. See
Fisher [5]. For tests of this type the power curve along the axes of dy, -+, dq
in the parameter space depends respectively and only on 7, , - - - , n, (see Baran-
kin [1] p. 435). Using considerations similar to those used to justify the principle
of invariance, it seems reasonable to maximize the lowest curve; that is, we

choose the smallest value of n; as large as possible. We therefore choose n; =
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[m — p — q/q] for as many < as possible subject to the remaining n; satisfying
ni=[m—p—gqg/gd+ 1
Other possible ways of combining individual tests are discussed in [7].
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